References

1. Reiragel, P. and Zador, A.M. (1997) The effect of gaze on natural scene statistics. Neural Information and Coding Workshop, pp. 16–20.

2. Itti, L., Koch, C. and Niebur, E. (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Transaction on Pattern Analysis and Machine Intelligence, 20, 1254–1262.

3. Hou, X. and Zhang, L. (2007) Saliency detection: aspectral residual approach. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR2007).

4. Peters, R.J. and Itti, L. (2008) The role of Fourier phase information in predicting saliency. Proceedings of Vision Science Society Annual Meeting (VSS08).

5. Guo, C.L., Ma, Q. and Zhang, L.M. (2008) Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR2008).

6. Guo, C.L. and Zhang, L.M. (2010) A novel multiresolution spatio temporal saliency detection model and its applications in image and video compression. IEEE Transaction on Image Processing, 19 (1), 185–198.

7. Yu, Y., Wang, B. and Zhang, L.M. (2009) Pulse discrete cosine transform for saliency-based visual attention. Proceedings of 8th International Conference on Development and Learning (ICDL2009).

8. Bian, P. and Zhang, L.M. (2010) Visual saliency: A biologically plausible contourlet-like frequency domain approach. Cognitive Neurodynamics, 4 (3), 189–198.

9. Fang, Y., Lin, W. Lee, B.-S. et al.(2012) Bottom-up saliency detection model based on human visual sensitivity and amplitude spectrum. IEEE Transactions on Multimedia, 14 (1), 187–198.

10. Fang, Y., Chen, Z., Lin, W. and Lin, C. (2012) Saliency detection in the compressed domain for adaptive image retargeting. IEEE Transactions on Image Processing, 21 (9), 3888–3901.

11. Castleman, K. (1996) Digital Image Processing, Prentice Hall, New York.

12. Oliva, A. and Torralba, A. (2001) Modeling the shape of scene: a holistic representation of the spatial envelope. International Journal of Computer Vision, 43 (3), 145–175.

13. Guerin-Dugue, A. and Oliva, A. (2000) Classification of scene photographs from local orientations features. Patten Recognition Letters, 21, 1135–1140.

14. Vailaya, A., Jian, A. and Zhang, H.J. (1998) On image classification: city images vs. landscapes. Pattern Recognition, 31, 1921–1935.

15. Field, D.J. (1987) Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America, 4, 2379–2394.

16. Tolhurst, D.J., Tadmor, Y. and Tang, C. (1992) The amplitude spectra of natural image. Ophthalmic and Physiological Optics, 12, 229–232.

17. Torralba, A. and Oliva, A. (2003) Statistics of natural image categories. Network: Computation in Neural System, 14, 391–412.

18. Baddeley, R. (1997) The correlational structure of natural images and the calibration of spatial representations. Cognitive Science, 21 (3), 351–371.

19. van der Schaaf, A. and van Hateren, H.J. (1996) Modeling the power spectra of natural images: statistics and information. Vision Research, 36 (17), 2759–2770.

20. Bell, A.J. and Sejnowski, T.J. (1997) The independent components of natural scenes are edge filters. Vision Research, 37 (23), 3327–3338.

21. Julesz, B. and Schumer, R.A. (1981) Early visual perception. Annual Review of Psychology, 32, 575–627.

22. Itti, L. (1998)NVT http://ilab.usc.edu/toolkit/.

23. Barlow, H. (1961) Possible principle underlying the transformation of sensory messages, in Sensory Communication, MIT Press, Cambridge, MA, pp. 217–234.

24. Koch, C. and Poggio, T. (1999) Predicting the visual world: silence in golden. Nature Neuroscience, 2 (1), 9–10.

25. Torralba, A. and Oliva, A. (2002) Depth estimation from image structure. IEEE Transaction on Pattern Analysis and Machine Intelligence, 24 (9), 1226–1238.

26. Chen, D.Y., Han, P. and Wu, C.D. (2010) Frequency spectrum modification: a new model for visual saliency detection. Lecture Notes in Computer Science, 6064, 90–96.

27. Pei, C., Gao, L., Wang, D. and Hou, C. (2010) A model of visual attention detection based on phase spectrum. Proceedings of IEEE International Conference on Multimedia & Expo (ICME2010), pp. 691–696.

28. Hamilton, W.R. (1866) Elements of quaternions, Longmans Green, London, UK.

29. Chen, D.Y., Zhang, L.M. and Weng, J.Y. (2009) Spatiotemporal adaptation in unsupervised development of networked visual neurons. IEEE Transactions on Neural Networks, 20 (6), 992–1008.

30. Kantor, I.L. and Solodovnikov, A.S. (1989) Hypercomplex Numbers, an Elementary Introduction to Algebras, Springer-Verlag.

31. Ward, J.P. (1997) quaternions and Cayley numbers, in Algebra and Applications, Kluwer Academic Publishers, Norwell, MA, USA.

32. Bülow, T. and Sommer, G. (2001) Hypercomplex signals – A novel extension of the analytic signal to the multidimensional case. IEEE Transactions on Signal Processing, 49 (11), 2844–2852.

33. Caelli, T. and McCabe, A. (2001) Complex images and complex filters: a unified model for encoding and matching shape and color. Proceedings of International Conference on Advances in Pattern Recognition(ICAPR2001), pp. 321–330.

34. Le Bihan, N. and Sangwine, S.J. (2003) quaternion principal component analysis of color images. Proceedings of IEEE International Conference on Image Processing (ICIP), I, pp. 809–812.

35. Pei, S.C. and Cheng, C.M. (1999) Color image processing by using binary quaternion moment-preserving thresholding technique. IEEE Transactions on Image Processing, 8 (5), 614–628.

36. Sangwine, S.J. (1998) Color image edge detector based on quaternion convolution. Electronics Letters, 34 (10), 969–971.

37. Ell, T.A. and Sangwine, S.J. (2007) Hypercomplex Fourier transform of color image. IEEE transactions on Image Processing, 16 (1), 22–35.

38. Ell, T.A. (1992) Hypercomplex spectral transform, Ph.D.: dissertation, University of Minnesota, Minneapolis.

39. Sangwine, S.J. (1996) Fourier transforms of colour images using quaternion or hypercomplex numbers. Electronics Letters, 32 (21), 1979–1980.

40. Pei, S.C., Ding, J.J. and Chang, J.H. (2001) Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT. IEEE Transactions on Signal Processing, 49 (11), 2783–2797.

41. Sangwine, S.J. and Ell, T.A. (2000) The discrete Fourier transform of a color image. Proceedings of Image Processing II Mathematical Methods, Algorithms and Applications, pp. 430–441.

42. Sangwine, S.J. and Bihan, N.L. (2005) http://visual-attention-processing.googlecode.com/svn/trunk/freqSaliencyMap/pqft/qtfm/@quaternion/qfft2.m.

43. Pei, S.C., Ding, J.J. and Chang, J.H. (2001) Efficient implementation complex FFT. IEEE Transactions on Signal Processing, 49 (11), 2783–2797.

44. De Castro, E. and Morandi, C. (1987) Registration of translated and rotated images using finite Fourier transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9, 700–703.

45. Bian, P. and Zhang, L.M. (2009) Biologically plausibility of spectral domain approach for spatiotemporal visual saliency. International Conference on Neural Information Processing. (2008), Lecture Notes on Computer Science, 5506, pp. 251–258.

46. Yu, Y., Wang, B. and Zhang, L.M. (2011) Hebbian-based neural networks for bottom-up visual attention and its applications to ship detection in SAR images. Neurocomputing, 74 (11), 2008–2017.

47. Hebb, D.O. (1949) The Organization of Behavior, a Neuropsychological Theory, John Wiley, New York.

48. Haykin, S. (2001) Neural Networks – A Comprehensive Foundation, Prentice Hall.

49. Foldiak, P. (1989) Adaptive network for optimal liner feature extraction. Proceedings of the IEEE/INNS International Jiont Conference on Neural Networks, 1, pp. 301–405.

50. Sanger, T.D. (1989) Optimal unsupervised learning in single-layer liner feedforward neural network. IEEE Transactions on Neural Networks, 2, 459–473.

51. Field, D.J. (1994) What is the goal of sensory coding? Neural Computation, 6, 559–601.

52. Patt, W.K. (1978) Digital Image Processing, Wiley, New York.

53. Golub, G.H. and van Loan, C.F. (1996) Matrix Computation, 3rd edn, John Hopkins University Press, Baltimore.

54. Field, D.J. (1989) What the statistics of natural image tell us about visual coding. Proceedings of The International Society For Optical Engineering, 1077, 269–276.

55. Ahmed, N., Natarajan, T. and Rao, K. (1974) Discrete cosine transform. IEEE Transactions on Computers, C-23, 90–93.

56. Hubel, D.H. and Wiesel, T.N. (1968) Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 195, 215–244.

57. Do, M.N. and Vetterli, M. (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 14 (12), 2091–2106.

58. Simoncelli, E.P. and Schwartz, O. (1999) Modeling surround suppression in V1 neurons with a statistically derived normalization model. Advanced in Neural Information Processing System, 11, 153–159.

59. Carandini, M., Heeger, D.J. and Movshon, J.A. (1997) Linearity and normalization in simple cells of macaque primary visual cortex. The Journal of Neuroscience, 17 (21), 8621–8644.

60. Parseval des Chênes, Marc-Antoine (1799) ‘Mémoire sur les séries et sur l'intégration complète d'une équation aux différences partielles linéaire du second ordre, à coefficients constants’ presented before the Académie des Sciences (Paris) 5, (This article was published (1806) in Mémoires présentés à l'Institut des Sciences, Lettres et Arts, par divers savans, et lus dans ses assemblées. Sciences, mathématiques et physiques (Savans étrangers) 1, 638–648).

61. Li, Z. and Dayan, P. (2006) Pre-attention visual selection. Neural Networks, 19, 1437–1339.

62. Nothdurft, H.C. (2000) Salience from feature contrast: variations with texture density. Vision Research, 40, 3181–3200.

63. Cavanaugh, J.R., Bair, W. and Movshon, J.A. (2002) Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. Journal of Neuroscience, 88, 2547–2556.

64. Wandell, B.A. (1995) Foundations of Vision, Sinauer Associates.

65. Geisler, W.S. and Perry, J.S. (1998) A real-time foveated multisolution system for low-bandwidth video communication. Proceedings of SPIE, 3299, 294–305.

66. Engel, S., Zhang, X. and Wandell, B. (1997) Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature, 388 (6), 68–71.

67. ITU(2002) Methodology for the subjective assessment of the quality of television pictures, Geneva, Switzerland, ITU-R BT. 500–11.

68. Just, M.A. and Carpenter, P.A. (1987) The Psychology of Reading And Language Comprehension, Allyn & Bacon, Newton, MA.

69. Greenspan, H., Belongie, S. Goodman, R. et al.(1994) Overcomplete steerable pyramid filters and rotation invariance. IEEE International Conference on Computer Vision and Pattern Recognition.

70. Wallace, G.K. (1991) The JPEG still picture compression standard. Communications of the ACM, 34, 30–44.

71. JTC1/SC29/WG1(1994)10918- 1: Information technology – Digital compression and coding of continuous-tone still images – requirements and guidelines. International standard, ISO/IEC.

72. Tong, H.Y. and Venetsanopoulos, A.N. (1998) A perceptual model for JPEG applications based on block classification, texture masking, and luminance masking. IEEE International Conference on Image Processing.

73. Jia, Y., Lin, W. and Kassim, A.A. (2006) Estimating just-noticeable distortion for video. IEEE Transactions on Circuits System and Video Technology, 16 (7) 820–829,

74. Rockafellar, R.T. and Wets, R.J.-B. (2005) Variational Analysis, Springer-Verlag.

75. Li, J., Levine, N.D., An, X. and Xu, X. (2012) Visual saliency based on scale-space analysis in the frequency domain. IEEE Transactions on Pattern Analysis and Machine Intelligence, In Press.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset