Index

Note: Page numbers followed by f indicate figures and t indicate tables.

A

Alternating current (AC) electrodeposition 26–28, 69–72
Amorphous microwires 225
Co-rich microwires 229
demagnetizing factor 231
FeCoPB microwire 476–477, 478f
FeNiPB microwire 476, 477f
GMI effect 231–248
hysteresis loops 227, 230f
industrial sectors 227
internal stresses 228–229
magnetic anisotropy field 228–229
magnetic bistability 229
magnetoimpedance (MI) effect 532–535
magnetostrictive microwires  See (Magnetostrictive microwires, domain walls)
Anodic Al2O3 templates 
ALD and lithography 18–20
diameter modulation 14–17
direct current (DC) power supply 7
Anodic aluminum oxide (AAO) templates 492–494, 729–730, 731f
Co nanowires 48, 49f
Ni–Co alloy structures 180
sol–gel process 114–115
Asymmetric magnetoimpedance (AMI) 300–301
Asymmetric transverse walls (ATW) 289f, 783–784, 791–793, 804–805
Atomic layer deposition (ALD) 18–20, 282, 283f, 728, 746, 747f

B

Bimagnetic microwires 
advantages 276
center to surface techniques 277–280
FeSiB/CoNi multilayer microwire 285–288, 286f
giant magnetoimpedence 288–289, 289f
glass-coated microwire precursors 276
hard/soft FePt/FeNi biphase system 287–288
inductive fluxmetric techniques 285
multifunctional sensor 300–301, 301f
multilayer cylindrical wire, geometry of 276–277, 277f
orthogonal flux-gate sensors 301–302, 302f
soft/hard CoFe/CoNi biphase system 286–288
soft/soft FeSiBP/FeNi biphase system 288
sputtering and electrodeposition techniques 276
vibrating sample magnetometer 285
Bimagnetic nanowires 
advantages 276
center to surface techniques 280–285
data storage applications 302–303
dipolar magnetic bias 302–303
ferromagnetic systems 302–303
magnetic properties of 291–299
spin-valve-like system, development of 302–303
Biomedicine 
AAO template 594
cell trapping and separation 612–614
cell uptake and cytotoxicity 619–620
chemical groups 599t
conventional organic fluorophore 601–602
decisive factor 599
electrodeposition 594
Fe-oxide nanomaterial 596–598
hyperthermia 614–615
living cells, mechanical stress 615–619
M–O–P bonds 599–601
multisegmented nanowires 594–595
nano/micromotors 620–621
nanoscale arrays 592–593
Ni nanowires 601–602, 603f
1D nanostructure 592–593
organophosphorus compounds 599–601
segmented nanowires 598
surface modification 600f
Tris-HCl buffer 599–601
X-ray diffraction 599–601
Bloch point dynamics 
basic properties 662–664
crystal lattice 670–671
micromagnetic theory  See (Micromagnetic theory)
multiscale simulation method 665f, 666–668, 667f
soft-magnetic nanowires 668–673, 669f
strong magnetic inhomogeneity 664–666, 665–666f
types 664, 664f
ultrafast domain wall motion 671–673, 671f, 673f
Bloch-point walls (BPWs) 425, 784–788, 793–795

C

Chemical deposition 748–749
Chemical vapor deposition (CVD) 18, 497, 728, 746–747
Chemical vapor transport (CVT) 
Fe1.3Ge nanowires 184–188
Fe3Si nanowires 189–193
metal halide 173
Ni3Co nanowires 180–184
Ni nanowires 174–180
Cobalt (Co) nanowires 
demagnetization process 51–52
FCC crystal phase 47–48
geometric parameter 52–53
heating effect 150
high currents 150–152
high-resolution transmission electron microscopy 53
low beam currents 153–154
magnetization reversal mechanism 155–156
magnetocrystalline anisotropy 52–53
micromagnetic simulations 50–51
nucleation process 51–52
X-ray diffraction patterns 48–50, 53
Co–Cu nanowires 
DC electrodeposition 71–72
FORCs analysis 72–73, 73f
high-resolution transmission electron microscopy 70–71
longitudinal hysteresis loops 72f
magnetic behaviors 70
multilayered nanowires 85–87
XRD 70–71
CoFeB–MgO structures, domain wall motion 
domain patterns 345–346
domain wall velocities 346–348
edge roughness, influence of 350–351
E-field control of 361–364
E-field magnetic devices 360–361
HS and LS substrates 366–368
ion irradiation 364–366
LDD technology 336–337, 337f
magnetic properties 339–341, 341t
magnetic wires, nanofabrication of 341–344
NV center microscopy 348–350
PVD cluster systems 336
spin Hall torque  See (Spin Hall torque)
spin-orbitronics 374–375
structural properties 337–339
Conducting filaments 490–491
chemical properties of 505–506
electrical analysis of 506
ReRAM 489–490
spatial analysis of 507–510
Conductive atomic force microscopy (C-AFM) 494–495
Co–Ni/Cu multilayered nanowires 90–92
Co–Ni nanowires 87–90
crystalline anisotropy constant 62
fabrication and magnetic characterization 55
hysteresis loops 58–59, 59f
magnetic anisotropy 59
magnetoelastic anisotropy 62
magneto-optic Kerr effect magnetometry 55–56
magnetothermal and magnetotransport properties 62
Seebeck coefficient 62
Slater-Pauling curve 55–56
temperature dependence 61
Content addressable memory (CAM) 371, 373t, 373f
Co–Pt nanowires 79–80
Crossbar nanowire memory array 501–503
Current-induced domain wall (CIDW) 
Oersted fields 351–356
spin-orbit torque 356–359
writing and shifting 359, 360f

D

Device under test (DUT) 457–458
Dipolar exchange length 784–785
Dipole–dipole interactions 437, 614f
Direct current (DC) electrodeposition method 730–731
Domain wall propagation 
defects, role of 259–264
experimental techniques 210–211
interpretation 218f
Kerr transition 217–218
magnetization switching 255
magnetoelastic anisotropy effects 256–259
manipulation of 264–269
MOKE and Sixtus–Tonks method 217
in thin wires 255–269
velocity and mobility 211–216
Dzyaloshinskii–Moriya interaction (DMI) 314, 356

E

Electrochemical anodization process 
diameter modulation 14–17
hard anodization 12–13
mild anodization 6–12
Electrochemical cell 730–731, 732f
Electrochemical deposition 
AC electrodeposition 26–28
galvanostatic electrodeposition 25
metallic alloys 24
ohmic polarization 23–24
potentiostatic electrodeposition 25
pulsed electrodeposition 25–26
three-electrode electrochemical cell 23–24, 23f
Electroless plating 749
Electromagnetic waves (EMWs) 
Bloch waves 708
Floquet channels (FAB) 711
FMR, role of 690
L–L formalism 709–710
Maxwell–Garnett formula 710
Maxwell’s equations 708
micromagnetic calculations 709–710
MMIC microwave devices 710–711
nonreciprocal microwave devices 706–708
propagation and diffraction effects 688–689
proximity effects 709
rf magnetization profiles 717–718
self-biased planar microwave circuit 706–708
shape and size effects 712–714
and SW modes 689, 691–705
3-D magnetic nanocomposite 711
THz frequencies 714–718
unbiased microwave circulator 706–708
Energy dispersive spectroscopy (EDS) analysis 514–517, 516–517f
Ethylenediaminetetraacetic acid (EDTA) 740
Extraordinary Hall effect (EHE) 353–354, 354f

F

Face-centered cubic (FCC) disorder 278–280
FeCoCu nanowires 
anisotropic magnetic behavior 77
bright field-dark field images 74–75, 75f
coercivity and squareness 77, 78f
geometric characteristics 78–79
hysteresis loops 76, 77f
magnetic characterization 76
magnetic properties 73, 77–78
structural and magnetic characterization 79
thermal annealing 74–75
XRD pattern 74
Fe–Co nanowires 
chains of spheres 69
coercivity and squareness 67f
DC electrodeposition 65
magnetic characterization 67–68
magnetocrystalline anisotropy 65
micromagnetic simulations 68
simulated loops 68–69
XRD patterns 65–67, 66f
FeCoNi nanowires 69–70
Fe nanowires  See Iron (Fe) nanowires
Fe-Ni nanowires 62–64
Ferromagnetic antiresonance (FMAR) 452–453, 465–466, 466f
Ferromagnetic metals, FMR 
boundary conditions and surface impedance 454–455
exchange-conductivity effects 453–454
linearized LLG equation 451
LLG equation 450–451
local theory of 451
Maxwell equations 451
metallic half-space 452–453, 452–453f
Ferromagnetic resonance (FMR) 
bimagnetic microwires 290–291, 290–291f
electric transport properties 459–460
in ferromagnetic metals  See (Ferromagnetic metals, FMR)
metallic wires, electric polarization of 455–457
microwave applications 482–483
NA-FMR measurements 458–459, 459f
nonlinear FM, in thin wires  See (Nonlinear ferromagnetic resonance)
parallel field configuration  See (Parallel configuration (PC))
short-ended rectangular TE10 waveguide 457–458, 459f
spectrometer 457–458, 458f
Suhl spin-wave instabilities 474–476
transversal field configuration  See (Transversal configuration (TC))
Fe3Si nanowires 
cross-sectional TEM analyses 190–191
crystal atomic configuration 191–192
lattice parameter 189
M-H curves 193
M-T curves 193
SiO2 layer, formation of 193
TEM analyses 192
temperature profile and annealing 192f
thermal diffusion 192
vapor–solid growth mechanism 192
Field-assisted dissolution (FAD) 8–9
Field modulation technique 457–458
Finite difference (FD) simulation 427–429, 429f
Finite element method magnetics (FEMMs) 645–646, 646f
Finite element (FE) simulation 427–429, 429f
First-order magneto-structural transition (FOMT) 570
First-order reversal curves (FORCs) analysis 72–73, 73f, 437, 755–756, 757f
Flash memory 489
Fluxgate sensors 301–302, 302f
Focused electron beam-induced deposition (FEBID) 
domain walls, in planar nanowires 157–165
GIS 148
scanning electron microscope 148
suspended nanowires 165–167
FTM-Pd alloys 
electrodeposition of 81
shape anisotropy 83

G

Galvanostatic electrodeposition 25
Giant magnetocaloric effect (GMCE) 569–570
Giant magneto impedance (GMI) effect 403, 449, 574
AC impedance 232–233
annealing effects 246f
bias voltage, effects of 237f, 238f
bimagnetic microwires 288–289, 289f
Co-rich microwires 233
giant magnetoimpedance effect 239f
gigahertz frequencies 235
GMI ratio 232–233, 245f
hysteresis loops 236–237, 244f
industrial application 233
internal stresses 237–238
Joule heat treatment 242
magnetic field dependences 234–235, 237f
off-diagonal voltage response 241–242, 242–243f
partial crystallization and nanocrystallization 248–254
p ratio 238
stress-annealed Fe-rich microwires 247
stress-induced anisotropy 247–248
stress relaxation 242
surface impedance tensor 234
Glass-coated melt spinning method 200
GPMagnet 443
Graphene 
electric-field-induced spin polarization 554–557, 555–556f
thermally induced spin polarization 553f, 557–558

H

Hard anodization (HA) 12–13
Helical domain wall 786–788, 799–801
Heterogeneous ferromagnetic nanowires 
AAO membrane 108
anodic aluminum oxide template filling 114–115
composition modulation 112
hard-mild anodization 111–112
nanoimprint and lithographic techniques 108
nanowire synthesis 107–108
oxide-metal interface 108
pore widening and third anodization 110
prepatterned aluminum 108–109
self-ordering 108
sol–gel technique 112–114
synthesis techniques 115–116
TiN thin films 108
Heusler alloys 570–571
Heusler glass-coated microwires 
Ni2MnGa microwire 574–577, 575f, 577f
NiMnInCo-based microwires 577–583, 578–582f
Hopkinson maximum 579–580
Hyperthermia 614–615

I

In-rotating-water quenching technique 277–278
Iron (Fe) nanowires 
disadvantage 44
electrochemical conditions 44–45
electrodeposition 45–46
Fe(III) formation/precipitation 45–46
industrial production of 44–45
longitudinal coercive field 47f
longitudinal hysteresis loops 47f
magnetic anisotropy 46
magnetic devices 44
metallurgy 44
role of 44
saturation magnetization 46
shape anisotropy 46

K

Kirkendall effect 748–749

L

Lambert-Beer law 137–138
Landau–Lifshitz–Bloch (LLB) equation 440–441
Landau–Lifshitz (LL) equation 657–658
Landau–Lifshitz–Gilbert (LLG) equation 427, 450–451, 795–796
Laser interference lithography (LIL) 19–20
Light-emitting diodes (LEDs) 135–137
Linear dynamic deposition (LDD) 336–337, 337f
LLG Micromagnetics Simulator 442
Longitudinal Kerr effect 155–156
Longitudinal magneto-optical Kerr effect (LMOKE) 
axial magnetic bistability 405–406, 405f
circular magnetic field 405–406, 406f
magnetic domains 412, 413f
submicrometric wires 410–411, 411f
surface domains, schematic configuration of 411–412, 412f

M

Magnetic content addressable memory (MCAM) 371–372, 372f
Magnetic domain walls 
spin Hall torque  See (Spin Hall torque)
Magnetic microwires 
amorphous  See (Amorphous microwires)
bimagnetic microwires  See (Bimagnetic microwires)
composite testing, stress MI for 535–537
domain wall propagation 255–269
dynamic permeability 528–530
effective permeability 530–531
electrophysical properties 526–527
fabrication method 226
magnetocaloric effect (MCE)  See (Magnetocaloric effect (MCE))
microwave tunable composites  See (Microwave tunable composites)
nanocrystalline soft magnetic materials 225
sensor size 225
Taylor–Ulitovsky method 225–226
Magnetic nanotubes  See Nanotubes (NTs)
Magnetic nanowires 
Au nanoparticle precipitation 607–608
bimagnetic nanowires  See (Bimagnetic nanowires)
for biomedical applications  See (Biomedicine)
chemical reduction method 596–598
configurational phase transitions 685–688
cylindrical NWs, micromagnetic simulation of  See (Micromagnetic simulations)
demagnetizing field 589–590
hard magnetic segments 606
hybrid nano-magneto-optical devices 589–590
magnetic anisotropy 682
mica films 680–681
nanotubes 589–590
permalloy nanowire sample 680f
permanent magnet fabrication  See (Permanent magnet fabrication)
self-assembly 609–612
shape anisotropy 682–684
soft magnetic segments 602–606
static dipolar interaction effects 684–685
static magnetic properties 681–682
submicron wires  See (Submicron wires)
template-assisted electrodeposition 593–596
Magnetic shift register 334–335
Magnetization reversal 
cylindrical magnetic nanowires 423–424
nanotubes (NTs) 751–760
single domain wall, nucleation and depinning of 379–382
VSM hysteresis loops 382–383
Magnetocaloric effect (MCE) 
adiabatic demagnetization 570
adiabatic magnetization 569
FOMT 570
glass-coated magnetic microwires 571–574, 583
GMCE 569–570
Heusler alloys 570–571
Heusler glass-coated microwires  See (Heusler glass-coated microwires)
isomagnetic cooling 570
isomagnetic heating 570
Magnetocrystalline anisotropy (MA) 
cobalt (Co) nanowires 5
Co FCC phase 65
Co–Ni alloys 55
Fe–Co alloys 65
magnetization reversal process 89–90
magnetostatic energy calculation 424
TDW reversal mode 433
3-D metals and alloys 630
Magnetoelastic anisotropy 381–382, 385, 396–397
Magnetoimpedance (MI) effect 
amorphous microwires 532–535
sensor applications 525
Magneto-optical Kerr effect (MOKE) 155
conic light reflection 404–405, 404f
fluxmetric method 405
magnetic fields and light distribution in 404
magnetization reversal process 383–386, 413–414, 416–417
modified Sixtus–Tonks method 418–420
surface vortex structure 415–416
Magnetostrictive microwires, domain walls 
defect wall (DWdef392
injected domain walls (DWinj392–396
magnetization reversal  See (Magnetization reversal)
multipickup coil system 390–391, 390–391f
reverse domain wall (DWrev391–392
shape of 396–398
standard wall (DWst) propagation 386–389, 392
MAGPAR package 442
Micromagnetic modelling 
aspect ratio 636, 636f
coercivity variation 632–634, 633f
finite element codes 632
key input parameters 632
mean diameter 636, 636f
reversal process 634–636, 634–635f
Stoner–Wohlfarth model 634–635
types 632, 633f
Micromagnetic simulations 
analytical calculations 424
applications 423
Bloch-point domain walls 425
coherent reversal 424
coherent rotation, Stoner-Wohlfarth model 424
curling reversal mode 424
electron-assisted deposition 423
fine micromagnetic features 802–803
first-order transitions 796–797
FMR 690
focused beam ion 423
GPMagnet 443
individual NWs and NW arrays, hysteresis loops 437–439
LLB equation 440–441
LLG Micromagnetics Simulator 442
magnetization reversal 423–424
MAGPAR package 442
materials, parameters of 428t, 429
mean diameter and aspect ratio 636
methods 795–796
micromagnetic model  See (Micromagnetism)
MicroMagus 442–443
MNW 704
multilayered Co/Cu/Co NWs 440
nanoporous membranes 423
Nmag 442
OOMMF 441–442
RAM 429
reversal modes of 429–436
second-order transition 797–802
shape magnetic anisotropy 429
spincaloritronics 440–441
TDW and VDW modes 424–425, 439–440
Micromagnetic theory 424
definition 655
dipolar interaction 655–657
dynamic equilibrium 654–655
exchange energy 655–657
extensions 659–660
hysteresis 658–659
LL equation 657–658
LLG equation 655
magnetization dynamics 657–658
magnetocrystalline anisotropy energy 655–657
metastability 658–659
soft magnetic nanowires 660–662
validity limits 659–660
vector field 654–655
zeeman energy 655–657
Micromagnetism 
Bloch point 670–671
constant magnetization length 426
energy minimization 426
FE and FD methods 427–429, 429f
ferromagnetic element, total energy of 426
Gilbert equation 426
inhomogeneities 664–666
Landau–Lifshitz–Gilbert equation 427
materials, parameters of 428t, 429
MicroMagus 442–443
Microwave tunable composites 
effective permittivity 538–540
fibre-matrix bond strength 541
fibre-reinforced plastic composites 537–538
free space measurement methods 540, 541f
integrated sensors arrays 537–538
permittivity spectra 539–540, 540f
plasmonic wire-medium 538, 539f
sensing applications 541
stress transfer mechanisms 541
structural health monitoring 537–538
tensile stress, application of 540–541
time gating 540
tunable permittivity 537–538
wire metamaterials 538
Mild anodization (MA) 
AC and pulsed deposition techniques 12
alumina BL 11–12
anodic conditions 9–10
anodic current density 7
chemical reaction 7
conditions and morphological features 10t
DC electrodeposition techniques 11–12
FIP 9
formation mechanisms 8–9
nanoporous alumina films 7–8
pore formation 8f
pore self-organization 10f
Modified small-angle magnetization rotation (MSAMR) technique 300
Moore’s law 440–441
Multibit magnetic full adder (MFA) 371, 373–374, 375t
Multiferroic nanowires 
multiphase synthesis 118
single-phase synthesis 117–118
Multifunctional sensor 300–301, 301f
Multilayered magnetic nanowires 
Co/Cu nanowires 85–87
Co–Ni/Cu multilayer nanowires 90–92
Co–Ni multisegmented nanowires 87–90
Co/Pt multilayer nanowires 92
Multipickup coil system 390–391, 390–391f
Multiscale simulation method 665f, 666–668, 667f

N

Nanoparticles (NPs) 47–48, 128–129, 139–140, 183f, 727
Nanotubes (NTs) 
angular dependence of coercivity 753–755
applications of 761–763
applied potential 737–739, 744–745
applied rotating electric field 745
atomic layer deposition 728, 746, 747f
bottom-up nanofabrication approaches 727–728, 728f
chemical deposition 748–749
CVD technique 728, 746–747
deposition current densities, tuning of 737–738
deposition time 736–737, 743
DW movement 756–760
electrochemical deposition, porous template for 728, 729f
electroless plating 749
electrolyte solution, influence of 734–735
empty inner core 727
growth processes of 739–740, 741f
hydrogen bubble formation 740–742
hydrothermal growth 728
ion track-etched polymers 728, 730f
magnetic behaviors 727
magnetic DWs 751–753
magnetic hysteresis loops 750–751
magnetostatic interactions, FORC diagrams 755–756, 757f
nanochannel membranes 746
nanolithography 728
pore fabrication process 728
pore-filling process 733, 733f
pore walls, functionalization of 735–736
porous anodic membranes 729–730, 731f
pulsed and DC electrodeposition method 730–731, 732f
pulsed potential 738–739
sol–gel process 747–748
surface-to volume ratio 727
temperature-dependent magnetic properties 760–761
template assisted methods 728
thermal treatments 749
top-down nanofabrication approaches 727–728, 728f
working electrode 733–734
working electrode thickness 743
Nanowire assembly 
actual packing density 645
degree of alignment 639, 640f
packing density 639–640
polymer dispersion 641
self-assembly 641
structural characterizations 643–645
Nanowire heterostructures 
axial heterostructures 128–131
geometry of 125
nanowire arrays 134–135
optoelectronic applications 135–140
planar geometries 125–126
radial heterostructures 131–134
spintronic applications 140–141
Néel wall 314, 785
Network-analyzer ferromagnetic resonance (NA-FMR) 458–459, 459f
Nickel (Ni) nanowires 53–55
cubic Ni seed 175–177, 176f
epitaxial growth 177–178
fast Fourier transform patterns 175–177
high-resolution TEM images 175–177
magnetic properties 178–180
Pd nanowires 179f
wet chemical method 174
Ni3Co nanowires 180–184
Nitrogen-vacancy (NV) center microscopy 348–350
Nonequilibrium spin polarization 
in graphene 554–558
spin torque  See (Spin torque)
2-D electron gas 547–554
Nonlinear ferromagnetic resonance 482
amorphous microwires, subsidiary absorption in 476–477
fine structure of 477–481
Suhl spin-wave instabilities 474–476
Nonvolatile memory 606–607
CAM 371, 373t, 373f
CoFeB–MgO structures, DW motion  See (CoFeB–MgO structures, domain wall motion)
conventional resistive memory 490f
ferroelectric memory 489–490
flash memory 489
flash NAND memory and hard disks, limitations of 333–334
oxide nanowire based resistive memory  See (Oxide nanowire, resistive memory)
peripheral circuits 368–371
phase change memory 489–490
racetrack memory concept 334–335, 334f
ReRAM/memristor 489–490
single RAM type 334
SRAM 371
storage track memory 334–335
3-D flash memory architecture 489

O

Object-Oriented MicroMagnetic Framework (OOMMF) 441–442, 760
One-dimensional (1-D) systems 
bottom-up approach 783–784
micromagnetic simulations 795–803
phase diagram 788–795
scaling laws 803–806
top down approach 783–784
Oxide nanowire, resistive memory 
bottom-up oxide nanowire 518
classification of 491, 491f
flexible electronics 519–520
nanowire alignment methods 519
passivation 518
resistive switching  See (Resistive switching)

P

Parallel configuration (PC) 
experimental results 464–466
theoretical model 460–464
Parallel Finite Element Micromagnetics Package (MAGPAR) 442
Permanent magnet fabrication 
AlNiCo magnets 648–649, 648f, 649t
anisotropic growth 629
chemical process optimization 636–638, 637–639f
dipolar interactions 645–646, 646–647f
energy product 641f, 642f, 647–649, 648f
ferrites magnets 649, 649t
micromagnetic modelling  See (Micromagnetic modelling)
nanowire magnets 649, 649t
NdFeB magnets 648–649, 648f, 649t
polyol method 629–631
Perpendicular magnetic anisotropy (PMA) 335–336, 341t, 372
Phase change memory 489–490
Phase diagram 
ATWs 791–793
BPWs 793–795
Fe-Co 65, 66f
preliminary discussion 788–790
transverse vs. vortex walls 790–791
2-D arrays 702
Physical vapor deposition (PVD) 336
Planar nanowires 
domain wall trapping 164–165
ion irradiation process 159–163
nucleation and propagation fields 158
Polar magneto-optical Kerr effect (PMOKE) 
magnetic domains 412, 413f
surface domains, schematic configuration of 411–412, 412f
Polycarbonate track-etching membrane 728, 730f
Polyethylene glycol (PEG) 735
Polyol method 
cobalt nanorod synthesis 630–631
experimental process 629–630
nickel and cobalt spherical particles 630
Porous anodic membranes 729–730, 731f
Potentiostatic electrodeposition 25, 735
Poynting theorem 454–455
Pseudo transverse wall 786–788
Pulsed electrodeposition 25–26
Pulsed laser deposition (PLD) technique 494

Q

Quasi-static (QS) approximation 468–470

R

Racetrack memory concept 334–335, 334f
Random access memory (RAM) 429
Rashba spin–orbit interaction 
in graphene 554–558
2-D electron gas 547–554
Reactive ion etching (RIE) 342–344
Refrigerant capacity (RC) 576–577, 576f, 581–582, 582f
Resistive random access memory (ReRAM) 489–490 See also Oxide nanowire, resistive memory
Resistive switching 
anionic and cationic memory, characteristics of 498–499, 499t
Au–NiO–Au multisegmented nanowire devices 499–500, 500f
conducting filaments  See (Conducting filaments)
crossbar nanowire memory array 501–503
Cu/ZnO nanowire/Pd device 496f, 497f, 497, 497–498
Cu/Zn2SnO4 nanowires/Pd device 498, 498f
electrical breakdown phenomenon 490–491
in situ analysis, TEM/EDS observation 514–518
MgO–CoOx nanowire device 495–497, 496f
MgO–NiO core-shell nanowires 494–497, 495–496f
nanoscale resistive switching, stability of 510–513
nanowire/electrode contact 518
nanowire/metal interface 518
NiO nanowire device 492–494, 493f
Runge–Kutta method 389

S

Scaling laws 
domain walls, length and energy of 805–806
transverse vs. ATWs 804–805
transverse vs. vortex walls 803–804
Seebeck effect 559–560
Single domain wall 
defect wall (DWdef392
injected domain walls (DWinj392–396
magnetization reversal  See (Magnetization reversal)
multipickup coil system 390–391, 390–391f
reverse domain wall (DWrev391–392
shape of 396–398
standard wall (DWst) propagation 386–389, 392
Single vortex 653–654
Sixtus–Tonks technique 256
Small-angle neutron scattering 643–644, 643f
Solar cells 137–140
Sol–gel technique 747–748
aging 113–114
casting 113
drying 114
gelation 113
mixing 113
sintering 114
Spincaloritronics 440–441, 565–566
Spin Hall conductivity 560–562, 561f
Spin Hall effect (SHE) 313–314, 356, 357f
Spin Hall torque 
Bloch wall 314
current-induced effective field, evaluation of 319–321
domain wall velocity 321–324
magnetic chirality, determination of 324–327
Neel walls 314
1D model, domain walls 314–319
racetrack memory 313
sample preparation and experimental methods 319
spin Hall effect 313–314
Spin manipulation 545
Spin Nernst effect 559–562, 561f
Spin–orbit interaction 
in graphene 554–558
Seebeck and spin Seebeck effects 559–560
spin Nernst effect 559–562
spin-orbit torque 562, 564–565
spin-transfer torque 562–564, 563f
2-D electron gas 547–554
Spin-orbit torque 
displacement of domain walls 356–359
magnetization switching 356
thermal spin-orbit torque 562, 564–565
Spin Seebeck effect 440–441, 560
Spin torque 546
thermal spin–orbit torque 562, 564–565
thermal spin-transfer torque 562–564, 563f
Spin transfer torque (STT) 
domain wall motion 313–314
1D model, domain walls 314–319
thermal spin polarization 562–564, 563f
Spintronics 545
Spin-wave (SW) 760
dipolar-exchange SW modes 692–698
dipolar interaction 698–700
ferromagnetic nanowire 700–701
multilayered nanowires and magnetic nanotubes 702–705
spin reorientation transition 691–692
Spin-wave resonances (SWRs) 454
Static random access memory (SRAM) 371
Stoner–Wohlfarth model 424, 632–635, 636f, 754–755
Storage track memory 334–335
Strips 783–784
Structure inversion asymmetry (SIA) 356
Submicron wires 
components 202–203
domain wall propagation 209–218
FINEMET nanowires 206–207
hysteresis loops 202, 203–204f, 206f
magnetic behavior 205–209
magnetic bistability 201–202
modulation technique 205
MOKE techniques 202
preparation of 201
SEM image of 200f
window method 203
Suspended nanowires 
direct magnetometry 166–167
growth of 165–166
Synchrotrons 423

T

Taylor–Ulitovskii technique 225–226, 449, 526, 572–574
Template-assisted method 
anodic Al2 O3 templates 6–20
electrochemical deposition 21–28
polymeric track-etched membranes 5–6
TiO2 nanotube arrays 21
Thermal spin polarization 
in graphene 553f, 557–558
Seebeck and spin Seebeck effects 559–560
spin Nernst effect 559–562
spin-orbit torque 562, 564–565
spin-transfer torque 562–564, 563f
2-D electron gas 552–554, 553f
Three dimensional (3-D) flash memory 489
TIMARIS system 337–338, 337f
Transition metal and alloys 
cobalt nanowires 47–53
Co–Cu nanowires 70–73
Co–Ni nanowires 55–62
Co–Pt nanowires 79–80
FeCoCu nanowires 73–79
Fe–Co nanowires 65–69
FeCoNi nanowires 69–70
Fe nanowires 44–47
Fe–Ni nanowires 62–64
FTM/Pd-based alloys 80–83
nickel nanowires 53–55
Transversal configuration (TC) 
experimental results 470–473
theoretical model 467–470
Transversal magneto-optical Kerr effect (TMOKE) 
circular magnetic bistability 405–406, 406f
direct current bias circular magnetic field 406–408, 407–408f
external torsion stress 408, 409f
helical anisotropy angle, torsion stress 408–410, 410f
torsion-induced surface helical anisotropy 408, 409f
Transverse domain wall (TDW) 424–425, 431f, 439–440
Transverse wall (TW) 784–788, 790–791, 803–805
Two-dimensional (2-D) electron gas 
electric-field-induced spin polarization 547–552, 547f, 551f
thermally induced spin polarization 552–554, 553f
thermal spin-transfer torque 562–564, 563f

V

Vapour–liquid–solid (VLS) mechanism 494
Vibrating sample magnetometer (VSM) 382–383, 382f
Vortex domain wall (VDW) 424–425, 431f, 440
Vortex wall (VW) 784–788, 790–791, 803–804

X

X-ray diffraction (XRD) 65–67, 337–339
X-ray reflectivity (XRR) 337–339
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset