References

1. Koch, C. and Ullman, S. (1985) Shifts in selective visual attention: toward the underlying neural circuitry. Human Neurobiology, 4 (4), 219–227.

2. Itti, L., Koch, C. and Niebur, E. (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Transaction on Pattern Analysis and Machine Intelligence, 20, 1254–1262.

3. Itti, L. (2004) Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Transactions. Image Processing, 13 (10), 1304–1318.

4. Lu, Z., Lin, W., Yang, X. et al.(2005) Modeling visual attention's modulatory aftereffects on visual sensitivity and quality evaluation. IEEE Transactions. Image Processing, 14 (11), 1928–1942.

5. Walther, D. and Koch, C. (2006) Modeling attention to salient proto-objects. Neural Networks, 19, 1395–1407.

6. Harel, J., Koch, C. and Perona, P. (2007) Graph-based visual saliency. Advances in Neural Information Processing Systems, 19, 545–552.

7. Bruce, N. and Tsotsos, J.K. (2005) Saliency based on information maximization. Advances in Neural Information Processing Systems, 18, 155–162.

8. Gao, D., Mahadevan, V. and Vasconcelos, N. (2007) The discriminant center–surround hypothesis for bottom-up saliency. Advances in Neural Information Processing Systems, 20, 479–504.

9. Zhang, L., Tong, M.H., Marks, T.K. et al.(2008) SUN: A Bayesian framework for saliency using nature statistics. Journal of Vision, 8 (7), 32, 1–20.

10. Itti, L. and Baldi, P. (2006) Bayesian surprise attracts human attention. Advances in Neural Information Processing Systems, 19, 547–554.

11. Frintrop, S. (2005) VOCUS: A Visual Attention System for Object Detection and Goaldirected Search, PhD thesis Rheinische Friedrich-Wilhelms-Universität Bonn Germany, Published 2006 in Lecture Notes in Artificial Intelligence (LNAI), 3899, Springer Verlag Berlin/Heidelberg.

12. Huang, J., Kong, B., Cheng, E. and Zheng, F. (2008) An improved model of producing saliency map for visual attention system, in Communications in Computer and Information Science, 15 (Part 12), Springer Verlag, Berlin/Heidelberg, pp. 423–431.

13. Engel, S., Zhang, X. and Wandell, B. (1997) Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature, 388 (6), 68–71.

14. Greenspan, H., Belongie, S., Goodman, R. et al.(1994) Overcomplete Steerable Pyramid Filters and Rotation Invariance. Proceedings of IEEE Computer Vision and Pattern Recognition, pp. 222–228.

15. Itti, L., NVT(1998) http://ilab.usc.edu/toolkit/.

16. Horowitz, T. and Treisman, A. (1994) Attention and apparent motion. Spatial Vision, 8 (2), 193–219.

17. Alais, D. and Blake, R. (1999) Neural strength of visual attention gauged by motion adaptation. Nature Neuroscience, 2 (11), 1015–1018.

18. Horn, B. and Scchunck, B. (1981) Determining optical flow. Artificial Intelligence, 17, 185–203.

19. Black, M.J. and Anandan, P. (1996) The robust estimation of multiple motions: parametric and piecewise-smooth flow field. Computer Vision and Image Understanding, 63 (1), 75–104.

20. Zhang, K. and Kittler, J. (1998) Global motion estimation and robust regression for video coding. IEEE International conference on Acoustics, Speech, and Signal processing (ICASSP).

21. Nothdurft, H.C. (2000) Salience from feature contrast: additivity across dimensions. Vision Research, 40, 1183–1201.

22. Yang, X., Lin, W., Lu, Z. et al.(2005) Rate Control for videophone using perceptual sensitivity cues. IEEE Trans. Circuits and Systems for Video Technology, 15 (4), 496–507.

23. Luo, Y.-J., Greenwood, P.M. and Parasuraman, R. (2002) Dynamics of the spatial scale of visual attention revealed by brain event-related potentials. Cognitive Brain Research, 12 (3), 371–381.

24. Hunt, R.W.G. (1991) Measuring Color, Ellis Horwood Limited, Chichester, West Sussex, England.

25. Brecht, M. and de Saiki, J. (2006) A neural network implementation of a saliency map model. Neural Networks, 19, 1467–1474.

26. Rapantzikos, K., Tsapatsoulis, N., Avrithis, Y. and Kollias, S. (2007) Bottom-up spatiotemporal visual attention model for video analysis. IET (The Institution of Engineering and Technology) Image Process, 1 (2), 237–248.

27. Itti, L. and Koch, C. (2000) A saliency-based search mechanism for overt and covert shift of visual attention. Vision Research, 40, 1489–1506.

28. Itti, L., Braun, J., Lee, D.K. and Koch, C. (1998) Attention modulation of human pattern discrimination psychophysics reproduced by a quantitative model. Advances in Neural Information Processing Systems (NIPS), 11, 789–795.

29. Hügli, H. and Bur, A. (2007) Adaptive visual attention model. Proceedings of Image and Vision Computing, New Zealand, pp. 233–237.

30. Tsotsos, J.K., Culhane, S.M., Wai, W.Y.K. et al.(1995) Modeling visual-attention via selective tuning. Artificial Intelligence, 78 (1–2), 507–545.

31. Walther, D. and Koch, C.,(2006) http://www.salienttoolbox.net/index.html.

32. Michael, T.H. (1997) Scientific Computing, an Introductory Survey, The McGraw-Hill Companies.

33. Harel, J. (2007) http://www.klab.caltech.edu/~harel/share/gbvs.php.

34. Bruce, N.D.B. (2005) Features that draw visual attention: an information theoretic perspective. Neurocomputing, 65–66, 125–133.

35. Bruce, N.D.B. and Tsotsos, J.K. (2009) Saliency, attention, and visual; search: an information theoretic approach. Journal of Vision, 9 (3), 5, 1–24.

36. Cardoso, J.F. (1999) High-order contrasts for independent component analysis. Neural Computation, 11, 157–192.

37. Bruce, N. (2005) http://www-sop.inria.fr/members/Neil.Bruce/.

38. Van Hateren, J.H. and Ruderman, D.L. (1998) Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proceedings of the Royal Society of London B: Biological Sciences, 256, 2315–2320.

39. Gao, D. and Vasconcelos, N. (2005) Discriminant saliency for visual recognition from cluttered scenes. Advances in Neural Information Processing Systems, 17, 481–488.

40. Gao, D., Mahadevan, V. and Vasconcelos, N. (2008) On the plausibility of the discriminant center–surround hypothesis for visual saliency. Journal of Vision, 8 (7), 13, 1–18.

41. Gao, D. and Vasconcelos, N. (2009) Decision-theoretic saliency: computational principles, biological plausibility and implication for neurophysiology and psychophysics. Neural Computation, 21, 239–271.

42. Buccigrossi, R. and Simoncelli, E. (1999) Image compression via joint statistical characterization in wavelet domain. IEEE Transactions on Image Processing, 8, 1688–1701.

43. Huang, J. and Mumford, D. (1999) Statistics of nature images and models. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 541–547.

44. Srivastava, A., Lee, A., Simoncelli, E. and Zhu, S. (2003) On advances in statistical modeling of nature images. Journal of Mathematical Imaging and Vision, 18, 17–33.

45. Clarke, R. (1985) Transform Coding of Images, Academic Press, San Diego, CA.

46. Mallat, S.G. (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674–693.

47. Modestino, J.W. (1977) Adaptive nonparametric detection techniques, in Nonparametric Methods in Communications (eds P. Papantoni-Kazakos and D. Kazakos), Marcel Dekker, New York, pp. 29–65.

48. Olshausen, B.A. and Field, D.J. (1996) Natural image statistics and efficient coding. Network-Computation in Neural System, 7, 333–339.

49. Gao, D. (2008) http://www.svcl.ucsd.edu/~dgao/.

50. Zhang, L., Tong, M.H. and Cottrell, G.W. (2007) Information attracts attention: a probabilistic account of the cross-race advantage in visual search. Proceedings of 29th Annual Conference of the Cognitive Science Society, pp. 749–754.

51. Song, K. (2006) A globally convergent and consistent method for estimating the shape parameter of a generalization Gaussian distribution. IEEE Transactions on Information Theory, 52, 510–527.

52. Hyvärinen, A. and Qja, E. (1997) A fast fixes-point algorithm for independent component analysis. Neural Computation, 9, 1483–1492.

53. Wachtler, T., Doi, E., Lee, T. and Sejnowski, T.J. (2007) Cone selectivity derived from the responses of retina cone mosaic to Nature scenes. Journal of Vision, 7 (8), 6, 1–14.

54. Itti, L. and Baldi, P. (2009) Bayesian surprise attracts human attention. Vision Research, 49 (10), 2, 1295–1306.

55. Itti, L. and Baldi, P. (2005) A principle approach to detecting surprising events in video. Proceedings in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 631–637.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset