Answers

Chapter 1

Visualizing the Graph

  1. H

  2. B

  3. D

  4. A

  5. G

  6. I

  7. C

  8. J

  9. F

  10. E

Exercise Set 1.1

  1. 1. A: (−5, 4); B: (2, −2); C: (0, −5); D: (3, 5); E: (−5, −4); F: (3, 0)

  2. 3.

  3. 5.

  4. 7. (2008, 10), (2009, 15), (2010, 9), (2011, 9), (2012, 12), (2013, 5)

  5. 9. Yes; no

  6. 11. Yes; no

  7. 13. No; yes

  8. 15. No; yes

  9. 17. x-intercept: (−3, 0); y-intercept: (0, 5);

  10. 19. x-intercept: (2, 0); y-intercept: (0, 4);

  11. 21. x-intercept: (−4, 0); y-intercept: (0, 3);

  12. 23.

  13. 25.

  14. 27.

  15. 29.

  16. 31.

  17. 33.

  18. 35.

  19. 37.

  20. 39.

  21. 41. 10, 3.162

  22. 43. 13

  23. 45. 45, 6.708

  24. 47. 16

  25. 49. 143

  26. 51. 128.05, 11.316

  27. 53. a2+b2

  28. 55. 6.5

  29. 57. Yes

  30. 59. No

  31. 61. (−4, −6)

  32. 63. (15, 14)

  33. 65. (4.95, −4.95)

  34. 67. (6, 132)

  35. 69. (512, 1340)

  36. 71. (12, 32), (72, 12), (52, 92), (32, 112); no

  37. 73. (7+22, 12)

  38. 75. (x2)2+(y3)2=259

  39. 77. (x+1)2+(y4)2=25

  40. 79. (x2)2+(y1)2=169

  41. 81. (x+2)2+(y3)2=4

  42. 83. (0, 0); 2;

  43. 85. (0, 3); 4;

  44. 87. (1, 5); 6;

  45. 89. (−4, −5); 3;

  46. 91. (x+2)2+(y1)2=32

  47. 93. (x5)2+(y+5)2=152

  48. 95. Third

  49. 97. h2+h+2a2a2+ah, (2a+h2, a+a+h2)

  50. 99. (x2)2+(y+7)2=36

  51. 101. (0, 4)

  52. 103.

    1. (0, −3);

    2. 5 ft

  53. 105. Yes

  54. 107. Yes

  55. 109. Let P1=(x1, y1), P2=(x2, y2), and M=(x1+x22, y1+y22). Let d(AB) denote the distance from point A to point B.

    d(P1M)=(x1+x22x1)2+(y1+y22y1)2=12(x2x1)2+(y2y1)2;d(P2M)=(x1+x22x2)2+(y1+y22y2)2=12(x1x2)2+(y1y2)2=12(x2x1)2+(y2y1)2=d(P1M)

Exercise Set 1.2

  1. 1. Yes

  2. 3. Yes

  3. 5. No

  4. 7. Yes

  5. 9. Yes

  6. 11. Yes

  7. 13. No

  8. 15. Function; domain: {2, 3, 4}; range: {10, 15, 20}

  9. 17. Not a function; domain: {7, 2, 0}; range: {3, 1, 4, 7}

  10. 19. Function; domain: {2, 0, 2, 4, 3}; range: {1}

  11. 21.

    1. 1;

    2. 6;

    3. 22;

    4. 3x2+2x+1;

    5. 3t24t+2

  12. 23.

    1. 8;

    2. −8;

    3. x3;

    4. 27y3;

    5. 8+12h+6h2+h3

  13. 25.

    1. 18;

    2. 0;

    3. does not exist;

    4. 8153, or approximately 1.5283;

    5. x+h4x+h+3

  14. 27. 0; does not exist; does not exist as a real number; 13, or 33

  15. 29.

  16. 31.

  17. 33.

  18. 35. h(1)=2; h(3)=2; h(4)=1

  19. 37. s(4)=3; s(2)=0; s(0)=3

  20. 39. f(1)=2; f(0)=0; f(1)=2

  21. 41. No

  22. 43. Yes

  23. 45. Yes

  24. 47. No

  25. 49. All real numbers, or (, )

  26. 51. All real numbers, or (, )

  27. 53. {x|x0}, or (, 0)(0, )

  28. 55. {x|x2}, or (, 2)(2, )

  29. 57. {x|x1 and x5}, or (, 1)(1, 5)(5, )

  30. 59. All real numbers, or (, )

  31. 61. {x|x0 and x7}, or (, 0)(0, 7)(7, )

  32. 63. All real numbers, or (, )

  33. 65. Domain: [0, 5]; range: [0, 3]

  34. 67. Domain: [2π, 2π]; range: [−1, 1]

  35. 69. Domain: (, ); range: {3}

  36. 71. Domain: [−5, 3]; range: [−2, 2]

  37. 73. Domain: all real numbers, or (, ); range: [0, )

  38. 75. Domain: all real numbers, or (, ); range: all real numbers, or (, )

  39. 77. Domain: (, 3)(3, ); range: (, 0)(0, )

  40. 79. Domain: all real numbers, or (, ); range: all real numbers, or (, )

  41. 81. Domain: (, 7]; range: [0, )

  42. 83. Domain: all real numbers, or (, ); range: (, 3]

  43. 85.

    1. 2018: $25.21; 2025: $28.23;

    2. about 49 years after 1985, or in 2034

  44. 87. 645 m; 0 m

  45. 89. (−3, −2), yes; (2, −3), no

  46. 90. (0, −7), no; (8, 11), yes

  47. 91. (45, 2), yes; (115, 110), yes

  48. 92.

  49. 93.

  50. 94.

  51. 95.

  52. 97. {x|x1 and x0}, or [1, 0)(0, )

  53. 99. {x|0x4}, or [0, 4]

  54. 101.

  55. 103.

    1. f(x)=7;

    2. f(x)=2x1;

    3. f(x)=7

Visualizing the Graph

  1. E

  2. D

  3. A

  4. J

  5. C

  6. F

  7. H

  8. G

  9. B

  10. I

Exercise Set 1.3

  1. 1.

    1. Yes;

    2. yes;

    3. yes

  2. 3.

    1. Yes;

    2. no;

    3. no

  3. 5. 65

  4. 7. 35

  5. 9. 0

  6. 11. 15

  7. 13. Not defined

  8. 15. 0.3

  9. 17. 0

  10. 19. 65

  11. 21. 13

  12. 23. Not defined

  13. 25. −2

  14. 27. 5

  15. 29. 0

  16. 31. 1.3

  17. 33. Not defined

  18. 35. 12

  19. 37. −1

  20. 39. 0

  21. 41. The average rate of change in sales of electric bicycles from 2013 to 2020 is expected to be $0.343 billion, or $343 million.

  22. 43. The average rate of change in the population of Cleveland, Ohio, over the 12-year period was about −7290 people per year.

  23. 45. The average rate of change in the number of acres used for growing almonds in California from 2003 to 2012 was about 28,889 acres per year.

  24. 47. The average rate of change in per-capita consumption of whole milk from 1970 to 2011 was about −0.5 gal per year.

  25. 49. 35; (0, 7)

  26. 51. Slope is not defined; there is no y-intercept.

  27. 53. 12; (0, 5)

  28. 55. 32; (0, 5)

  29. 57. 0; (0, −6)

  30. 59. 45; (0, 85)

  31. 61. 14; (0, 12)

  32. 63.

  33. 65.

  34. 67.

  35. 69.

  36. 71. 1 atm, 2 atm, 31 1033 atm, 152 1733 atm, 213433 atm

  37. 73.

    1. 1110. For each mile per hour faster that the car travels, it takes 1110 ft longer to stop;

    2. 6 ft, 11.5 ft, 22.5 ft, 55.5 ft, 72 ft;

    3. {r|r>0}, or (0, ). If r is allowed to be 0, the function says that a stopped car has a reaction distance of 12 ft.

  38. 75. C(t)=2250+3380t; C(20)=$69, 850

  39. 77. C(t)=750+15x; C(32)=$1230

  40. 79. 54

  41. 80. 10

  42. 81. 40

  43. 82. a2+3a

  44. 83. a2+2ah+h23a3h

  45. 85. 2a+h

  46. 87. False

  47. 89. f(x)=x+b

Mid-Chapter Mixed Review: Chapter 1

  1. 1. False

  2. 2. True

  3. 3. False

  4. 4. x-intercept: (5, 0); y-intercept: (0, −8)

  5. 5. 605=11524.6; (52, 4)

  6. 6. 21.4; (14, 310)

  7. 7. (x+5)2+(y2)2=169

  8. 8. Center: (3, −1); radius: 2

  9. 9.

  10. 10.

  11. 11.

  12. 12.

  13. 13. f(4)=36; f(0)=0; f(1)=1

  14. 14. g(6)=0; g(0)=2; g(3) is not defined

  15. 15. {x|x is area is area ln umber}, or (, )

  16. 16. {x|x5}, or (, 5)(5, )

  17. 17. {x|x3 and x1}, or (, 3)(3, 1)(1, )

  18. 18.

  19. 19.

  20. 20. Domain: [4, 3); range: [4, 5)

  21. 21. Not defined

  22. 22. 14

  23. 23. 0

  24. 24. Slope: 19; y-intercept: (0, 12)

  25. 25. Slope: 0; y-intercept: (0, −6)

  26. 26. Slope is not defined; there is no y-intercept

  27. 27. Slope: 316; y-intercept: (0, 116)

  28. 28. The sign of the slope indicates the slant of a line. A line that slants up from left to right has positive slope because corresponding changes in x and y have the same sign. A line that slants down from left to right has negative slope, because corresponding changes in x and y have opposite signs. A horizontal line has zero slope, because there is no change in y for a given change in x. A vertical line has undefined slope, because there is no change in x for a given change in y and division by 0 is not defined. The larger the absolute value of slope, the steeper the line. This is because a larger absolute value corresponds to a greater change in y, compared to the change in x, than a smaller absolute value.

  29. 29. A vertical line (x=a) crosses the graph more than once; thus, x=a fails the vertical line test.

  30. 30. The domain of a function is the set of all inputs of the function. The range is the set of all outputs. The range depends on the domain.

  31. 31. Let A=(a, b) and B=(c, d). The coordinates of a point C one-half of the way from A to B are (a+c2, b+d2). A point D that is one-half of the way from C to B is 12+1212, or 34 of the way from A to B. Its coordinates are (a+c2+c2,  b+d2+d2), or (a+3c4, b+3d4). Then a point E that is one-half of the way from D to B is 34+1214, or 78 of the way from A to B. Its coordinates are (a+3c4+c2, b+3d4+d2), or (a+7c8, b+7d8).

Exercise Set 1.4

  1. 1. 4, (0, 2); y=4x2

  2. 3. 1, (0, 0); y=x

  3. 5. 0, (0, 3); y=3

  4. 7. y=29x+4

  5. 9. y=4x7

  6. 11. y=4.2x+34

  7. 13. y=29x+193

  8. 15. y=8

  9. 17. y=35x175

  10. 19. y=3x+2

  11. 21. y=12x+72

  12. 23. y=23x6

  13. 25. y=7.3

  14. 27. Horizontal: y=3; vertical: x=0

  15. 29. Horizontal: y=1; vertical: x=211

  16. 31. h(x)=3x+7; 1

  17. 33. f(x)=25x1; 1

  18. 35. Perpendicular

  19. 37. Neither parallel nor perpendicular

  20. 39. Parallel

  21. 41. Perpendicular

  22. 43. y=27x+297; y=72x+312

  23. 45. y=0.3x2.1; y=103x+703

  24. 47. y=34x+14; y=43x6

  25. 49. x=3; y=3

  26. 51. True

  27. 53. True

  28. 55. False

  29. 57. No

  30. 59. Yes

  31. 61.

    1. Using (1, 1.319) and (7, 2.749) gives us y=0.238x+1.081, where x is the number of years after 2006 and y is in billions;

    2. 2017: about 3.699 billion Internet users; 2020: about 4.413 billion Internet users

  32. 63. Using (0, 11,504) and (3, 10,819) gives us y=228x+11, 504, where x is the number of years after 2010 and y is in kilowatt-hours; 2019: about 9452 kilowatt-hours

  33. 65. Using (1, 28.3) and (3, 30.8) gives us y=1.25x+27.05, where x is the number of years after 2009 and y is in gallons; 2017: about 37.1 gal

  34. 67. Not defined

  35. 68. −1

  36. 69. x2+(y3)2=6.25

  37. 70. (x+7)2+(y+1)2=8125

  38. 71. −7.75

  39. 73. 6.7% grade; y=0.067x

Exercise Set 1.5

  1. 1. 4

  2. 3. All real numbers, or (, )

  3. 5. 34

  4. 7. −9

  5. 9. 6

  6. 11. No solution

  7. 13. 115

  8. 15. 356

  9. 17. 8

  10. 19. −4

  11. 21. 6

  12. 23. −1

  13. 25. 45

  14. 27. 32

  15. 29. 23

  16. 31. 12

  17. 33. About 51,075 words

  18. 35. $1300

  19. 37. 26°, 130°, 24°

  20. 39. $3.455 billion

  21. 41. 3 hr

  22. 43. 25.2%

  23. 45. $5000

  24. 47. About 287,000 students

  25. 49. Length: 100 yd; width: 65 yd

  26. 51. Length: 93 m; width: 68 m

  27. 53. 2.5 hr

  28. 55. $2400 at 3%; $2600 at 4%

  29. 57. IBM: 6809 patents; Samsung: 4676 patents

  30. 59. 10,040 ft

  31. 61. 74.25 lb

  32. 63. 4.5 hr

  33. 65. $20.50

  34. 67. Italy: 30%; Spain: 20%; United States: 8%

  35. 69. −5

  36. 71. 112

  37. 73. 16

  38. 75. −12

  39. 77. 6

  40. 79. 20

  41. 81. 25

  42. 83. 15

  43. 85.

    1. (4, 0);

    2. 4

  44. 87.

    1. (−2, 0)

    2. −2

  45. 89.

    1. (−4, 0);

    2. −4

  46. 91. y=34x+134

  47. 92. y=34x+14

  48. 93. 13

  49. 94. (1, 12)

  50. 95. f(3)=12; f(0)=0; f(3) does not exist

  51. 96. m=7; y-intercept: (0, 12)

  52. 97. Yes

  53. 99. No

  54. 101. 23

  55. 103. No; the 6-oz cup costs about 6.4% more per ounce.

  56. 105. 11.25 mi

Exercise Set 1.6

  1. 1. {x|x>5}, or (5, );

  2. 3. {x|x>3}, or (3, );

  3. 5. {x|x3}, or [3, );

  4. 7. { y|y2213 }, or [ 2213,  );

  5. 9. {x|x>6}, or (6, );

  6. 11. { x|x512 }, or [ 512,  );

  7. 13. { x|x1534 }, or ( , 1534 ];

  8. 15. {x|x<1}, or (, 1);

  9. 17. {x|x7}, or [7, )

  10. 19. {x|x15}, or ( , 15 ]

  11. 21. {x|x>4}, or (4, )

  12. 23. [3, 3);

  13. 25. [8, 10];

  14. 27. [7, 1];

  15. 29. (32, 2);

  16. 31. (1, 5];

  17. 33. (113, 133);

  18. 35. (, 2](1, );

  19. 37. ( , 72 ][ 12,  );

  20. 39. (, 9.6)(10.4, );

  21. 41. ( , 574 ][ 554,  );

  22. 43. More than 45 years after 1980

  23. 45. Less than 10 hr

  24. 47. $5000

  25. 49. $300,000

  26. 51. Sales greater than $18,000

  27. 53. Function; domain; range; domain; exactly one; range

  28. 54. Midpoint formula

  29. 55. x-intercept

  30. 56. Constant; identity

  31. 57. ( 14, 59 ]

  32. 59. (18, 12)

Review Exercises: Chapter 1

  1. 1. True

  2. 2. True

  3. 3. False

  4. 4. False

  5. 5. True

  6. 6. False

  7. 7. Yes; no

  8. 8. Yes; no

  9. 9. x-intercept: (3, 0); y-intercept: (0, −2);

  10. 10. x-intercept: (2, 0); y-intercept: (0, 5);

  11. 11.

  12. 12.

  13. 13.

  14. 14. 345.831

  15. 15. (12, 112)

  16. 16. Center: (−1, 3); radius: 3;

  17. 17. x2+(y+4)2=94

  18. 18. (x+2)2+(y6)2=13

  19. 19. (x2)2+(y4)2=26

  20. 20. No

  21. 21. Yes

  22. 22. Not a function; domain: {3, 5, 7}; range: {1, 3, 5, 7}

  23. 23. Function; domain: {2, 0, 1, 2, 7}; range: {7, 4, 2, 2, 7}

  24. 24.

    1. −3;

    2. 9;

    3. a23a1;

    4. x2+x3

  25. 25.

    1. 0;

    2. x6x+6;

    3. does not exist;

    4. 53

  26. 26. f(2)=1; f(4)=3; f(0)=1

  27. 27. No

  28. 28. Yes

  29. 29. No

  30. 30. Yes

  31. 31. All real numbers, or (, )

  32. 32. {x|x0}, or (, 0)(0, )

  33. 33. {x|x5 and x1}, or (, 1)(1, 5)(5, )

  34. 34. {x|x4 and x4}, or (, 4)(4, 4)(4, )

  35. 35. Domain: [−4, 4]; range: [0, 4]

  36. 36. Domain: (, ); range: [0, )

  37. 37. Domain: (, ); range: (, )

  38. 38. Domain: (, ); range: [0, )

  39. 39.

    1. Yes;

    2. no;

    3. no, strictly speaking, but data might be modeled by a linear regression function.

  40. 40.

    1. Yes;

    2. yes;

    3. yes

  41. 41. 53

  42. 42. 0

  43. 43. Not defined

  44. 44. The average rate of change in per-capita coffee consumption from 1990 to 2011 was about −0.1 gal per year.

  45. 45. m=711; y-intercept: (0, −6)

  46. 46. m=2; y-intercept: (0, −7)

  47. 47.

  48. 48. C(t)=110+85t; $1130

  49. 49.

    1. 70°C, 220°C, 10,020°C;

    2. [0, 5600]

  50. 50. y=23x4

  51. 51. y=3x+5

  52. 52. y=13x13

  53. 53. Horizontal: y=25; vertical: x=4

  54. 54. h(x)=2x5; 5

  55. 55. Parallel

  56. 56. Neither

  57. 57. Perpendicular

  58. 58. y=23x13

  59. 59. y=32x52

  60. 60. Using (2, 7925) and (6, 8396) gives us W(x)=117.75x+7689.5, where x is the number of years after 2005; 2008: about 8043 female medical school graduates; 2018: 9220 female medical school graduates

  61. 61. 32

  62. 62. −6

  63. 63. −1

  64. 64. −21

  65. 65. 9524

  66. 66. No solution

  67. 67. All real numbers, or (, )

  68. 68. 568 million quarters

  69. 69. $2300

  70. 70. 3.4 hr

  71. 71. 3

  72. 72. 4

  73. 73. 0.2, or 15

  74. 74. 4

  75. 75. (, 12);

  76. 76. (, 4];

  77. 77. [ 43, 43 ];

  78. 78. ( 25, 2 ];

  79. 79. (, 12)(3, );

  80. 80. ( , 53 ][1, );

  81. 81. Years after 2019

  82. 82. Fahrenheit temperatures less than 113°

  83. 83. B

  84. 84. B

  85. 85. C

  86. 86. (52, 0)

  87. 87. {x|x<0}, or (, 0)

  88. 88. {x|x3 and x0 and x3}, or (, 3)(3, 0)(0, 3)(3, )

  89. 89. Think of the slopes as 3/51 and 1/21. The graph of f(x) changes 35 unit vertically for each unit of horizontal change, whereas the graph of g(x) changes 12 unit vertically for each unit of horizontal change. Since 35>12, the graph of f(x)=35x+4 is steeper than the graph of g(x)=12x6.

  90. 90. If an equation contains no fractions, using the addition principle before using the multiplication principle eliminates the need to add or subtract fractions.

  91. 91. The solution set of a disjunction is a union of sets, so it is only possible for a disjunction to have no solution when the solution set of each inequality is the empty set.

  92. 92. The graph of f(x)=mx+b, m0, is a straight line that is not horizontal. The graph of such a line intersects the x-axis exactly once. Thus the function has exactly one zero.

  93. 93. By definition, the notation 3<x<4 indicates that 3<x and x<4. The disjunction x<3 or x>4 cannot be written 3>x>4, or 4<x<3, because it is not possible for x to be greater than 4 and less than 3.

  94. 94. A function is a correspondence between two sets in which each member of the first set corresponds to exactly one member of the second set.

Test: Chapter 1

  1. [1.1] Yes

  2. [1.1] x-intercept: (−2, 0); y-intercept: (0, 5);

  3. [1.1] 456.708

  4. [1.1] (3, 92)

  5. [1.1] Center: (−4, 5); radius: 6

  6. [1.1] (x+1)2+(y2)2=5

  7. [1.2]

    1. Yes;

    2. {4, 3, 1, 0};

    3. {7, 0, 5}

  8. [1.2]

    1. 8;

    2. 2a2+7a+11

  9. [1.2]

    1. Does not exist;

    2. 0

  10. [1.2] 0

  11. [1.2]

    1. No;

    2. yes

  12. [1.2] {x|x4}, or (, 4)(4, )

  13. [1.2] All real numbers, or (, )

  14. [1.2] {x|5x5}, or [−5, 5]

  15. [1.2]

    1. (, );

    2. [3, )

  16. [1.3] Not defined

  17. [1.3] 116

  18. [1.3] 0

  19. [1.3] The average rate of change in the percent of 12th graders who smoke daily from 1995 to 2012 was about −0.7% per year.

  20. [1.3] Slope: 32; y-intercept: (0, 52)

  21. [1.3] C(t)=65+48t; $173

  22. [1.4] y=58x5

  23. [1.4] y4=34(x(5)), or y(2)=34(x3), or y=34x+14

  24. [1.4] x=38

  25. [1.4] Perpendicular

  26. [1.4] y3=12(x+1), or y=12x+52

  27. [1.4] y3=2(x+1), or y=2x+5

  28. [1.4] Using (2, 507.03) and (12, 666.99) gives us y=15.996x+475.038, where x is the number of years after 2000; 2016: $730.97; 2020: $794.96

  29. [1.5] −1

  30. [1.5] All real numbers, or (, )

  31. [1.5] −60

  32. [1.5] 2111

  33. [1.5] Length: 60 m; width: 45 m

  34. [1.5] $1.80

  35. [1.5] −3

  36. [1.6] (, 3];

  37. [1.6] (−5, 3);

  38. [1.6] (, 2][4, );

  39. [1.6] More than 5.7 hr

  40. [1.3] B

  41. [1.2] −2

Chapter 2

Exercise Set 2.1

  1. 1.

    1. (−5, 1);

    2. (3, 5);

    3. (1, 3)

  2. 3.

    1. (−3, −1), (3, 5);

    2. (1, 3);

    3. (−5, −3)

  3. 5.

    1. (, 8), (3, 2);

    2. (−8, −6);

    3. (−6, −3), (2, )

  4. 7. Domain: [−5, 5]; range: [−3, 3]

  5. 9. Domain: [5, 1][1, 5]; range: [−4, 6]

  6. 11. Domain: (, ); range: (, 3]

  7. 13. Relative maximum: 3.25 at x=2.5; increasing: (, 2.5); decreasing: (2.5, )

  8. 15. Relative maximum: 2.370 at x=0.667; relative minimum: 0 at x=2; increasing: (, 0.667),(2, ); decreasing: (−0.667, 2)

  9. 17. Increasing: (0, ); decreasing: (, 0); relative minimum: 0 at x=0

  10. 19. Increasing: (, 0); decreasing: (0, ); relative maximum: 5 at x=0

  11. 21. Increasing: (3, ); decreasing: (, 3); relative minimum: 1 at x=3

  12. 23. A(x)=x(240x), or 240xx2

  13. 25. h(d)=d235002

  14. 27. A(w)=10ww22

  15. 29. d(s)=14s

  16. 31.

    1. A(x)=x(2404x), or 240x4x2;

    2. {x|0<x<60};

    3. 120 ft by 30 ft

  17. 33.

    1. V(x)=x(122x)(122x), or 4x(6x)2;

    2. {x|0<x<6};

    3. 8 cm by 8 cm by 2 cm

  18. 35. g(4)=0; g(0)=4; g(1)=5; g(3)=5

  19. 37. h(5)=1; h(0)=1; h(1)=3; h(4)=6

  20. 39.

  21. 41.

  22. 43.

  23. 45.

  24. 47.

  25. 49.

  26. 51.

  27. 53. Domain: (, ); range: (, 0)[3, )

  28. 55. Domain: (, ); range: [1, )

  29. 57. Domain: (, ); range: {y|y2 or y=1 or y2}

  30. 59. Domain: (, ); range: {5, 2, 4};

    f(x)={ 2,for x<2,5,for x=2,4,for x>2
  31. 61. Domain: (, ); range: (, 1][2, );

    g(x)={ x,for x1,2,for 1<x<2,x,for x2

    or

    g(x)={ x,for x1,2,for 1<x2,x,for x2
  32. 63. Domain: [−5, 3]; range: (−3, 5);

    h(x)={ x+8,for 5x<3,3,for 3<x1,3x6,for 1<x3
  33. 65.

    1. 38;

    2. 38;

    3. 5a27;

    4. 5a27

  34. 66.

    1. 22;

    2. −22;

    3. 4a35a;

    4. 4a3+5a

  35. 67. y=18x+78 

  36. 68. Slope: 29; y-intercept: (.0, 19)

  37. 69.

    1. C(t)=3(t+1), t>0

  38. 71. {x|5x<4 or 5x<6}

  39. 73.

    1. h(r)=305r3;

    2. V(r)=πr2(305r3);

    3. V(h)=πh(303h5)2

Exercise Set 2.2

  1. 1. 33

  2. 3. −1

  3. 5. Does not exist

  4. 7. 0

  5. 9. 1

  6. 11. Does not exist

  7. 13. 0

  8. 15. 5

  9. 17.

    1. Domain of f, g, f+g, fg, fg, and ff: (, ); domain of f/g: (, 35)(35, ); domain of g/f: (, 32)(32, );

    2. (f+g)(x)=3x+6; (fg)(x)=7x; (fg)(x)=10x29x+9; (ff)(x)=4x2+12x+9; (f/g)(x)=2x+335x; (g/f)(x)=35x2x+3

  10. 19.

    1. Domain of f: (, ); domain of g: [4, ); domain of f+g, fg, and fg: [4, ); domain of ff: (, ); domain of f/g: (4, ); domain of g/f: [4, 3)(3, );

    2. (f+g)(x)=x3+x+4; (fg)(x)=x3x+4; (fg)(x)=(x3)x+4; (ff)(x)=x26x+9; (f/g)(x)=x3x+4; (g/f)(x)=x+4x3

  11. 21.

    1. Domain of f, g, f+g, fg, fg, and ff: (, ); domain of f/g: (, 0)(0, ); domain of g/f: (, 12)(12, );

    2. (f+g)(x)=2x2+2x1; (fg)(x)=2x2+2x1; (fg)(x)=4x3+2x2; (ff)(x)=4x24x+1; (f/g)(x)=2x12x2(g/f)(x)=2x22x1

  12. 23.

    1. Domain of f: [3, ); domain of g: [3, ); domain of f+g, fg, fg, and ff: [3, ); domain of f/g: [3, ); domain of g/f: (3, );

    2. (f+g)(x)=x3+x+3; (fg)(x)=x3x+3; (fg)(x)=x29; (ff)(x)=| x3 |; (f/g)(x)=x3x+3; (g/f)(x)=x+3x3

  13. 25.

    1. Domain of f, g, f+g, fg, fg, and ff: (, ); domain of f/g: (, 0)(0, ); domain of g/f: (, 1)(1, );

    2. (f+g)(x)=x+1+|x|; (fg)(x)=x+1|x|; (fg)(x)=(x+1)|x|; (ff)(x)=x2+2x+1; (f/g)(x)=x+1|x|; (g/f)(x)=|x|x+1

  14. 27.

    1. Domain of f, g, f+g, fg, fg, and ff: (, ); domain of f/g: (, 3)(3, 12)(12, ); domain of g/f: (, 0)(0, );

    2. (f+g)(x)=x3+2x2+5x3; (fg)(x)=x32x25x+3; (fg)(x)=2x5+5x43x3; (ff)(x)=x6; (f/g)(x)=x32x2+5x3; (g/f)(x)= frac2x2+5x3\x3

  15. 29.

    1. Domain of f: (, 1)(1, ); domain of g: (, 6)(6, ); domain of f+g, fg, and fg: (, 1)(1, 6)(6, ); domain of ff: (, 1)(1, ); domain of f/g and g/f: (, 1)(1, 6)(6, );

    2. (f+g)(x)=4x+1+16x; (fg)(x)=4x+116x; (fg)(x)=4(x+1)(6x); (ff)(x)=16(x+1)2; (f/g)(x)=4(6x)x+1; (g/f)(x)=x+14(6x)

  16. 31.

    1. Domain of f: (, 0)(0, ); domain of g: (, ); domain of f+g, fg, fg, and ff: (, 0)(0, ); domain of f/g: (, 0)(0, 3)(3, ); domain of g/f: (, 0)(0, );

    2. (f+g)(x)=1x+x3; (fg)(x)=1xx+3; (fg)(x)=13x; (ff)(x)=1x2; (f/g)(x)=1x(x3); (g/f)(x)=x(x3)

  17. 33.

    1. Domain of f:(, 2)(2, ); domain of g:[1, ); domain of f+g, fg, and fg:[1, 2)(2, ); domain of ff:(, 2)(2, ); domain of f/g: (1, 2)(2, ); domain of g/f: [1, 2)(2, );

    2. (f+g)(x)=3x2+x1; (fg)(x)=3x2x1; (fg)(x)=3x1x2; (ff)(x)=9(x2)2; (f/g)(x)=3(x2)x1; (g/f)(x)=(x2)x13

  18. 35. Domain of F: [2, 11]; domain of G: [1, 9]; domain of F+G: [2, 9]

  19. 37. [2, 3)(3, 9]

  20. 39.

  21. 41. Domain of F: [0, 9]; domain of G: [3, 10]; domain of F+G: [3, 9]

  22. 43. [3, 6)(6, 8)(8, 9]

  23. 45.

  24. 47.

    1. P(x)=0.4x2+57x13;

    2. R(100)=2000; C(100)=313; P(100)=1687

  25. 49. 3

  26. 51. 6

  27. 53. 13

  28. 55. 13x(x+h), or 13x(x+h)

  29. 57. 14x(x+h)

  30. 59. 2x+h

  31. 61. 2xh

  32. 63. 6x+3h2

  33. 65. 5|x+h|5|x|h

  34. 67. 3x2+3xh+h2

  35. 69. 7(x+h+3)(x+3)

  36. 71.

  37. 72.

  38. 73.

  39. 74.

  40. 75. f(x)=1x+7, g(x)=1x3; answers may vary

  41. 77. (, 1)(1, 1)(1, 73)(73, 3)(3, )

Exercise Set 2.3

  1. 1. −8

  2. 3. 64

  3. 5. 218

  4. 7. −80

  5. 9. −6

  6. 11. 512

  7. 13. −32

  8. 15. x9

  9. 17. (fg)(x)=(gf)(x)=x; domain of fg and gf: (, )

  10. 19. (fg)(x)=3x22x; (gf)(x)=3x2+4x; domain of fg and gf: (, )

  11. 21. (fg)(x)=16x224x+6; (gf)(x)=4x215; domain of fg and gf: (, )

  12. 23. (fg)(x)=4xx5; (gf)(x)=15x4; domain of fg: (, 0)(0, 5)(5, ); domain of gf: (, 15)(15, )

  13. 25. (fg)(x)=(gf)(x)=x; domain of fg and gf: (, )

  14. 27. (fg)(x)=2x+1; (gf)(x)=2x+1; domain of fg: [0, ); domain of gf: [ 12,  )

  15. 29. (fg)(x)=20; (gf)(x)=0.05; domain of fg and gf: (, )

  16. 31. (fg)(x)=|x|; (gf)(x)=x; domain of fg: (, ); domain of gf: [5, )

  17. 33. (fg)(x)=5x; (gf)(x)=1x2; domain of fg: (, 3]; domain of gf: [1, 1]

  18. 35. (fg)(x)=(gf)(x)=x; domain of fg: (, 1)(1, ); domain of gf: (, 0)(0, )

  19. 37. (fg)(x)=x32x24x+6; (gf)(x)=x35x2+3x+8; domain of fg and gf: (, )

  20. 39. f(x)=x5; g(x)=4+3x

  21. 41. f(x)=1x; g(x)=(x2)4

  22. 43. f(x)=x1x+1; g(x)=x3

  23. 45. f(x)=x6; g(x)=2+x32x3

  24. 47. f(x)=x; g(x)=x5x+2

  25. 49. f(x)=x35x2+3x1; g(x)=x+2

  26. 51.

    1. r(t)=3t;

    2. A(r)=πr2;

    3. (Ar)(t)=9πt2; the function gives the area of the ripple in terms of time t.

  27. 53. f(x)=x+1

  28. 55. (c)

  29. 56. None

  30. 57. (b), (d), (f), and (h)

  31. 58. (b)

  32. 59. (a)

  33. 60. (c) and (g)

  34. 61. (c) and (g)

  35. 62. (a) and (f)

  36. 63. Only (cp)(a) makes sense. It represents the cost of the grass seed required to seed a lawn with area a.

Mid-Chapter Mixed Review: Chapter 2

  1. 1. True

  2. 2. False

  3. 3. True

  4. 4.

    1. (2, 4);

    2. (−5, −3), (4, 5);

    3. (−3, −1)

  5. 5. Relative maximum: 6.30 at x=1.29; relative minimum: −2.30 at x=1.29; increasing: (, 1.29), (1.29, ); decreasing: (−1.29, 1.29)

  6. 6. Domain: [5, 1][2, 5]; range: [−3, 5]

  7. 7. A(h)=h22+2h

  8. 8. −10; −8; 1; 3

  9. 9.

  10. 10. 1

  11. 11. −4

  12. 12. 5

  13. 13. Does not exist

  14. 14.

    1. Domain of f, g, f+g, fg, fg, and ff: (, ); domain of f/g: (, 4)(4, ); domain of g/f: (, 52)(52, );

    2. (f+g)(x)=x+1; (fg)(x)=3x+9; (fg)(x)=2x213x20; (ff)(x)=4x2+20x+25; (f/g)(x)=2x+5x4; (g/f)(x)=x42x+5

  15. 15.

    1. Domain of f: (, ); domain of g, f+g, fg, and fg: [2, ); domain of ff: (, ); domain of  f/g: (2, ); domain of g/f: [2, 1)(1, );

    2. (f+g)(x)=x1+x+2; (fg)(x)=x1x+2; (fg)(x)=(x1)x+2; (ff)(x)=x22x+1; (f/g)(x)=x1x+2; (g/f)(x)=x+2x1

  16. 16. 4

  17. 17. 2xh

  18. 18. 6

  19. 19. 28

  20. 20. −24

  21. 21. 102

  22. 22. (fg)(x)=3x+2; (gf)(x)=3x+4; domain of fg and gf: (, )

  23. 23. (fg)(x)=3x+2; (gf)(x)=3x+2; domain of fg: [0, ); domain of gf: [ 23,  )

  24. 24. The graph of y=(hg)(x) will be the same as the graph of y=h(x) moved down b units.

  25. 25. Under the given conditions, (f+g)(x) and (f/g)(x) have different domains if g(x)=0 for one or more real numbers x.

  26. 26. If f and g are linear functions, then any real number can be an input for each function. Thus the domain of fg= the domain of gf=(, ).

  27. 27. This approach is not valid. Consider Exercise 23 in Section 2.3, for example. Since (fg)(x)=4xx5, an examination of only this composed function would lead to the incorrect conclusion that the domain of fg is (, 5)(5, ). However, we must also exclude from the domain of fg those values of x that are not in the domain of g. Thus the domain of fg is (, 0)(0, 5)(5, ).

Exercise Set 2.4

  1. 1. x-axis: no; y-axis: yes; origin: no

  2. 3. x-axis: yes; y-axis: no; origin: no

  3. 5. x-axis: no; y-axis: no; origin: yes

  4. 7. x-axis: no; y-axis: yes; origin: no

  5. 9. x-axis: no; y-axis: no; origin: no

  6. 11. x-axis: no; y-axis: yes; origin: no

  7. 13. x-axis: no; y-axis: no; origin: yes

  8. 15. x-axis: no; y-axis: no; origin: yes

  9. 17. x-axis: yes; y-axis: yes; origin: yes

  10. 19. x-axis: no; y-axis: yes; origin: no

  11. 21. x-axis: yes; y-axis: yes; origin: yes

  12. 23. x-axis: no; y-axis: no; origin: no

  13. 25. x-axis: no; y-axis: no; origin: yes

  14. 27. x-axis: (−5, −6); y-axis: (5, 6); origin: (5, −6)

  15. 29. x-axis: (−10, 7); y-axis: (10, −7); origin: (10, 7)

  16. 31. x-axis: (0, 4); y-axis: (0, −4); origin: (0, 4)

  17. 33. Even

  18. 35. Odd

  19. 37. Neither

  20. 39. Odd

  21. 41. Even

  22. 43. Odd

  23. 45. Neither

  24. 47. Even

  25. 49.

  26. 50. University of California–Berkeley: 3576 volunteers; University of Wisconsin–Madison: 3112 volunteers

  27. 51. Odd

  28. 53. x-axis: yes; y-axis: no; origin: no

  29. 55. E(x)=f(x)+f((x))2=f(x)+f(x)2=E(x)

  30. 57.

    1. E(x)+O(x)=f(x)+f(x)2+f(x)f(x)2=2f(x)2=f(x);

    2. f(x)=22x2+x+x202+8x3+xx2

  31. 59. True

Visualizing the Graph

  1. C

  2. B

  3. A

  4. E

  5. G

  6. D

  7. H

  8. I

  9. F

Exercise Set 2.5

  1. 1. Start with the graph of f(x)=x2. Shift it right 3 units.

  2. 3. Start with the graph of g(x)=x. Shift it down 3 units.

  3. 5. Start with the graph of h(x)=x. Reflect it across the x-axis.

  4. 7. Start with the graph of h(x)=1x. Shift it up 4 units.

  5. 9. Start with the graph of h(x)=x. Stretch it vertically by multiplying each y-coordinate by 3. Then reflect it across the x-axis and shift it up 3 units.

  6. 11. Start with the graph of h(x)=|x|. Shrink it vertically by multiplying each y-coordinate by 12. Then shift it down 2 units.

  7. 13. Start with the graph of g(x)=x3. Shift it right 2 units. Then reflect it across the x-axis.

  8. 15. Start with the graph of g(x)=x2. Shift it left 1 unit. Then shift it down 1 unit.

  9. 17. Start with the graph of g(x)=x3. Shrink it vertically by multiplying each y-coordinate by 13. Then shift it up 2 units.

  10. 19. Start with the graph of f(x)=x. Shift it left 2 units.

  11. 21. Start with the graph of f(x)=x. Shift it down 2 units.

  12. 23. Start with the graph of g(x)=|x|. Shrink it horizontally by multiplying each x-coordinate by 13 (or dividing each x-coordinate by 3).

  13. 25. Start with the graph of h(x)=1x. Stretch it vertically by multiplying each y-coordinate by 2.

  14. 27. Start with the graph of f(x)=x. Stretch it vertically by multiplying each y-coordinate by 3. Then shift it down 5 units.

  15. 29. Start with the graph of g(x)=|x|. Stretch it horizontally by multiplying each x-coordinate by 3. Then shift it down 4 units.

  16. 31. Start with the graph of f(x)=x2. Shift it right 5 units, shrink it vertically by multiplying each y-coordinate by 14, and then reflect it across the x-axis.

  17. 33. Start with the graph of f(x)=1x. Shift it left 3 units, then up 2 units.

  18. 35. Start with the graph of h(x)=x2. Shift it right 3 units. Then reflect it across the x-axis and shift it up 5 units.

  19. 37. (−12, 2)

  20. 39. (12, 4)

  21. 41. (−12, 2)

  22. 43. (−12, 16)

  23. 45. B

  24. 47. A

  25. 49. f(x)=(x8)2

  26. 51. f(x)=|x+7|+2

  27. 53. f(x)=12x3

  28. 55. f(x)=(x3)2+4

  29. 57. f(x)=(x+2)1

  30. 59.

  31. 61.

  32. 63.

  33. 65.

  34. 67.

  35. 69.

  36. 71. (f)

  37. 73. (f)

  38. 75. (d)

  39. 77. (c)

  40. 79. f(x)=2(x)435(x)3+3(x)5=2x4+35x33x5=g(x)

  41. 81. g(x)=x33x2+2

  42. 83. k(x)=(x+1)33(x+1)2

  43. 85. x-axis, no; y-axis, yes; origin, no

  44. 86. x-axis, yes; y-axis, no; origin, no

  45. 87. x-axis, no; y-axis, no; origin, yes

  46. 88. 40,504 pages

  47. 89. 1123 guns

  48. 90. About 29,700 acres

  49. 91.

  50. 93.

  51. 95. 5

Exercise Set 2.6

  1. 1. 4.5; y=4.5x

  2. 3. 36; y=36x

  3. 5. 4; y=4x

  4. 7. 4; y=4x

  5. 9. 38; y=38x

  6. 11. 0.54; y=0.54x

  7. 13. $8.25

  8. 15. 557 hr

  9. 17. 90 g

  10. 19. 3.5 hr

  11. 21. 6623 cm

  12. 23. 1.92 ft

  13. 25. y=0.0015x2

  14. 27. y=15x2

  15. 29. y=xz

  16. 31. y=310 xz2

  17. 33. y=15xzwp, or y=xz5wp

  18. 35. 2.5 m

  19. 37. 36 mph

  20. 39. 98 earned runs

  21. 41. Parallel

  22. 42. Zero

  23. 43. Relative minimum

  24. 44. Odd function

  25. 45. Inverse variation

  26. 47. $3.56; $3.53

  27. 49. π4

Review Exercises: Chapter 2

  1. 1. True

  2. 2. False

  3. 3. True

  4. 4. True

  5. 5.

    1. (−4, −2);

    2. (2, 5);

    3. (−2, 2)

  6. 6.

    1. (1, 0), (2, );

    2. (0, 2);

    3. (, 1)

  7. 7. Increasing: (0, ); decreasing: (, 0); relative minimum: −1 at x=0

  8. 8. Increasing: (, 0); decreasing: (0, ); relative maximum: 2 at x=0

  9. 9. A(x)=x(482x), or 48x2x2

  10. 10. A(x)=2x4x2

  11. 11.

    1. A(x)=x2+432x;

    2. (0, );

    3. x=6 in., height=3 in.

  12. 12.

  13. 13.

  14. 14.

  15. 15.

  16. 16.

  17. 17. f(1)=1; f(5)=2; f(2)=2; f(3)=27

  18. 18. f(2)=3; f(1)=3; f(0)=1;f(4)=3

  19. 19. −33

  20. 20. 0

  21. 21. Does not exist

  22. 22.

    1. Domain of f: (, 0)(0, ); domain of g: (, ); domain of f+g, fg, and fg: (, 0)(0, ); domain of f/g: (, 0)(0, 32)(32, );

    2. (f+g)(x)=4x2+32x; (fg)(x)=4x23+2x; (fg)(x)=12x28x; (f/g)(x)=4x2(32x)

  23. 23.

    1. Domain of f, g, f+g, fg, and fg: (, ); domain of f/g: (, 12)(12, );

    2. (f+g)(x)=3x2+6x1; (fg)(x)=3x2+2x+1; (fg)(x)=6x3+5x24x; (f/g)(x)=3x2+4x2x1

  24. 24. P(x)=0.5x2+105x6

  25. 25. 2

  26. 26. 2xh

  27. 27. 4x(x+h), or 4x(x+h)

  28. 28. 9

  29. 29. 5

  30. 30. 128

  31. 31. 580

  32. 32. 7

  33. 33. −509

  34. 34. 4x3

  35. 35. 24+27x39x6+x9

  36. 36.

    1. (fg)(x)=4(32x)2; (gf)(x)=38x2;

    2. domain of fg: (, 32)(32, ); domain of gf: (, 0)(0, )

  37. 37.

    1. (fg)(x)=12x24x1; (gf)(x)=6x2+8x1;

    2. domain of fg and gf: (, )

  38. 38. f(x)=x, g(x)=5x+2; answers may vary.

  39. 39. f(x)=4x2+9, g(x)=5x1; answers may vary.

  40. 40. x-axis: yes; y-axis: yes; origin: yes

  41. 41. x-axis: yes; y-axis: yes; origin: yes

  42. 42. x-axis: no; y-axis: no; origin: no

  43. 43. x-axis: no; y-axis: yes; origin: no

  44. 44. x-axis: no; y-axis: no; origin: yes

  45. 45. x-axis: no; y-axis: yes; origin: no

  46. 46. Even

  47. 47. Even

  48. 48. Odd

  49. 49. Even

  50. 50. Even

  51. 51. Neither

  52. 52. Odd

  53. 53. Even

  54. 54. Even

  55. 55. Odd

  56. 56. f(x)=(x+3)2

  57. 57. f(x)=x3+4

  58. 58. f(x)=2|x3|

  59. 59.

  60. 60.

  61. 61.

  62. 62.

  63. 63. y=4x

  64. 64. y=23x

  65. 65. y=2500x

  66. 66. y=54x

  67. 67. y=48x2

  68. 68. y=110xz2w

  69. 69. 20 min

  70. 70. 75

  71. 71. 500 watts

  72. 72. A

  73. 73. C

  74. 74. B

  75. 75. Let f(x) and g(x) be odd functions. Then by definition, f(x)=f(x), or f(x)=f(x), and g(x)=g(x), or g(x)=g(x). Thus, (f+g)(x)=f(x)+g(x)=f(x)+[g(x)]=[f(x)+g(x)]=(f+g)(x) and f+g is odd.

  76. 76. Reflect the graph of y=f(x) across the x-axis and then across the y-axis.

  77. 77.

    1. 4x32x+9;

    2. 4x3+24x2+46x+35;

    3. 4x32x+42.

    1. adds 2 to each function value;

    2. adds 2 to each input before finding a function value;

    3. adds the output for 2 to the output for x

  78. 78. In the graph of y=f(cx), the constant c stretches or shrinks the graph of y=f(x) horizontally. The constant c in y=cf(x) stretches or shrinks the graph of y=f(x) vertically. For y=f(cx), the x-coordinates of y=f(x) are divided by c; for y=cf(x), the y-coordinates of y=f(x) are multiplied by c.

  79. 79. The graph of f(x)=0 is symmetric with respect to the x-axis, the y-axis, and the origin. This function is both even and odd.

  80. 80. If all the exponents are even numbers, then f(x) is an even function. If a0=0 and all the exponents are odd numbers, then f(x) is an odd function.

  81. 81. Let y(x)=kx2. Then y(2x)=k(2x)2=k4x2=4kx2=4y(x). Thus doubling x causes y to be quadrupled.

  82. 82. Let y=k1x and x=k2z. Then y=k1 k2z, or y=k1k2z, so y varies inversely as z.

Test: Chapter 2

  1. [2.1]

    1. (−5, −2);

    2. (2, 5);

    3. (−2, 2)

  2. [2.1] Increasing: (, 0); decreasing: (0, ); relative maximum: 2 at x=0

  3. [2.1] A(b)=12b(4b6), or 2b23b

  4. [2.1]

  5. [2.1] f(78)=78; f(5)=2; f(4)=16

  6. [2.2] 66

  7. [2.2] 6

  8. [2.2] −1

  9. [2.2] 0

  10. [2.1] (, )

  11. [2.1] [3, )

  12. [2.2] [3, )

  13. [2.2] [3, )

  14. [2.2] [3, )

  15. [2.2] (3, )

  16. [2.2] (f+g)(x)=x2+x3

  17. [2.2] (fg)(x)=x2x3

  18. [2.2] (fg)(x)=x2x3

  19. [2.2] (f/g)(x)=x2x3

  20. [2.2] 12

  21. [2.2] 4x+2h1

  22. [2.3] 83

  23. [2.3] 0

  24. [2.3] 4

  25. [2.3] 16x+15

  26. [2.3] (fg)(x)=x24; (gf)(x)=x4

  27. [2.3] Domain of (fg)(x): (, 2][2, ); domain of (gf)(x): [5, )

  28. [2.3] f(x)=x4; g(x)=2x7; answers may vary

  29. [2.4] x-axis: no; y-axis: yes; origin: no

  30. [2.4] Odd

  31. [2.5] f(x)=(x2)21

  32. [2.5] f(x)=(x+2)23

  33. [2.5]

  34. [2.6] y=30x

  35. [2.6] y=5x

  36. [2.6] y=50xz2w

  37. [2.6] 50 ft

  38. [2.5] C

  39. [2.5] (−1, 1)

Chapter 3

Exercise Set 3.1

  1. 1. 3i

  2. 3. 5i

  3. 5. 33i

  4. 7. −9i

  5. 9. 72i

  6. 11. 2+11i

  7. 13. 512i

  8. 15. 4+8i

  9. 17. 42i

  10. 19. 5+9i

  11. 21. 5+4i

  12. 23. 5+7i

  13. 25. 115i

  14. 27. 1+5i

  15. 29. 212i

  16. 31. −12

  17. 33. −45

  18. 35. 35+14i

  19. 37. 6+16i

  20. 39. 13i

  21. 41. 11+16i

  22. 43. 10+11i

  23. 45. 3134i

  24. 47. 14+23i

  25. 49. 41

  26. 51. 13

  27. 53. 74

  28. 55. 12+16i

  29. 57. 4528i

  30. 59. 86i

  31. 61. 2i

  32. 63. 7+24i

  33. 65. 15146+33146i

  34. 67. 10131513i

  35. 69. 1413+513i

  36. 71. 11252725i

  37. 73. 43+1041+53+841i

  38. 75. 12+12i

  39. 77. 12132i

  40. 79.i

  41. 81.i

  42. 83. 1

  43. 85. i

  44. 87. 625

  45. 89. y=2x+1

  46. 90. All real numbers, or (, )

  47. 91. (, 53)(53, )

  48. 92. x23x1

  49. 93. 811

  50. 94. 2x+h3

  51. 95. True

  52. 97. True

  53. 99. a2+b2

  54. 101. x26x+25

Exercise Set 3.2

  1. 1. 23, 32

  2. 3. −2, 10

  3. 5. 1, 23

  4. 7. 3,3

  5. 9. 7,7

  6. 11. 2i,2i

  7. 13. −4i, 4i

  8. 15. 0, 3

  9. 17. 13, 0, 2

  10. 19. 1, 17, 1

  11. 21.

    1. (−4, 0), (2, 0);

    2. −4, 2

  12. 23.

    1. (−1, 0), (3, 0);

    2. −1, 3

  13. 25.

    1. (−2, 0), (2, 0);

    2. −2, 2

  14. 27.

    1. (1, 0);

    2. 1

  15. 29. −7, 1

  16. 31. 4±7

  17. 33. 4±3i

  18. 35. 2, 13

  19. 37. −3, 5

  20. 39. 1, 25

  21. 41. 5±73

  22. 43. 12±72i

  23. 45. 4±315

  24. 47. 56±236i

  25. 49. 4±11

  26. 51. 1±616

  27. 53. 5±174

  28. 55. 15±35i

  29. 57. 144; two real

  30. 59. −7; two imaginary

  31. 61. 49; two real

  32. 63. −5, −1

  33. 65. 3±212; 0.791, 3.791

  34. 67. 5±212; 0.209, 4.791

  35. 69. 1±6; 3.449, 1.449

  36. 71. 14±314i

  37. 73. 1±136; 0.434, 0.768

  38. 75. 1±65; 0.290, 0.690

  39. 77. 3±578; 1.319, 0.569

  40. 79. ±1,±2

  41. 81. ±2,±5i

  42. 83. ±1,±5i

  43. 85. 16

  44. 87. −8, 64

  45. 89. 1, 16

  46. 91. 52, 3

  47. 93. 32, 1, 12, 1

  48. 95. 2011

  49. 97. 1995

  50. 99. About 10.216 sec

  51. 101. Length: 4 ft; width: 3 ft

  52. 103. 4 and 9; −9 and −4

  53. 105. 2 cm

  54. 107. Length: 8 ft; width: 6 ft

  55. 109. Linear

  56. 111. Quadratic

  57. 113. Linear

  58. 115. About $3.95 million

  59. 116. About 16 years after 2004, or in 2020

  60. 117. x-axis: yes; y-axis: yes; origin: yes

  61. 118. x-axis: no; y-axis: yes; origin: no

  62. 119. Odd

  63. 120. Neither

  64. 121.

    1. 2;

    2. 112

  65. 123.

    1. 2;

    2. 1i

  66. 125. 1

  67. 127. 7, 32, 0, 13,7

  68. 129. 1±1+422

  69. 131. 3±5

  70. 133. 19

  71. 135. 2±2, 12±72i

Visualizing the Graph

  1. C

  2. B

  3. A

  4. J

  5. F

  6. D

  7. I

  8. G

  9. H

  10. E

Exercise Set 3.3

  1. 1.

    1. (12, 94);

    2. x=12;

    3. minimum: 94

  2. 3.

    1. (4, −4);

    2. x=4;

    3. minimum: −4;

  3. 5.

    1. (72, 14);

    2. x=72;

    3. minimum: 14;

  4. 7.

    1. (−2, 1);

    2. x=2;

    3. minimum: 1;

  5. 9.

    1. (−4, −2);

    2. x=4;

    3. minimum: −2;

  6. 11.

    1. (32, 72);

    2. x=32;

    3. minimum: 72;

  7. 13.

    1. (−3, 12);

    2. x=3;

    3. maximum: 12;

  8. 15.

    1. (12, 32);

    2. x=12;

    3. maximum: 32;

  9. 17. (f )

  10. 19. (b)

  11. 21. (h)

  12. 23. (c)

  13. 25. True

  14. 27. False

  15. 29. True

  16. 31.

    1. (3, −4);

    2. minimum: −4;

    3. [4, );

    4. increasing: (3, ); decreasing: (, 3)

  17. 33.

    1. (−1, −18);

    2. minimum: −18;

    3. [18, );

    4. increasing: (1, ); decreasing: (, 1)

  18. 35.

    1. (5, 92);

    2. maximum: 92;

    3. ( , 92 ];

    4. increasing: (, 5); decreasing: (5, )

  19. 37.

    1. (−1, 2);

    2. minimum: 2;

    3. [2, );

    4. increasing: (1, ); decreasing: (, 1)

  20. 39.

    1. (32, 18);

    2. maximum: 18;

    3. (, 18];

    4. increasing: (, 32); decreasing: (32, )

  21. 41. 0.625 sec; 12.25 ft

  22. 43. 3.75 sec; 305 ft

  23. 45. 4.5 in.

  24. 47. Base: 10 cm; height: 10 cm

  25. 49. 350 doghouses

  26. 51. $797; 40 units

  27. 53. 4800 yd2

  28. 55. About 60.5 ft

  29. 57. 3

  30. 58. 4x+2h1

  31. 59.

  32. 60.

  33. 61. −236.25

  34. 63.

  35. 65. Pieces should be 24π4+π in. and 964+π in.

Mid-Chapter Mixed Review: Chapter 3

  1. 1. True

  2. 2. False

  3. 3. True

  4. 4. False

  5. 5. 6i

  6. 6. 5i

  7. 7. −4i

  8. 8. 42i

  9. 9. 1+i

  10. 10. 7+5i

  11. 11. 23+2i

  12. 12. 1291729i

  13. 13. i

  14. 14. 1

  15. 15.i

  16. 16. −64

  17. 17. −4, 1

  18. 18. 2, 32

  19. 19. ±6

  20. 20. ±10i

  21. 21. 4x28x3=0; 4x28x=3;

    x22x=34; x22x+1=34+1;(x1)2=74;

    x1=±72; x=1±72=2±72

  22. 22.

    1. 29; two real;

    2. 3±292; 1.193, 4.193

  23. 23.

    1. 0; one real;

    2. 32

  24. 24.

    1. −8; two nonreal;

    2. 13±23i

  25. 25. ±1,±6i

  26. 26. 14, 4

  27. 27. 5 and 7; −7 and −5

  28. 28.

    1. (3, −2);

    2. x=3;

    3. minimum: −2;

    4. [2, );

    5. increasing: (3, ); decreasing: (, 3);

  29. 29.

    1. (−1, −3);

    2. x=1;

    3. maximum: −3;

    4. (, 3];

    5. increasing: (, 1); decreasing: (1, );

  30. 30. Base: 8 in., height: 8 in.

  31. 31. The sum of two imaginary numbers is not always an imaginary number. For example, (2+i)+(3i)=5, a real number.

  32. 32. Use the discriminant. If b24ac<0, there are no x-intercepts. If b24ac=0, there is one x-intercept. If b24ac>0, there are two x-intercepts.

  33. 33. Completing the square was used in Section 3.2 to solve quadratic equations. It was used again in Section 3.3 to write quadratic functions in the form f(x)=a(xh)2+k.

  34. 34. The x-intercepts of g(x) are also (x1, 0) and (x2, 0). This is true because f(x) and g(x) have the same zeros. Consider g(x)=0, or ax2bxc=0. Multiplying by −1 on both sides, we get an equivalent equation ax2+bx+c=0, or f(x)=0.

Exercise Set 3.4

  1. 1. 209

  2. 3. 286

  3. 5. 6

  4. 7. 6

  5. 9. 4

  6. 11. 2, 3

  7. 13. −1, 6

  8. 15. 12, 5

  9. 17. 7

  10. 19. No solution

  11. 21. 6914

  12. 23. 3718

  13. 25. 2

  14. 27. No solution

  15. 29. {x|x is a real number and x0 and x6}

  16. 31. 53

  17. 33. 92

  18. 35. 3

  19. 37. −4

  20. 39. −5

  21. 41. ±2

  22. 43. No solution

  23. 45. 6

  24. 47. −1

  25. 49. 352

  26. 51. −98

  27. 53. −6

  28. 55. 5

  29. 57. 7

  30. 59. 2

  31. 61. −1, 2

  32. 63. 7

  33. 65. 7

  34. 67. No solution

  35. 69. 1

  36. 71. 3, 7

  37. 73. 5

  38. 75. −1

  39. 77. −8

  40. 79. 81

  41. 81. T1=P1V1T2P2V2

  42. 83. C=1LW2

  43. 85. R2=RR1R1R

  44. 87. P=AI2+2I+1, or A(I+1)2

  45. 89. p=FmmF

  46. 91. 7.5

  47. 92. 3

  48. 93. China: 53,800,000 metric tons; United States: 10,508,000 metric tons

  49. 94. 119,771 baseball players

  50. 95. 3±22

  51. 97. −1

  52. 99. 0, 1

Exercise Set 3.5

  1. 1. −7, 7

  2. 3. 0

  3. 5. 56, 56

  4. 7. No solution

  5. 9. 13, 13

  6. 11. −3, 3

  7. 13. −3, 5

  8. 15. −8, 4

  9. 17. 1, 13

  10. 19. −24, 44

  11. 21. −2, 4

  12. 23. −13, 7

  13. 25. 43, 23

  14. 27. 34, 94

  15. 29. −13, 1

  16. 31. 0, 1

  17. 33. (−7, 7);

  18. 35. [−2, 2];

  19. 37. (, 4.5][4.5, );

  20. 39. (, 3)(3, );

  21. 41. (13, 13);

  22. 43. (, 3][3, );

  23. 45. (−17, 1);

  24. 47. (, 17][1, );

  25. 49. (14, 34);

  26. 51. [−6, 3];

  27. 53. (, 4.9)(5.1, );

  28. 55. ( , 12 ][ 72,  );

  29. 57. [ 73, 1 ];

  30. 59. (, 8)(7, );

  31. 61. No solution

  32. 63. (, )

  33. 65. y-intercept

  34. 66. Distance formula

  35. 67. Relation

  36. 68. Function

  37. 69. Horizontal lines

  38. 70. Parallel

  39. 71. Decreasing

  40. 72. Symmetric with respect to the y-axis

  41. 73. (, 12)

  42. 75. No solution

  43. 77. (, 83)(2, )

Review Exercises: Chapter 3

  1. 1. True

  2. 2. True

  3. 3. False

  4. 4. False

  5. 5. 52, 13

  6. 6. −5, 1

  7. 7. 2, 43

  8. 8. 3,3

  9. 9. 10i,10i

  10. 10. 1

  11. 11. −5, 3

  12. 12. 1±414

  13. 13. 13±223i

  14. 14. 277

  15. 15. 12, 94

  16. 16. 0, 3

  17. 17. 5

  18. 18. 1, 7

  19. 19. −8, 1

  20. 20. (, 3][3, );

  21. 21. (143, 2);

  22. 22. (23, 1);

  23. 23. (, 6][2, );

  24. 24. P=MNM+N

  25. 25. 210i

  26. 26. 415

  27. 27. 78

  28. 28. 2i

  29. 29. 14i

  30. 30. 1826i

  31. 31. 1110+310i

  32. 32.i

  33. 33. x23x+94=18+94; (x32)2=814; x=32±92; 3, 6

  34. 34. x24x=2; x24x+4=2+4;(x2)2=6; x=2±6; 26, 2+6

  35. 35. 4, 23

  36. 36. 13i, 1+3i

  37. 37. −2, 5

  38. 38. 1

  39. 39. ±3±52

  40. 40. 3, 0,3

  41. 41. 2, 23, 3

  42. 42. 5, 2, 2

  43. 43.

    1. (38, 716);

    2. x=38;

    3. maximum: 716;

    4. ( , 716 ];

  44. 44.

    1. (1, −2);

    2. x=1;

    3. minimum: −2;

    4. [2, );

  45. 45. (d)

  46. 46. (c)

  47. 47. (b)

  48. 48. (a)

  49. 49. 30 ft, 40 ft

  50. 50. Rebecca: 15 km/h; Harry: 8 km/h

  51. 51. 35533 ft, or about 6.3 ft

  52. 52. 6 ft by 6 ft

  53. 53. 151152cm, or about 2.1 cm

  54. 54. B

  55. 55. B

  56. 56. A

  57. 57. 256

  58. 58. 4±2434, or 0.052, 7.948

  59. 59. −7, 9

  60. 60. 14, 2

  61. 61. −1

  62. 62. 9%

  63. 63. ±6

  64. 64. The product of two imaginary numbers is not always an imaginary number. For example, ii=i2=1, a real number.

  65. 65. No; consider the quadratic formula x=b±b24ac2a. If b24ac=0, then x=b2a, so there is one real zero. If b24ac>0, then b24ac is a real number and there are two real zeros. If b24ac<0, then b24ac is an imaginary number and there are two imaginary zeros. Thus a quadratic function cannot have one real zero and one imaginary zero.

  66. 66. You can conclude that |a1|=|a2| since these constants determine how wide the parabolas are. Nothing can be concluded about the h’s and the k’s.

  67. 67. When both sides of an equation are multiplied by the LCD, the resulting equation might not be equivalent to the original equation. One or more of the possible solutions of the resulting equation might make a denominator of the original equation 0.

  68. 68. When both sides of an equation are raised to an even power, the resulting equation might not be equivalent to the original equation. For example, the solution set of x=2 is {2}, but the solution set of x2=(2)2, or x2=4,  is {2, 2}.

  69. 69. Absolute value is nonnegative.

  70. 70. |x|0>p for any real number x.

Test: Chapter 3

  1. [3.2] 12, 5

  2. [3.2] 6,6

  3. [3.2] −2i, 2i

  4. [3.2] −1, 3

  5. [3.2] 5±132

  6. [3.2] 34±234i

  7. [3.2] 16

  8. [3.4] 1, 136

  9. [3.4] 5

  10. [3.4] 5

  11. [3.5] −11, 3

  12. [3.5] 12, 2

  13. [3.5] [−7, 1];

  14. [3.5] (−2, 3);

  15. [3.5] (, 7)(3, );

  16. [3.5] (, 2][5, );

  17. [3.4] B=ACAC

  18. [3.4] n=R23p

  19. [3.2] x2+4x=1;x2+4x+4=1+4;(x+2)2=5;x=2±5; 25, 2+5

  20. [3.2] About 11.4 sec

  21. [3.1] 43i

  22. [3.1] −5i

  23. [3.1] 35i

  24. [3.1] 10+5i

  25. [3.1] 11015i

  26. [3.1] i

  27. [3.2] 14, 3

  28. [3.2] 1±574

  29. [3.3]

    1. (1, 9);

    2. x=1;

    3. maximum: 9;

    4. (, 9];

  30. [3.3] 20 ft by 40 ft

  31. [3.3] C

  32. [3.3], [3.4] 49

Chapter 4

Exercise Set 4.1

  1. 1. 12x3; 12; 3; cubic

  2. 3. 0.9x; 0.9; 1; linear

  3. 5. 305x4; 305; 4; quartic

  4. 7. x4; 1; 4; quartic

  5. 9. 4x3; 4; 3; cubic

  6. 11. (d)

  7. 13. (b)

  8. 15. (c)

  9. 17. (a)

  10. 19. (c)

  11. 21. (d)

  12. 23. Yes; no; no

  13. 25. No; yes; yes

  14. 27. −3, multiplicity 2; 1, multiplicity 1

  15. 29. 4, multiplicity 3; −6, multiplicity 1

  16. 31. ±3, each has multiplicity 3

  17. 33. 0, multiplicity 3; 1, multiplicity 2; −4, multiplicity 1

  18. 35. 3, multiplicity 2; −4, multiplicity 3; 0, multiplicity 4

  19. 37. ±3,±1, each has multiplicity 1

  20. 39. −3, −1, 1, each has multiplicity 1

  21. 41. ±2, 12, each has multiplicity 1

  22. 43. False

  23. 45. True

  24. 47. 2008: 1.7 million albums; 2012: 4.9 million albums; 2016: 7.9 million albums

  25. 49. 26, 64, and 80

  26. 51. 5 sec

  27. 53. 2003: 684,025 admissions; 2006: 739,119 admissions; 2011: 665,806 admissions

  28. 55. 6.3%

  29. 57. 5

  30. 58. 62

  31. 59. Center: (3, −5); radius: 7

  32. 60. Center: (−4, 3); radius: 22

  33. 61. {y|y3}, or [3, )

  34. 62. { x|x>53 }, or (53, )

  35. 63. {x|x13 or x1}, or (, 13][1, )

  36. 64. { x|1112x512 }, or [ 1112, 512 ]

  37. 65. 16;x16

Visualizing the Graph

  1. H

  2. D

  3. J

  4. B

  5. A

  6. C

  7. I

  8. E

  9. G

  10. F

Exercise Set 4.2

  1. 1.

    1. 5;

    2. 5;

    3. 4

  2. 3.

    1. 10;

    2. 10;

    3. 9

  3. 5.

    1. 3;

    2. 3;

    3. 2

  4. 7. (d)

  5. 9. (f)

  6. 11. (b)

  7. 13.

  8. 15.

  9. 17.

  10. 19.

  11. 21.

  12. 23.

  13. 25.

  14. 27.

  15. 29.

  16. 31.

  17. 33.

  18. 35.

  19. 37.

  20. 39. f(5)=18 and f(4)=7. By the intermediate value theorem, since f(5) and f(4) have opposite signs, then f(x) has a zero between −5 and −4.

  21. 41. f(3)=22 and f(2)=5. Both f(3) and f(2) are positive. We cannot use the intermediate value theorem to determine if there is a zero between −3 and −2.

  22. 43. f(2)=2 and f(3)=57. Both f(2) and f(3) are positive. We cannot use the intermediate value theorem to determine if there is a zero between 2 and 3.

  23. 45. f(4)=12 and f(5)=4. By the intermediate value theorem, since f(4) and f(5) have opposite signs, then f(x) has a zero between 4 and 5.

  24. 47. (d)

  25. 48. (f)

  26. 49. (e)

  27. 50. (a)

  28. 51. (b)

  29. 52. (c)

  30. 53. 910

  31. 54. −3, 0, 4

  32. 55. 53, 112

  33. 56. 19625

Exercise Set 4.3

  1. 1.

    1. No;

    2. yes;

    3. no

  2. 3.

    1. Yes;

    2. no;

    3. yes

  3. 5. P(x)=(x+2)(x22x+4)16

  4. 7. P(x)=(x+9)(x23x+2)+0

  5. 9. P(x)=(x+2)(x32x2+2x4)+11

  6. 11. Q(x)=2x3+x23x+10, R(x)=42

  7. 13. Q(x)=x24x+8, R(x)=24

  8. 15. Q(x)=3x24x+8, R(x)=18

  9. 17. Q(x)=x4+3x3+10x2+30x+89, R(x)=267

  10. 19. Q(x)=x3+x2+x+1, R(x)=0

  11. 21. Q(x)=2x3+x2+72x+74, R(x)=18

  12. 23. 0; −60; 0

  13. 25. 10; 80; 998

  14. 27. 5,935,988; −772

  15. 29. 0; 0; 65; 1122

  16. 31. Yes; no

  17. 33. Yes; yes

  18. 35. No; yes

  19. 37. No; no

  20. 39. f(x)=(x1)(x+2)(x+3); 1, 2, 3

  21. 41. f(x)=(x2)(x5)(x+1); 2, 5, 1

  22. 43. f(x)=(x2)(x3)(x+4); 2, 3, 4

  23. 45. f(x)=(x3)3(x+2); 3, 2

  24. 47. f(x)=(x1)(x2)(x3)(x+5); 1, 2, 3, 5

  25. 49.

  26. 51.

  27. 53.

  28. 55. 54±714i

  29. 56. 1, 37

  30. 57. −5, 0

  31. 58. 10

  32. 59. 3, 2

  33. 60. f(x)=0.172x+2.69; 1995: $5.27; 2018: $9.23

  34. 61. b=15 in., h=15 in.

  35. 63.

    1. x+4,x+3, x2,x5;

    2. P(x)=(x+4)(x+3)(x2)(x5);

    3. yes; two examples are f(x)=cP(x) for any nonzero constant c; and g(x)=(xa)P(x);

    4. no

  36. 65. 143

  37. 67. 0, −6

  38. 69. Answers may vary. One possibility is P(x)=x15x14.

  39. 71. x2+2ix+(24i), R 62i

  40. 73. x3+i, R 63i

Mid-Chapter Mixed Review: Chapter 4

  1. 1. False

  2. 2. True

  3. 3. True

  4. 4. False

  5. 5. 5; multiplicity 6

  6. 6. 5, 12, 5; each has multiplicity 1

  7. 7. ±1,±2; each has multiplicity 1

  8. 8. 3, multiplicity 2; −4, multiplicity 1

  9. 9. (d)

  10. 10. (a)

  11. 11. (b)

  12. 12. (c)

  13. 13. f(2)=13 and f(0)=3. By the intermediate value theorem, since f(2) and f(0) have opposite signs, then f(x) has at least one zero between −2 and 0.

  14. 14. f(12)=238 and f(1)=2. Both f(12) and f(1) are positive. We cannot use the intermediate value theorem to determine if there is a zero between 12 and 1.

  15. 15. P(x)=(x1)(x35x25x4)6

  16. 16. Q(x)=3x3+5x2+12x+18, R(x)=42

  17. 17. Q(x)=x4x3+x2x+1, R(x)=6

  18. 18. g(5)=380

  19. 19. f(12)=15

  20. 20. f(2)=202

  21. 21. Yes; no

  22. 22. Yes; yes

  23. 23. h(x)=(x1)(x8)(x+7); 7, 1, 8

  24. 24. g(x)=(x+1)(x2)(x4)(x+3); 3, 1, 2, 4

  25. 25. The range of a polynomial function with an odd degree is (, ). The range of a polynomial function with an even degree is [s, ) for some real number s if an>0 and is (, s] for some real number s if an<0.

  26. 26. Since we can find f(0) for any polynomial function f(x), it is not possible for the graph of a polynomial function to have no y-intercept. It is possible for a polynomial function to have no x-intercepts. For instance, a function of the form f(x)=x2+a,a>0, has no x-intercepts. There are other examples as well.

  27. 27. The zeros of a polynomial function are the first coordinates of the points at which the graph of the function crosses or is tangent to the x-axis.

  28. 28. For a polynomial P(x) of degree n, when we have P(x)=d(x)Q(x)+R(x), where the degree of d(x) is 1, then the degree of Q(x) must be n1.

Exercise Set 4.4

  1. 1. f(x)=x36x2x+30

  2. 3. f(x)=x3+3x2+4x+12

  3. 5. f(x)=x33x22x+6

  4. 7. f(x)=x36x4

  5. 9. f(x)=x3+2x2+29x+148

  6. 11. f(x)=x353x223x

  7. 13. f(x)=x5+2x42x2x

  8. 15. f(x)=x4+3x3+3x2+x

  9. 17. 3

  10. 19. i, 2+5

  11. 21. −3i

  12. 23. 4+3i, 2+3

  13. 25. 5, 4i

  14. 27. 2+i

  15. 29. 34i, 4+5

  16. 31. 4+i

  17. 33. f(x)=x34x2+6x4

  18. 35. f(x)=x2+16

  19. 37. f(x)=x35x2+16x80

  20. 39. f(x)=x42x33x2+10x10

  21. 41. f(x)=x4+4x245

  22. 43. 2,2

  23. 45. i, 2, 3

  24. 47. 1+2i, 12i

  25. 49. ±1

  26. 51. ±1,±12,±2,±4,±8

  27. 53. ±1,±2,±13,±15,±23,±25,±115,±215

  28. 55.

    1. Rational: −3; other: ±2;

    2. f(x)=(x+3)(x+2)(x2)

  29. 57.

    1. Rational: 13; other: ±5;

    2. f(x)=3(x13)(x+5)(x5)

  30. 59.

    1. Rational: 2, 1; other: none;

    2. f(x)=(x+2)(x1)2

  31. 61.

    1. Rational: 32; other: ±3i;

    2. f(x)=2(x+32)(x+3i)(x3i)

  32. 63.

    1. Rational: 15, 1; other: ±2i;

    2. f(x)=5(x+15)(x1)(x+2i)(x2i), or (5x+1)(x1)(x+2i)(x2i)

  33. 65.

    1. Rational: 2, 1; other: 3±13;

    2. f(x)=(x+2)(x+1)(x313)(x3+13)

  34. 67.

    1. Rational: 2; other: 1±3;

    2. f(x)=(x2)(x13)(x1+3)

  35. 69.

    1. Rational: −2; other: 1±3i;

    2. f(x)=(x+2)(x13i)(x1+3i)

  36. 71.

    1. Rational: 12; other: 1±52;

    2. f(x)=13(x12)(x1+52)(x152)

  37. 73. 1, −3

  38. 75. No rational zeros

  39. 77. No rational zeros

  40. 79. −2, 1, 2

  41. 81. 3 or 1; 0

  42. 83. 0; 3 or 1

  43. 85. 2 or 0; 2 or 0

  44. 87. 1; 1

  45. 89. 1; 0

  46. 91. 2 or 0; 2 or 0

  47. 93. 3 or 1;1

  48. 95. 1; 1

  49. 97.

  50. 99.

  51. 101.

    1. (4, −6);

    2. x=4;

    3. minimum: −6 at x=4

  52. 102.

    1. (1, −4);

    2. x=1;

    3. minimum: −4 at x=1

  53. 103. 10

  54. 104. −3, 11

  55. 105. Cubic; x3; 1; 3; as x,g(x), and as x, g(x)

  56. 106. Quadratic; x2; 1; 2; as x, f(x), and as x, f(x)

  57. 107. Constant; 49;49; zero degree; for all x, f(x)=49

  58. 108. Linear; x; 1; 1; as x, h(x), and as x, h(x)

  59. 109. Quartic; x4; 1; 4; as x, g(x), and as x, g(x)

  60. 110. Cubic; x3; 1; 3; as x,h(x), and as x, h(x)

  61. 111.

    1. 1, 12, 3;

    2. 0, 32, 4;

    3. 3, 32, 1;

    4. 12, 14, 32

  62. 113. 8, 32, 4, 7, 15

Visualizing the Graph

  1. A

  2. C

  3. D

  4. H

  5. G

  6. F

  7. B

  8. I

  9. J

  10. E

Exercise Set 4.5

  1. 1. {x|x2}, or (, 2)(2, )

  2. 3. {x|x1 and x5}, or (, 1)(1, 5)(5, )

  3. 5. {x|x5}, or (, 5)(5, )

  4. 7. (d); x=2, x=2, y=0

  5. 9. (e); x=2, x=2,y=0

  6. 11. (c); x=2, x=2, y=8x

  7. 13. x=0

  8. 15. x=2

  9. 17. x=4, x=6

  10. 19. x=32, x=1

  11. 21. y=34

  12. 23. y=0

  13. 25. No horizontal asymptote

  14. 27. y=x+1

  15. 29. y=x

  16. 31. y=x3

  17. 33. Domain: (, 0)(0, ); no x-intercepts, no y-intercept;

  18. 35. Domain: (, 0)(0, ); no x-intercepts, no y-intercept;

  19. 37. Domain: (, 1)(1, ); x-intercepts: (1, 0) and (3, 0); y-intercept: (0, 3);

  20. 39. Domain: (, 5)(5, ); no x-intercepts, y-intercept: (0, 25);

  21. 41. Domain: (, 0)(0, ); x-intercept: (12, 0), no y-intercept;

  22. 43. Domain: (, 3)(3, 3)(3, ); no x-intercepts, y-intercept: (0, 13);

  23. 45. Domain: (, 3)(3, 0)(0, ); no x-intercepts, no y-intercept;

  24. 47. Domain: (, 2)(2, ); no x-intercepts, y-intercept: (0, 14);

  25. 49. Domain: (, 3)(3, 1)(1, ); x-intercept: (1, 0), y-intercept: (0, −1);

  26. 51. Domain: (, ); no x-intercepts, y-intercept: (0, 13);

  27. 53. Domain: (, 2)(2, ); x-intercept: (−2, 0), y-intercept: (0, 2);

  28. 55. Domain: (, 2)(2, ); x-intercept: (1, 0), y-intercept: (0, 12);

  29. 57. Domain: (, 12)(12, 0)(0, 3)(3, ); x-intercept: (−3, 0), no y-intercept;

  30. 59. Domain: (, 1)(1, ); x-intercepts: (−3, 0) and (3, 0), y-intercept: (0, −9);

  31. 61. Domain: (, ); x-intercepts: (−2, 0) and (1, 0), y-intercept: (0, −2);

  32. 63. Domain: (, 1)(1, ); x-intercept: (23, 0), y-intercept: (0, 2);

  33. 65. Domain: (, 1)(1, 3)(3, ); x-intercept: (1, 0), y-intercept: (0, 13);

  34. 67. Domain: (, 4)(4, 2)(2, ); x-intercept: (13, 0), y-intercept: (0, 12);

  35. 69. Domain: (, 1)(1, ); x-intercept: (3, 0), y-intercept: (0, −3);

  36. 71. Domain: (, 0)(0, ); x-intercept: (−1, 0), no y-intercept;

  37. 73. Domain: (, 2)(2, 7)(7, ); x-intercepts: (−5, 0), (0, 0), and (3, 0), y-intercept: (0, 0);

  38. 75. Domain: (, ); x-intercept: (0, 0), y-intercept: (0, 0);

  39. 77. Domain: (, 1)(1, 2)(2, ); x-intercept: (0, 0), y-intercept: (0, 0);

  40. 79. f(x)=1x2x20

  41. 81. f(x)=3x2+12x+122x22x40

  42. 83.

    1. N(t)0.16 as t;

    2. The medication never completely disappears from the body; a trace amount remains.

  43. 85.

    1. P(0)=0; P(1)=45, 455; P(3)=55, 556; P(8)=29, 197;

    2. P(t)0 as t;

    3. In time, no one lives in this community.

  44. 86. Domain, range, domain, range

  45. 87. Slope

  46. 88. Slope–intercept equation

  47. 89. Point–slope equation

  48. 90. x-intercept

  49. 91. f(x)=f(x)

  50. 92. Vertical lines

  51. 93. Midpoint formula

  52. 94. y-intercept

  53. 95. y=x3+4

  54. 97.

Exercise Set 4.6

  1. 1. {5, 3}

  2. 3. [−5, 3]

  3. 5. (, 5][3, )

  4. 7. (, 4)(2, )

  5. 9. (, 4)[2, )

  6. 11. {0}

  7. 13. (5, 0](1, )

  8. 15. (, 5)(0, 1)

  9. 17. (, 3)(0, 3)

  10. 19. (3, 0)(3, )

  11. 21. (, 5)(3, 2)

  12. 23. (2, 0](2, )

  13. 25. (−4, 1)

  14. 27. (, 2)(1, )

  15. 29. (, 1][3, )

  16. 31. (, 5)(5, )

  17. 33. (, 2][2, )

  18. 35. (, 3)(3, )

  19. 37.

  20. 39. ( , 54 ][0, 3]

  21. 41. [3, 1][1, )

  22. 43. (, 2)(1, 3)

  23. 45. [ 2, 1 ][ 2,  )

  24. 47. (, 1][ 32, 2 ]

  25. 49. (, 5]

  26. 51. (, 1.680)(2.154, 5.526)

  27. 53. 4;(4, )

  28. 55. 52; (52, )

  29. 57. 0, 4; (, 0](4, )

  30. 59. 2, 72; ( 2, 72 ]

  31. 61. 3, 15, 1; ( 3, 15 ](1, )

  32. 63. 2, 4611, 5;(2, 4611)(5, )

  33. 65. 12,0, 1+2; (12, 0)(1+2, )

  34. 67. 3, 1, 3, 113;(, 3)(1, 3)[ 113,  )

  35. 69. 0;(, )

  36. 71. 3, 1616, 12, 0, 1+616;(3, 1616)(12, 0)(1+616, )

  37. 73. 1, 0, 27, 72;(1, 0)(27, 72)

  38. 75. 633, 5,6+33, 1, 5;[ 633, 5 )[ 6+33, 1 )(5, )

  39. 77. (0.408, 2.449)

  40. 79.

    1. (10, 200);

    2. (0, 10)(200, )

  41. 81. {n|9n23}

  42. 83. (x+2)2+(y4)2=9

  43. 84. x2+(y+3)2=4916

  44. 85.

    1. (34, 558);

    2. maximum: 558 when x=34;

    3. ( , 558 ]

  45. 86.

    1. (5, −23);

    2. minimum: −23 when x=5;

    3. [23, )

    4. 87. [ 5,5 ]

    5. 89. [ 32, 32 ]

    6. 91. (, 14)(12, )

    7. 93. x2+x12<0; answers may vary

    8. 95. (, 3)(7, )

Review Exercises: Chapter 4

  1. True

  2. True

  3. False

  4. False

  5. False

  6. 0.45x4, 0.45, 4, quartic

  7. −25, −25, 0, constant

  8. −0.5x, −0.5, 1, linear

  9. 13x3, 13, 3, cubic

  10. As x,f(x), and as x, f(x).

  11. As x,f(x), and as x, f(x).

  12. 23, multiplicity 1; −2, multiplicity 3; 5, multiplicity 2

  13. ±1,±5, each has multiplicity 1

  14. ±3, 4, each has multiplicity 1

    1. 4%;

    2. 5%

  15. f(1)=4 and f(2)=3. Since f(1) and f(2) have opposite signs, f(x) has a zero between 1 and 2.

  16. f(1)=3.5 and f(1)=0.5. Since f(1) and f(1) have the same sign, the intermediate value theorem does not allow us to determine whether there is a zero between −1 and 1.

  17. Q(x)=6x2+16x+52, R(x)=155;P(x)=(x3)(6x2+16x+52)+155

  18. Q(x)=x33x2+3x2, R(x)=7;P(x)=(x+1)(x33x2+3x2)+7

  19. x2+7x+22, R 120

  20. x3+x2+x+1, R 0

  21. x4x3+x2x1, R 1

  22. 36

  23. 0

  24. −141, 220

  25. Yes, no

  26. No, yes

  27. Yes, no

  28. No, yes

  29. f(x)=(x1)2(x+4); 4, 1

  30. f(x)=(x2)(x+3)2; 3, 2

  31. f(x)=(x2)2(x5)(x+5); 5, 2, 5

  32. f(x)=(x1)(x+1)(x2)(x+2);2, 1, 1,2

  33. f(x)=x3+3x26x8

  34. f(x)=x3+x24x+6

  35. f(x)=x352x2+12, or 2x35x2+1

  36. f(x)=x4+292x3+1352x2+1752x1252, or 2x4+29x3+135x2+175x125

  37. f(x)=x5+4x43x318x2

  38. 5, i

  39. 13,3

  40. 2

  41. f(x)=x211

  42. f(x)=x36x2+x6

  43. f(x)=x45x3+4x2+2x8

  44. f(x)=x4x220

  45. f(x)=x3+83x2x

  46. ±14,±12,±34,±1,±32,±2,±3,±4,±6,±12

  47. ±13,±1

  48. ±1,±2,±3,±4,±6,±8,±12,±24

    1. Rational: 0, 2, 13, 3; other: none;

    2. f(x)=3x(x13)(x+2)2(x3)

    1. Rational: 2; other: ±3;

    2. f(x)=(x2)(x+3)(x3)

    1. Rational: 1, 1; other: 3±i;

    2. f(x)=(x+1)(x1)(x3i)(x3+i)

    1. Rational: −5; other: 1±2;

    2. f(x)=(x+5)(x12)(x1+2)

    1. Rational: 23, 1; other: none;

    2. f(x)=3(x23)(x1)2

    1. Rational: 2; other: 1±5;

    2. f(x)=(x2)3(x1+5)(x15)

    1. Rational: −4, 0, 3, 4; other: none;

    2. f(x)=x2(x+4)2(x3)(x4)

    1. Rational: 52, 1; other: none;

    2. f(x)=2(x52)(x1)4, or (2x5)(x1)4

  49. 3 or 1; 0

  50. 4 or 2 or 0; 2 or 0

  51. 3 or 1; 0

  52. Domain: (, 2)(2, ); x-intercepts: (5, 0) and (5, 0), y-intercept: (0, 52)

  53. Domain: (, 2)(2, ); x-intercepts: none, y-intercept: (0, 54)

  54. Domain: (, 4)(4, 5)(5, ); x-intercepts: (−3, 0) and (2, 0), y-intercept: (0, 310)

  55. Domain: (, 3)(3, 5)(5, ); x-intercept: (2, 0), y-intercept: (0, 215)

  56. f(x)=1x2x6

  57. f(x)=4x2+12xx2x6

    1. N(t)0.0875 as t;

    2. The medication never completely disappears from the body; a trace amount remains.

  58. (−3, 3)

  59. (, 12)(2, )

  60. [4, 1][2, )

  61. (, 143)(3, )

    1. t=7;

    2. (2, 3)

  62. [ 5152, 5+152 ]

  63. A

  64. C

  65. B

  66. ( , 16 ][ 1+6,  )

  67. (, 12)(12, )

  68. {1+i, 1i, i, i}

  69. (, 2)

  70. (x1)(x+1232i)(x+12+32i)

  71. 7

  72. −4

  73. (, 5][2, )

  74. (, 1.1][2, )

  75. (1, 37)

  76. A polynomial function is a function that can be defined by a polynomial expression. A rational function is a function that can be defined as a quotient of two polynomials.

  77. No; since imaginary zeros of polynomials with rational coefficients occur in conjugate pairs, a third-degree polynomial with rational coefficients can have at most two imaginary zeros. Thus there must be at least one real zero.

  78. Vertical asymptotes occur at any x-values that make the denominator zero. The graph of a rational function does not cross any vertical asymptotes. Horizontal asymptotes occur when the degree of the numerator is less than or equal to the degree of the denominator. Oblique asymptotes occur when the degree of the numerator is 1 greater than the degree of the denominator. Graphs of rational functions may cross horizontal or oblique asymptotes.

  79. If P(x) is an even function, then P(x)=P(x) and thus P(x) has the same number of sign changes as P(x). Hence, P(x) has one negative real zero also.

  80. A horizontal asymptote occurs when the degree of the numerator of a rational function is less than or equal to the degree of the denominator. An oblique asymptote occurs when the degree of the numerator is 1 greater than the degree of the denominator. Thus a rational function cannot have both a horizontal asymptote and an oblique asymptote.

  81. A quadratic inequality ax2+bx+c0, a>0, or ax2+bx+c0, a<0, has a solution set that is a closed interval.

Test: Chapter 4

  1. [4.1] x4, 1, 4; quartic

  2. [4.1] 4.7x, 4.7, 1; linear

  3. [4.1] 0, 53, each has multiplicity 1; 3, multiplicity 2; −1, multiplicity 3

  4. [4.1] 2008: 329,277 hybrid automobiles; 2011: 275,779 hybrid automobiles

  5. [4.2]

  6. [4.2]

  7. [4.2] f(0)=3 and f(2)=17. Since f(0) and f(2) have opposite signs, f(x) has a zero between 0 and 2.

  8. [4.2] g(2)=5 and g(1)=1. Both g(2) and g(1) are positive. We cannot use the intermediate value theorem to determine if there is a zero between −2 and −1.

  9. [4.3] Q(x)=x3+4x2+4x+6, R(x)=1; P(x)=(x1)(x3+4x2+4x+6)+1

  10. [4.3] 3x2+15x+63, R322

  11. [4.3] −115

  12. [4.3] Yes

  13. [4.4] f(x)=x427x254x

  14. [4.4] 3, 2+i

  15. [4.4] f(x)=x3+10x2+9x+90

  16. [4.4] f(x)=x52x4x3+6x26x

  17. [4.4] ±1,±2,±3,±4,±6,±12,±12,±32

  18. [4.4] ±110,±15,±12,±1,±52,±5

  19. [4.4]

    1. Rational: −1; other: ±5;

    2. f(x)=(x+1)(x5)(x+5)

  20. [4.4]

    1. Rational: 12, 1, 2, 3; other: none;

    2. f(x)=2(x+12)(x1)(x2)(x3)

  21. [4.4]

    1. Rational: −4; other: ±2i;

    2. f(x)=(x2i)(x+2i)(x+4)

  22. [4.4]

    1. Rational: 23, 1; other: none;

    2. f(x)=3(x23)(x1)3

  23. [4.4] 2 or 0; 2 or 0

  24. [4.5] Domain: (, 3)(3, ); x-intercepts: none, y-intercept: (0, 29);

  25. [4.5] Domain: (, 1)(1, 4)(4, ); x-intercept: (−3, 0), y-intercept: (0, 34);

  26. [4.5] Answers may vary; f(x)=x+4x2x2

  27. [4.6] (, 12)(3, )

  28. [4.6] (, 4)[ 132,  )

    1. [4.1] 6 sec;

    2. [4.1], [4.6] (1, 3)

  29. [4.2] D

  30. [4.1], [4.6] (, 4][3, )

Chapter 5

Exercise Set 5.1

  1. 1. {(8, 7), (8, 2), (4, 3), (8, 8)}

  2. 3. {(1, 1), (4, 3)}

  3. 5. x=4y5

  4. 7. y3x=5

  5. 9. y=x22x

  6. 11.

  7. 13.

  8. 15.

  9. 17. Assume f(a)=f(b) for any numbers a and b in the domain of f. Since f(a)=13a6 and f(b)=13b6, we have

    13a6=13b613a=13bAdding 6a=b.Multiplying by 3

    Thus, if f(a)=f(b), then a=b and f is one-to-one.

  10. 19. Assume f(a)=f(b) for any numbers a and b in the domain of f. Since f(a)=a3+12 and f(b)=b3+12, we have

    a3+12=b3+12a3=b3Subtracting 12a=b.Taking the cube root

    Thus, if f(a)=f(b), then a=b and f is one-to-one.

  11. 21. Find two numbers a and b for which ab and g(a)=g(b). Two such numbers are −2 and 2, because g(2)=g(2)=3. Thus, g is not one-to-one.

  12. 23. Find two numbers a and b for which ab and g(a)=g(b). Two such numbers are −1 and 1, because g(1)=g(1)=0. Thus, g is not one-to-one.

  13. 25. Yes

  14. 27. No

  15. 29. No

  16. 31. Yes

  17. 33. Yes

  18. 35. No

  19. 37. No

  20. 39. Yes

  21. 41. No

  22. 43. No

  23. 45.

    1. One-to-one;

    2. f1(x)=x4

  24. 47.

    1. One-to-one;

    2. f1(x)=x+12

  25. 49.

    1. One-to-one;

    2. f1(x)=4x7

  26. 51.

    1. One-to-one;

    2. f1(x)=3x+4x1

  27. 53.

    1. One-to-one;

    2. f1(x)=x+1

  28. 55.

    1. Not one-to-one;

    2. does not have an inverse that is a function

  29. 57.

    1. One-to-one;

    2. f1(x)=x+25

  30. 59.

    1. One-to-one;

    2. f1(x)=x21, x0

  31. 61. 13x

  32. 63. x

  33. 65. x3+5

  34. 67.

  35. 69.

  36. 71.

  37. 73. f1(f(x))=f1(78x)=8778x=x; f(f1(x))=f(87x)=7887x=x

  38. 75. f1(f(x))=f1(1xx)=11xx+1=11x+xx=11x=1x1=x; f(f1(x))=f(1x+1)=11x+11x+1=x+11x+11x+1=xx+1x+11=x

  39. 77. f1(f(x))=f1(25x+1)=5(25x+1)52=2x+552=2x2=x; f(f1(x))=f(5x52)=25(5x52)+1=x1+1=x

  40. 79. f1(x)=15x+35; domain of f and f1: (, ); range of f and f1: (, );

  41. 81. f1(x)=2x; domain of f and f1: (, 0)(0, ); range of f and f1: (, 0)(0, );

  42. 83. f1(x)=3x+6; domain of f and f1: (, ); range of f and f1: (, );

  43. 85. f1(x)=3x+1x1; domain of f: (, 3)(3, ); range of f: (, 1)(1, ); domain of f1: (, 1)(1, ); range of f1: (, 3)(3, );

  44. 87. 5; a

  45. 89.

    1. $38, $16.40, $11;

    2. C1(x)=72x2; C1(x) represents the number of players in the group lesson, where x is the cost per player, in dollars;

    3. 1 player, 4 players, 8 players

  46. 91.

    1. 2010: $40.86 billion; 2013: $60.6 billion;

    2. H1(x)=x27.76.58; H1(x) represents the number of years after 2008, where x is the e-commerce holiday season sales, in billions of dollars.

  47. 93. (b), (d), (f), (h)

  48. 94. (a), (c), (e), (g)

  49. 95. (a)

  50. 96. (d)

  51. 97. (f)

  52. 98. (a), (b), (c), (d)

  53. 99. f(x)=x23, for inputs x0; f1(x)=x+3, for inputs x3

  54. 101. Answers may vary; f(x)=3/x, f(x)=1x, f(x)=x

Exercise Set 5.2

  1. 1. 54.5982

  2. 3. 0.0856

  3. 5. (f)

  4. 7. (e)

  5. 9. (a)

  6. 11.

  7. 13.

  8. 15.

  9. 17.

  10. 19.

  11. 21.

  12. 23.

  13. 25.

  14. 27. Shift the graph of y=2x left 1 unit.

  15. 29. Shift the graph of y=2x down 3 units.

  16. 31. Shift the graph of y=2x left 1 unit, reflect it across the y-axis, and shift it up 2 units.

  17. 33. Reflect the graph of y=3x across the y-axis and then across the x-axis and then shift it up 4 units.

  18. 35. Shift the graph of y=(32)x right 1 unit.

  19. 37. Shift the graph of y=2x left 3 units and then down 5 units.

  20. 39. Shift the graph of y=2x right 1 unit, stretch it vertically, and shift it up 1 unit.

  21. 41. Shrink the graph of y=ex horizontally.

  22. 43. Reflect the graph of y=ex across the x-axis, shift it up 1 unit, and shrink it vertically.

  23. 45. Shift the graph of y=ex left 1 unit and then reflect it across the y-axis.

  24. 47. Reflect the graph of y=ex across the y-axis, then across the x-axis, then shift it up 1 unit, and then stretch it vertically.

  25. 49.

  26. 51.

    1. A(t)=82, 000(1.01125)4t;

    2. $82,000; $89,677.22; $102,561.54; $128,278.90

  27. 53. $4930.86

  28. 55. $3247.30

  29. 57. $153,610.15

  30. 59. $76,305.59

  31. 61. $26,086.69

  32. 63. 1998: 322,420 vehicles; 2010: 938,297 vehicles; 2018: 1,912,580 vehicles

  33. 65. 2011: $234 million; 2015: $5844 million, or $5.844 billion

  34. 67. 2005: 3 million users; 2009: 17 million users; 2012: 54 million users

  35. 69. 2020: 101,234 centenarians; 2050: 414,387 centenarians

  36. 71. 1982: $48 billion; 1995: $109 billion; 2010: $284 billion

  37. 73. $6982; $5935; $5044; $3098; $1903

  38. 75. About 63%

  39. 77. 31 −22i

  40. 78. 1212i

  41. 79. (12, 0), (7, 0);12, 7

  42. 80. (1, 0); 1

  43. 81. (−1, 0), (0, 0), (1, 0); −1, 0, 1

  44. 82. (−4, 0), (0, 0), (3, 0); −4, 0, 3

  45. 83. −8, 0, 2

  46. 84. 5±976

  47. 85. π7; 7080

Visualizing the Graph

  1. J

  2. F

  3. H

  4. B

  5. E

  6. A

  7. C

  8. I

  9. D

  10. G

Exercise Set 5.3

  1. 1.

  2. 3.

  3. 5.

  4. 7.

  5. 9. 4

  6. 11. 3

  7. 13. −3

  8. 15. −2

  9. 17. 0

  10. 19. 1

  11. 21. 4

  12. 23. 14

  13. 25. −7

  14. 27. 12

  15. 29. 34

  16. 31. 0

  17. 33. 12

  18. 35. log10 1000=3, or log1000=3

  19. 37. log8 2=13

  20. 39. loge t=3, or  ln t=3

  21. 41. loge 7.3891=2, or ln 7.3891=2

  22. 43. logp 3=k

  23. 45. 51=5

  24. 47. 102=0.01

  25. 49. e3.4012=30

  26. 51. ax=M

  27. 53. ax=T3

  28. 55. 0.4771

  29. 57. 2.7259

  30. 59. −0.2441

  31. 61. Does not exist

  32. 63. 0.6931

  33. 65. 6.6962

  34. 67. Does not exist

  35. 69. 3.3219

  36. 71. −0.2614

  37. 73. 0.7384

  38. 75. 2.2619

  39. 77. 0.5880

  40. 79.

  41. 81.

  42. 83. Shift the graph of y=log2 x left 3 units. Domain: (3, ); vertical asymptote: x=3;

  43. 85. Shift the graph of y=log3 x down 1 unit. Domain: (0, ); vertical asymptote: x=0;

  44. 87. Stretch the graph of y= ln x vertically. Domain: (0, ); vertical asymptote: x=0;

  45. 89. Reflect the graph of y=ln  x across the x-axis and shift it up 2 units. Domain: (0, ); vertical asymptote: x=0;

  46. 91. Shift the graph of log x right 1 unit, shrink it vertically, and shift it down 2 units.

  47. 93.

  48. 95.

    1. 2.5 ft/sec;

    2. 2.8 ft/sec;

    3. 2.0 ft/sec;

    4. 2.4 ft/sec;

    5. 2.2 ft/sec;

    6. 2.5 ft/sec;

    7. 2.3 ft/sec;

    8. 3.1 ft/sec

  49. 97.

    1. 7.7;

    2. 9.5;

    3. 6.6;

    4. 7.6;

    5. 8.0;

    6. 7.9;

    7. 5.1;

    8. 9.3

  50. 99.

    1. 107;

    2. 4.0×106;

    3. 6.3×104;

    4. 1.6×105

  51. 101.

    1. 140 decibels;

    2. 115 decibels;

    3. 40 decibels;

    4. 65 decibels;

    5. 120 decibels;

    6. 194 decibels

  52. 102. m=310; y-intercept: (0, 75)

  53. 103. m=0; y-intercept: (0, 6)

  54. 104. Slope is not defined; no y-intercept

  55. 105. −280

  56. 106. −4

  57. 107. f(x)=x37x

  58. 108. f(x)=x3x2+16x16

  59. 109. 3

  60. 111. (0, )

  61. 113. (, 0)(0, )

  62. 115. (52, 2)

  63. 117. (d)

  64. 119. (b)

Mid-Chapter Mixed Review: Chapter 5

  1. 1. False

  2. 2. True

  3. 3. False

  4. 4. Yes; f1(x)=2x

  5. 5. No

  6. 6. Yes; f1(x)=5x+2

  7. 7. (f1f)(x)=f1(x5)=(x5)2+5=x5+5=x; (f°f1)(x)=f(x2+5)=(x2+5)5=x2=x

  8. 8. f1(x)=x23; domain of f : (, ), range of f  1: (, ); domain of f1: (, ), range of f1: (, )

  9. 9. (d)

  10. 10. (h)

  11. 11. (c)

  12. 12. (g)

  13. 13. (b)

  14. 14. (f)

  15. 15. (e)

  16. 16. (a)

  17. 17. $4185.57

  18. 18. 0

  19. 19. 45

  20. 20. −2

  21. 21. 2

  22. 22. 0

  23. 23. −4

  24. 24. 0

  25. 25. 3

  26. 26. 14

  27. 27. 1

  28. 28.  ln 0.0025=6

  29. 29. 10r=T

  30. 30. 2.7268

  31. 31. 2.0115

  32. 32. For an even function f, f(x)=f(x), so we have f(x)=f(x) but xx (for x0). Thus, f is not one-to-one and hence it does not have an inverse.

  33. 33. The most interest will be earned in the eighth year, because the principal is greatest during that year.

  34. 34. In f(x)=x3, the variable x is the base. The range of f is (, ). In g(x)=3x, the variable x is the exponent. The range of g is (0, ). The graph of f does not have an asymptote. The graph of g has an asymptote y=0.

  35. 35. If logb<0, then 0<b<1.

Exercise Set 5.4

  1. 1. log3 81+log3 27=4+3=7

  2. 3. log5 5+log5 125=1+3=4

  3. 5. logt 8+logt Y

  4. 7.  ln x+ln y

  5. 9. 3logb t

  6. 11. 8 log y

  7. 13. 6 logc K

  8. 15. 13 ln 4

  9. 17. logt Mlogt 8

  10. 19. log xlogy

  11. 21.  ln r ln s

  12. 23. loga 6+loga x+5loga y+4loga z

  13. 25. 2logb p+5logb q4logb m9

  14. 27. ln 2ln 33 ln xln y

  15. 29. 32logr+12logt

  16. 31. 3loga x52loga p4loga q

  17. 33. 2loga m+3loga n3454loga b

  18. 35. loga 150

  19. 37. log 100=2

  20. 39. logm3n

  21. 41. logax5/2y4, or loga y4x5/2

  22. 43. ln x

  23. 45. ln (x2)

  24. 47. logx7x2

  25. 49. ln x(x225)3

  26. 51. ln 211/5x9y8

  27. 53. −0.74

  28. 55. 1.991

  29. 57. 0.356

  30. 59. 4.827

  31. 61. −1.792

  32. 63. 0.099

  33. 65. 3

  34. 67. |x4|

  35. 69. 4x

  36. 71. w

  37. 73. 8t

  38. 75. 12

  39. 77. Quartic

  40. 78. Exponential

  41. 79. Linear (constant)

  42. 80. Exponential

  43. 81. Rational

  44. 82. Logarithmic

  45. 83. Cubic

  46. 84. Rational

  47. 85. Linear

  48. 86. Quadratic

  49. 87. 4

  50. 89. loga(x3y3)

  51. 91. 12loga(xy)12loga(x+y)

  52. 93. 7

  53. 95. True

  54. 97. True

  55. 99. True

  56. 101. −2

  57. 103. 3

  58. 105. exy=ab

  59. 107. loga(x+x255xx25xx25)=loga55(xx25)=loga(xx25)

Exercise Set 5.5

  1. 1. 4

  2. 3. 32

  3. 5. 5.044

  4. 7. 52

  5. 9. 3, 12

  6. 11. 0.959

  7. 13. 0

  8. 15. 0

  9. 17. 6.908

  10. 19. 84.191

  11. 21. −1.710

  12. 23. 2.844

  13. 25. −1.567, 1.567

  14. 27. 1.869

  15. 29. −1.518, 1.518

  16. 31. 625

  17. 33. 0.0001

  18. 35. e

  19. 37. 13

  20. 39. 223

  21. 41. 10

  22. 43. 4

  23. 45. 163

  24. 47. 2

  25. 49. 25

  26. 51. 5

  27. 53. 218

  28. 55. 87

  29. 57. 6

  30. 59. 6.192

  31. 61. 0

  32. 63.

    1. (0, −6);

    2. x=0;

    3. minimum: −6 when x=0

  33. 64.

    1. (3, 1);

    2. x=3;

    3. maximum: 1 when x=3

  34. 65.

    1. (−1, −5);

    2. x=1;

    3. maximum: −5 when x=1

  35. 66.

    1. (2, 4);

    2. x=2;

    3. minimum: 4 when x=2

  36. 67. ln 22, or 0.347

  37. 69. 1, e4 or 1, 54.598

  38. 71. 13, 27

  39. 73. 1, e2 or 1, 7.389

  40. 75. 0, ln 2ln 5 or 0, 0.431

  41. 77. e2, e2 or 0.135, 7.389

  42. 79. 74

  43. 81. a=23b

Exercise Set 5.6

  1. 1.

    1. P(t)=6.18e0.0214t, where t is the number of years after 2012 and P is in millions;

    2. 7.0 million;

    3. about 12.1 years after 2012;

    4. about 32.4 years

  2. 3.

    1. 0.90%;

    2. 1.63%;

    3. 20.9 years;

    4. 62.4 years;

    5. 0.18%;

    6. 29.9 years;

    7. 54.2 years;

    8. 0.46%;

    9. 2.64%;

    10. 177.7 years

  3. 5. About 819 years after 2013

  4. 7.

    1. P(t)=10, 000e0.054t;

    2. $10,554.85; $11,140.48; $13,099.64; $17,160.07;

    3. about 12.8 years

  5. 9. About 12,320 years

  6. 11.

    1. 22.4% per minute;

    2. 3.1% per year;

    3. 60.3 days;

    4. 10.7 years;

    5. 2.4% per year;

    6. 1.0% per year;

    7. 0.0029% per year

  7. 13.

    1. k0.0069, M(t)=72.2e0.0069t; 

    2. 2015: 49.4%; 2018: 48.4%;

    3. in 2046

  8. 15.

    1. k0.0536, C(t)=1.85e0.0536t;

    2. 7.07 million barrels of oil per day;

    3. 12.9 years;

    4. 36.4 years after 1980

  9. 17.

    1. 167;

    2. 500; 1758; 3007; 3449; 3495;

    3. as t, N(t)3500; the number approaches 3500 but never actually reaches it.

  10. 19. 46.7°F

  11. 21. 59.6°F

  12. 23. Multiplication principle for inequalities

  13. 24. Product rule

  14. 25. Principle of zero products

  15. 26. Principle of square roots

  16. 27. Power rule

  17. 28. Multiplication principle for equations

  18. 29. $166.16

  19. 31. $19,609.67

  20. 33. t=LR[ ln  (1iRV) ]

  21. 35. Linear

Review Exercises: Chapter 5

  1. 1. True

  2. 2. False

  3. 3. False

  4. 4. True

  5. 5. False

  6. 6. True

  7. 7. {(2.7, 1.3), (3, 8), (3, 5), (3, 6), (5, 7)}

  8. 8.

    1. x=2y+3;

    2. x=3y2+2y1;

    3. 0.8y35.4x2=3y

  9. 9. No

  10. 10. No

  11. 11. Yes

  12. 12. Yes

  13. 13.

    1. Yes;

    2. f1(x)=x+23

  14. 14.

    1. Yes;

    2. f1(x)=x+2x1

  15. 15.

    1. Yes;

    2. f1(x)=x2+6, x0

  16. 16.

    1. Yes;

    2. f1(x)=x+83

  17. 17.

    1. No

  18. 18.

    1. Yes;

    2. f1(x)=ln x

  19. 19. f1(f(x))=f1(6x5)=6x5+56=6x6=x; f(f1(x))=f(x+56)=6(x+56)5=x+55=x

  20. 20. f1(f(x))=f1(x+1x)=1x+1x1=1x+1xx=11x=x; f(f1(x))=f(1x1)=1x1+11x1=1+x1x11x1=xx1x11=x

  21. 21. f1(x)=2x5; domain of f and f1: (, ); range of f and f1: (, );

  22. 22. f1(x)=2x3x1; domain of f: (, 2)(2, ); range of f: (, 1)(1, ); domain of f1: (, 1)(1, ); range of f1: (, 2)(2, );

  23. 23. 657

  24. 24. a

  25. 25.

  26. 26.

  27. 27.

  28. 28.

  29. 29.

  30. 30.

  31. 31. (c)

  32. 32. (a)

  33. 33. (b)

  34. 34. (f)

  35. 35. (e)

  36. 36. (d)

  37. 37. 3

  38. 38. 5

  39. 39. 1

  40. 40. 0

  41. 41. 14

  42. 42. 12

  43. 43. 0

  44. 44. 1

  45. 45. 13

  46. 46. −2

  47. 47. 42=x

  48. 48. ak=Q

  49. 49. log4164=3

  50. 50. ln 80=x, or loge 80=x

  51. 51. 1.0414

  52. 52. −0.6308

  53. 53. 1.0986

  54. 54. −3.6119

  55. 55. Does not exist

  56. 56. Does not exist

  57. 57. 1.9746

  58. 58. 0.5283

  59. 59. logbx3zy4

  60. 60.  ln (x24)

  61. 61. 14 ln w+12 ln r

  62. 62. 23logM13logN

  63. 63. 0.477

  64. 64. 1.699

  65. 65. −0.699

  66. 66. 0.233

  67. 67. 5k

  68. 68. −6t

  69. 69. 16

  70. 70. 15

  71. 71. 4.382

  72. 72. 2

  73. 73. 12

  74. 74. 5

  75. 75. 4

  76. 76. 9

  77. 77. 1

  78. 78. 3.912

  79. 79.

    1. A(t)=30, 000(1.0105)4t;

    2. $30,000; $38,547.20; $49,529.56, $63,640.87

  80. 80. 2005: 59.8 GW; 2010: 189.9 GW; 2016: 760.1 Gw

  81. 81. 15.4 years

  82. 82. 2.7%

  83. 83. About 2623 years

  84. 84. 5.6

  85. 85. 6.3

  86. 86. 30 decibels

  87. 87.

    1. 2.2 ft/sec;

    2. 8,553,143

  88. 88.

    1. k0.1392;

    2. S(t)=0.035e0.1392t, where t is the number of years after 1940 and S is in billions of dollars;

    3. 1970: $2.279 billion; 2000: $148.353 billion; 2015: $1197.023 billion, or about $1.197 trillion;

    4. in 2019

  89. 89.

    1. P(t)=15.2e0.0167t, where t is the number of years after 2013 and P is in millions;

    2. 2017: 16.3 million; 2020: 17.1 million;

    3. about 10 years after 2013;

    4. 41.5 years

  90. 90. D

  91. 91. A

  92. 92. D

  93. 93. B

  94. 94. 164, 64

  95. 95. 1

  96. 96. 16

  97. 97. Measure the atmospheric pressure P at the top of the building. Substitute that value in the equation P=14.7e0.00005a, and solve for the height, or altitude, a of the top of the building. Also measure the atmospheric pressure at the base of the building and solve for the altitude of the base. Then subtract to find the height of the building.

  98. 98. Reflect the graph of f(x)=ln x across the line y=x to obtain the graph of h(x)=ex. Then shift this graph right 2 units to obtain the graph of g(x)=ex2.

  99. 99. The inverse of a function f(x) is written f1(x), whereas [f(x)]1 means 1f(x).

  100. 100. loga ab3(loga a)(logab3). If the first step had been correct, then the second step would be as well. The correct procedure follows: loga ab3=loga a+logab3=1+3loga b.

Test: Chapter 5

  1. [5.1] {(5, 2), (3, 4), (1, 0), (3, 6)}

  2. [5.1] No

  3. [5.1] Yes

  4. [5.1]

    1. Yes;

    2. f1(x)=x13

  5. [5.1]

    1. Yes;

    2. f1(x)=1x

  6. [5.1]

    1. Yes;

    2. f1(x)=2x1+x

  7. [5.1]

    1. No

  8. [5.1] f1(f(x))=f1(4x+3)=3(4x+3)4=4x4=x; f(f1(x))=f(3x4)=4(3x4)+3=3+x+3=x

  9. [5.1] f1(x)=4x+1x; domain of f: (, 4)(4, ); range of f: (, 0)(0, ); domain of f1: (, 0)(0, ); range of f1: (, 4)(4, );

  10. [5.2]

  11. [5.3]

  12. [5.2]

  13. [5.3]

  14. [5.3] −5

  15. [5.3] 1

  16. [5.3] 0

  17. [5.3] 15

  18. [5.3] x=e4

  19. [5.3] x=log3 5.4

  20. [5.3] 2.7726

  21. [5.3] −0.5331

  22. [5.3] 1.2851

  23. [5.4] logax2zy

  24. [5.4] 25 ln x+15 ln y

  25. [5.4] 0.656

  26. [5.4] −4t

  27. [5.5] 12

  28. [5.5] 1

  29. [5.5] 1

  30. [5.5] 4.174

  31. [5.3] 6.6

  32. [5.6] 0.0154

  33. [5.6]

    1. 4.5%;

    2. P(t)=1000e0.045t;

    3. $1433.33;

    4. 15.4 years

  34. [5.2] C

  35. [5.5] 278

Chapter 6

Exercise Set 6.1

  1. 1. sinϕ=1517, cosϕ=817, tanϕ=158, cscϕ=1715, secϕ=178, cotϕ=815

  2. 3. sinα=32, cosα=12, tanα=3, cscα=233, secα=2, cotα=33

  3. 5. sinϕ=27537, or 2737185; cosϕ=14537, or 1437185;tanϕ=2714; cscϕ=53727; secϕ=53714; cotϕ=1427

  4. 7. cscα=35, or 355; secα=32; cotα=25, or 255

  5. 9. cosθ=725, tanθ=247, cscθ=2524, secθ=257, cotθ=724

  6. 11. sinϕ=255, cosϕ=55, cscϕ=52, secϕ=5, cotϕ=12

  7. 13. sinθ=23, cosθ=53, tanθ=255, secθ=355, cotθ=52

  8. 15. sinβ=255, tanβ=2, cscβ=52, secβ=5, cotβ=12

  9. 17. 22

  10. 19. 2

  11. 21. 33

  12. 23. 12

  13. 25. 1

  14. 27. 2

  15. 29. 22.6 ft

  16. 31. 9.72°

  17. 33. 35.01°

  18. 35. 3.03°

  19. 37. 49.65°

  20. 39. 0.25°

  21. 41. 5.01°

  22. 43. 17°36

  23. 45. 83°130

  24. 47. 11°45

  25. 49. 47°4936

  26. 51. 0°54

  27. 53. 39°27

  28. 55. 0.6293

  29. 57. 0.0737

  30. 59. 1.2765

  31. 61. 0.7621

  32. 63. 0.9336

  33. 65. 12.4288

  34. 67. 1.0000

  35. 69. 1.7032

  36. 71. 30.8°

  37. 73. 12.5°

  38. 75. 64.4°

  39. 77. 46.5°

  40. 79. 25.2°

  41. 81. 38.6°

  42. 83. 45°

  43. 85. 60°

  44. 87. 45°

  45. 89. 60°

  46. 91. 30°

  47. 93. cos 20°=sin 70°=1sec 20°

  48. 95. tan 52°=cot 38°=1cot 52°

  49. 97. sin 25°0.4226, cos 25°0.9063, tan 25°0.4663, csc 25°2.3662, sec 25°1.1034, cot 25°2.1445

  50. 99. sin 18°49550.3228, cos 18°49550.9465, tan 18°49550.3411, csc 18°49553.0979, sec 18°49551.0565, cot 18°49552.9321

  51. 101. sin 8°=q, cos 8°=p, tan 8°=1r, csc 8°=1q, sec 8°=1p, cot 8°=r

  52. 102.

  53. 103.

  54. 104.

  55. 105.

  56. 106. 9.21

  57. 107. 4

  58. 108. 10197

  59. 109. 343

  60. 111. 0.6534

  61. 113. Let h=the height of the triangle. Then Area=12bh, where sinθ=ha, or h=a sinθ, so Area=12ab sinθ.

Exercise Set 6.2

  1. 1. F=60°, d=3,  f5.2

  2. 3. A=22.7°, a52.7, c136.6

  3. 5. P=47°38, n34.4, p25.4

  4. 7. B=2°17, b0.39, c9.74

  5. 9. A77.2°, B12.8°, a439

  6. 11. B=42.42°, a35.7, b32.6

  7. 13. B=55°, a28.0, c48.8

  8. 15. A62.4°, B27.6°, a3.56

  9. 17. Approximately 34°

  10. 19. About 13.9°

  11. 21. 154 in., or 12 ft 10 in.

  12. 23. About 10.4°

  13. 25. About 424 ft

  14. 27. About 92.9 cm

  15. 29. About 45 ft

  16. 31. Radius: 9.15 in.; length: 73.20 in.; width: 54.90 in.

  17. 33. 17.9 ft

  18. 35. About 8 km

  19. 37. About 19.5 mi

  20. 39. About 24 km

  21. 40. 310, or about 9.487

  22. 41. 102, or about 14.142

  23. 42. ln t=4

  24. 43. 103=0.001

  25. 45. 3.3

Exercise Set 6.3

  1. 1. III

  2. 3. III

  3. 5. I

  4. 7. III

  5. 9. II

  6. 11. II

  7. 13. 434°, 794°, 286°, 646°

  8. 15. 475.3°, 835.3°, 244.7°, 604.7°

  9. 17. 180°, 540°, 540°, 900°

  10. 19. 72.89°, 162.89°

  11. 21. 77°5646, 167°5646

  12. 23. 44.8°, 134.8°

  13. 25. sinβ=513, cosβ=1213, tanβ=512, cscβ=135, secβ=1312, cotβ=125

  14. 27. sinα=49797; cosα=99797; tanα=49; cscα=974; secα=979; cotα=94

  15. 29. sinϕ=277, cosϕ=217, tanϕ=233, cscϕ=72, secϕ=213, cotϕ=32

  16. 31. sinθ=21313, cosθ=31313, tanθ=23

  17. 33. sinθ=54141, cosθ=44141, tanθ=54

  18. 35. cosθ=223, tanθ=24, cscθ=3, secθ=324, cotθ=22

  19. 37. sinθ=55, cosθ=255, tanθ=12, cscθ=5, secθ=52

  20. 39. sinϕ=45, tanϕ=43, cscϕ=54, secϕ=53, cotϕ=34

  21. 41. 30°; 32

  22. 43. 45°; 1

  23. 45. 0

  24. 47. 45°; 22

  25. 49. 30°; 2

  26. 51. 30°; 3

  27. 53. 30°; 33

  28. 55. Not defined

  29. 57. 1

  30. 59. 60°; 3

  31. 61. 45°; 22

  32. 63. 45°; 2

  33. 65. 1

  34. 67. 0

  35. 69. 0

  36. 71. 0

  37. 73. Positive: cos, sec; negative: sin, csc, tan, cot

  38. 75. Positive: tan, cot; negative: sin, csc, cos, sec

  39. 77. Positive: sin, csc; negative: cos, sec, tan, cot

  40. 79. Positive: all

  41. 81. sin 319°=0.6561, cos 319°=0.7547, tan 319°=0.8693, csc 319°1.5242, sec 319°1.3250, cot 319°1.1504

  42. 83. sin 115°=0.9063, cos 115°=0.4226, tan 115°=2.1445, csc 115°1.1034, sec 115°2.3663, cot 115°0.4663

  43. 85. 1.1585

  44. 87. 1.4910

  45. 89. 0.8771

  46. 91. 0.4352

  47. 93. 0.9563

  48. 95. 2.9238

  49. 97. 275.4°

  50. 99. 200.1°

  51. 101. 288.1°

  52. 103. 72.6°

  53. 105. East: about 130 km; south: 75 km

  54. 107. About 223 km

  55. 109.

  56. 110.

  57. 111. Domain: { x|x2 }; range: { y|y1 }

  58. 112. Domain: { x|x32 and x5 }; range: all real numbers

  59. 113. 12

  60. 114. 2, 3

  61. 115. (12, 0)

  62. 116. (2, 0), (3, 0)

  63. 117. About 70 ft

Mid-Chapter Mixed Review: Chapter 6

  1. 1. True

  2. 2. True

  3. 3. True

  4. 4. S=47.5°, s59.9, q54.9

  5. 5. A27.8°, B62.2°, b27.2

  6. 6. 285°, 645°; 435°, 1155°

  7. 7. 574°30, 1294°30; 145°30, 505°30

  8. 8. 71.8°; 161.8°

  9. 9. 2°4450; 92°4450

  10. 10. sin 155°=0.4226, cos 155°=0.9063, tan 155°=0.4663, csc 155°=2.3663, sec 155°=1.1034, cot 155°=2.1445

  11. 11. sinα=513, cosα=1213, tanα=512, cscα=135, secα=1312, cotα=125

  12. 12. sinθ=15, or 55; cosθ=25, or 255; tanθ=12; cscθ=5; secθ=52 

  13. 13. sinα=779; tanα=772; cscα=977, or 97777; secα=92; cotα=277, or 27777

  14. 14. 42.1472°

  15. 15. 51°1048

  16. 16. sin 81°0.9877, cos 81°0.1564, tan 81°6.3131, csc 81°1.0125, sec 81°6.3939, cot 81°0.1584

  17. 17. 67.5°

  18. 18. About 290 mi

  19. 19. 33

  20. 20. 22

  21. 21. 3

  22. 22. 2

  23. 23. 22

  24. 24. 2

  25. 25. 1

  26. 26. 0

  27. 27. 32

  28. 28. 1

  29. 29. 3

  30. 30. 1

  31. 31. 12

  32. 32. 2

  33. 33. 32

  34. 34. Not defined

  35. 35. 2

  36. 36. Not defined

  37. 37. 1

  38. 38. 22

  39. 39. 0.7683

  40. 40. 1.5557

  41. 41. 0.4245

  42. 42. 0.1817

  43. 43. 1.0403

  44. 44. 1.3127

  45. 45. 0.6441

  46. 46. 0.0480

  47. 47. Given points P and Q on the terminal side of an angle θ, the reference triangles determined by them are similar. Thus corresponding sides are proportional and the trigonometric ratios are the same. See the specific example on p. 424.

  48. 48. If f and g are reciprocal functions, then f (θ)=1g (θ). If f and g are cofunctions, then f (θ)=g (90°θ).

  49. 49. Sine: (0, 1); cosine: (0, 1); tangent: (0, )

  50. 50. Since sin θ=y/r and cos θ=x/r and r>0 for all angles θ, the domain of the sine function and the cosine function is the set of all angles θ. However, tanθ=y/x and x=0 for all angles that are odd multiples of 90°. Thus the domain of the tangent function must be restricted to avoid division by 0.

Exercise Set 6.4

  1. 1.

  2. 3.

  3. 5. M: 2π3, 4π3; N: 3π2, π2; P: 5π4, 3π4; Q: 11π6, π6

  4. 7.

  5. 9. 5π12

  6. 11. 10π9

  7. 13. 214.6π180, or 1073π900

  8. 15. π

  9. 17. 12.5π180, or 5π72

  10. 19. 17π9

  11. 21. 4.19

  12. 23. 1.05

  13. 25. 2.06

  14. 27. 0.02

  15. 29. 6.02

  16. 31. 1.66

  17. 33. 135°

  18. 35. 1440°

  19. 37. 57.30°

  20. 39. 134.47°

  21. 41. 225°

  22. 43. 5156.62°

  23. 45. 51.43°

  24. 47. 0°=0 radians, 30°=π6, 45°=π4, 60°=π3, 90°=π2, 135°=3π4, 180°=π, 225°=5π4, 270°=3π2, 315°=7π4, 360°=2π

  25. 49. 9π4, 7π4

  26. 51. 19π6, 5π6

  27. 53. 4π3, 8π3

  28. 55. Complement: π6; supplement: 2π3

  29. 57. Complement: π8; supplement: 5π8

  30. 59. Complement: 5π12; supplement: 11π12

  31. 61. 2.29

  32. 63. 5.50 in.

  33. 65. 1.1; 63°

  34. 67. 3.2 yd

  35. 69. 3489

  36. 71. 3150 cmmin

  37. 73. 0.92 mph

  38. 75. 1047 mph

  39. 77. 18,812 revolutions/hr

  40. 79. About 202

  41. 81. 1.676 radians/sec

  42. 82. One-to-one

  43. 83. Cosine of θ

  44. 84. Exponential function

  45. 85. Horizontal asymptote

  46. 86. Odd function

  47. 87. Natural

  48. 88. Horizontal line; inverse

  49. 89. Logarithm

  50. 91. 111.7 km; 69.8 mi

  51. 93.

    1. 5°3730;

    2. 19°4115

  52. 95. 1.46 nautical miles

Exercise Set 6.5

  1. 1.

    1. (34, 74);

    2. (34, 74);

    3. (34, 74)

  2. 3.

    1. (25, 215);

    2. (25, 215);

    3. (25, 215)

  3. 5. (22, 22)

  4. 7. 0

  5. 9. 3

  6. 11. 0

  7. 13. 32

  8. 15. Not defined

  9. 17. 32

  10. 19. 22

  11. 21. 0

  12. 23. 0

  13. 25. 0.4816

  14. 27. 1.3065

  15. 29. 2.1599

  16. 31. 1

  17. 33. 1.1747

  18. 35. 1

  19. 37. 0.7071

  20. 39. 0

  21. 41. 0.8391

  22. 43.

    1. same as (b);

    2. the same

  23. 45.

    1. See Exercise 43(a);

    2. same as (b);

    3. the same

  24. 47.

    1. same as (b);

    2. the same

  25. 49.

    1. same as (b);

    2. the same

  26. 51. Even: cosine, secant; odd: sine, tangent, cosecant, cotangent

  27. 53. Positive: I, III; negative: II, IV

  28. 55. Positive: I, IV; negative: II, III

  29. 57.

    Stretch the graph of f vertically, then shift it down 3 units.

  30. 58.

    Shift the graph of f to the right 2 units.

  31. 59.

    Shift the graph of f to the right 4 units, shrink it vertically, then shift it up 1 unit.

  32. 60.

    Reflect the graph of f across the x-axis.

  33. 61. y=(x2)31

  34. 62. y=14x+3

  35. 63. cos x

  36. 65. sin x

  37. 67. sin x

  38. 69. cosx

  39. 71. sinx

  40. 73.

    1. π2+2kπ, k an integer;

    2. π+2kπ, k an integer;

    3. kπ, k an integer

  41. 75. [ π2+2kπ, π2+2kπ ], k an integer

  42. 77. { x|xπ2+kπ, k an integer }

  43. 79.

  44. 81.

  45. 83.

    1. OPAODB;

      Thus, APOA=BDOB

      sinθcosθ=BD1

      tanθ=BD

    2. OPAODB;

      ODOP=OBOA

      OD1=1cosθ

      OD=secθ

    3. OAPECO;

      OEPO=COAP

      OE1=1sinθ

      OE=cscθ

    4. OAPECO

      CEAO=COAP

      CEcosθ=1sinθ

      CE=cosθsinθ

      CE=cotθ

Visualizing the Graph

  1. J

  2. H

  3. E

  4. F

  5. B

  6. D

  7. G

  8. A

  9. C

  10. I

Exercise Set 6.6

  1. 1. Amplitude: 1; period: 2π; phase shift: 0

  2. 3. Amplitude: 3; period: 2π; phase shift: 0

  3. 5. Amplitude: 12; period: 2π; phase shift: 0

  4. 7. Amplitude: 1; period: π; phase shift: 0

  5. 9. Amplitude: 2; period: 4π; phase shift: 0

  6. 11. Amplitude: 1; period: 4π; phase shift: π

  7. 13. Amplitude: 12; period: 2π; phase shift: π2

  8. 15. Amplitude: 3; period: 2π; phase shift: π

  9. 17. Amplitude: 13; period: 2π; phase shift: 0

  10. 19. Amplitude: 1; period: 2π; phase shift: 0

  11. 21. Amplitude: 2; period: 4π; phase shift: π

  12. 23. Amplitude: 12; period: π; phase shift: π4

  13. 25. Amplitude: 3; period: 2; phase shift: 3π

  14. 27. Amplitude: 12; period: 1; phase shift: 0

  15. 29. Amplitude: 1; period: 4π; phase shift: π

  16. 31. Amplitude: 1; period: 1; phase shift: 0

  17. 33. Amplitude: 14; period: 2; phase shift: 4π

  18. 35. (b)

  19. 37. (h)

  20. 39. (a)

  21. 41. (f)

  22. 43. y=12 cos x+1

  23. 45. y=cos (x+π2)2

  24. 47.

  25. 49.

  26. 51.

  27. 53.

  28. 55.

  29. 57.

  30. 59.

  31. 61.

  32. 63. Rational

  33. 64. Logarithmic

  34. 65. Quartic

  35. 66. Linear

  36. 67. Trigonometric

  37. 68. Exponential

  38. 69. Linear

  39. 70. Trigonometric

  40. 71. Cubic

  41. 72. Exponential

  42. 73. Maximum: 8; minimum: 4

  43. 75.

  44. 77.

  45. 79.

  46. 81.

  47. 83.

  48. 85. Amplitude: 3000; period: 90; phase shift: 10

  49. 87. 4 in.

ReviewExercises: Chapter 6

  1. 1. False

  2. 2. False

  3. 3. True

  4. 4. True

  5. 5. False

  6. 6. False

  7. 7. sinθ=37373, cosθ=87373, tanθ=38, cscθ=733, secθ=738, cotθ=83

  8. 8. cosβ=310, tanβ=913, cscβ=109191, secβ=103, cotβ=39191

  9. 9. 22

  10. 10. 33

  11. 11. 22

  12. 12. 12

  13. 13. Not defined

  14. 14. 3

  15. 15. 233

  16. 16. 1

  17. 17. 22°1612

  18. 18. 47.56°

  19. 19. 0.4452

  20. 20. 1.1315

  21. 21. 0.9498

  22. 22. 0.9092

  23. 23. 1.5282

  24. 24. 0.2778

  25. 25. 205.3°

  26. 26. 47.2°

  27. 27. 60°

  28. 28. 60°

  29. 29. 45°

  30. 30. 30°

  31. 31. sin30.9°0.5135, cos30.9°0.8581, tan30.9°0.5985, csc30.9°1.9474, sec30.9°1.1654, cot30.9°1.6709

  32. 32. b4.5, A58.1°, B31.9°

  33. 33. A=38.83°, b37.9, c48.6

  34. 34. 1748 m

  35. 35. 14 ft

  36. 36. II

  37. 37. I

  38. 38. IV

  39. 39. 425°, 295°

  40. 40. π3, 5π3

  41. 41. Complement: 76.6°; supplement: 166.6°

  42. 42. Complement: π3; supplement: 5π6

  43. 43. sinθ=31313, cosθ=21313, tanθ=32, cscθ=133, secθ=132, cotθ=23

  44. 44. sinθ=23, cosθ=53, cotθ=52, secθ=355, cscθ=32

  45. 45. About 1743 mi

  46. 46.

  47. 47. 121150 π, 2.53

  48. 48. π6, 0.52

  49. 49. 270°

  50. 50. 171.89°

  51. 51. 257.83°

  52. 52. 1980°

  53. 53. 7π4, or 5.5 cm

  54. 54. 2.25, 129°

  55. 55. About 37.7 ft/min

  56. 56. 497,829 radians/hr

  57. 57. (35, 45), (35, 45), (35, 45)

  58. 58. 1

  59. 59. 1

  60. 60. 32

  61. 61. 12

  62. 62. 33

  63. 63. 1

  64. 64. 0.9056

  65. 65. 0.9218

  66. 66. Not defined

  67. 67. 4.3813

  68. 68. 6.1685

  69. 69. 0.8090

  70. 70.

  71. 71. Period of sin, cos, sec, csc: 2π; period of tan, cot: π

  72. 72.

    FunctionDomainRange
    Sine(, )[ 1, 1 ]
    Cosine(, )[ 1, 1 ]
    TangentAll real numbers except (π/2)+kπ, where k is an integer(, )
  73. 73.

    FunctionIIIIIIIV
    Sine++
    Cosine++
    Tangent++
  74. 74. Amplitude: 1; period: 2π; phase shift: π2

  75. 75. Amplitude: 12; period: π; phase shift: π4

  76. 76. (d)

  77. 77. (a)

  78. 78. (c)

  79. 79. (b)

  80. 80.

  81. 81.

  82. 82. C

  83. 83. B

  84. 84. B

  85. 85. Domain: (, ); range: [ 3, 3 ]; period 4π

  86. 86. y2=2 sin(x+π2)2

  87. 87. The domain consists of the intervals (π2+2kπ, π2+2kπ), k an integer.

  88. 88. cosx=0.7890, tanx=0.7787, cotx=1.2842, secx=1.2674, cscx=1.6276

  89. 89. Both degrees and radians are units of angle measure. Degree notation has been in use since Babylonian times. A degree is defined to be 1360 of one complete positive revolution. Radians are defined in terms of intercepted arc length on a circle, with one radian being the measure of the angle for which the arc length equals the radius. There are 2π radians in one complete revolution.

  90. 90. For a point at a distance r from the center of rotation with a fixed angular speed k, the linear speed is given by v=rk, or r=1k v. Thus the length of the radius is directly proportional to the linear speed.

  91. 91. The numbers for which the value of the cosine function is 0 are not in the domain of the tangent function.

  92. 92. The denominator B in the phase shift C/B serves to shrink or stretch the translation of C units by the same factor as the horizontal shrinking or stretching of the period. Thus the translation must be done after the horizontal shrinking or stretching. For example, consider y=sin(2xπ). The phase shift of this function is π/2. First translate the graph of y=sinx to the right π/2 units and then shrink it horizontally by a factor of 2. Compare this graph with the one formed by first shrinking the graph of y=sinx horizontally by a factor of 2 and then translating it to the right π/2 units. The graphs differ; the second one is correct.

  93. 93. The constants B, C, and D translate the graphs, and the constants A and B stretch or shrink the graphs. See the chart on p. 470 for a complete description of the effect of each constant.

  94. 94. We see from the formula θ=s/r that the tire with the 15-in. diameter will rotate through a larger angle than the tire with the 16-in. diameter. Thus the car with the 15-in. tires will probably need new tires first.

Test: Chapter 6

  1. 1. [6.1] sinθ=465, or 46565; cosθ=765, or 76565; tanθ=47; cscθ=654; secθ=657; cotθ=74

  2. 2. [6.3] 32

  3. 3. [6.3] 1

  4. 4. [6.4] 1

  5. 5. [6.4] 2

  6. 6. [6.1] 38.47°

  7. 7. [6.3] 0.2419

  8. 8. [6.3] 0.2079

  9. 9. [6.4] 5.7588

  10. 10. [6.4] 0.7827

  11. 11. [6.1] 30°

  12. 12. [6.1] sin 61.6°0.8796; cos 61.6°0.4756; tan 61.6°1.8495; csc 61.6°1.1369; sec 61.6°2.1026; cot 61.6°0.5407

  13. 13. [6.2] B=54.1°, a32.6, c55.7

  14. 14. [6.3] Answers may vary; 472°, 248°

  15. 15. [6.4] π6

  16. 16. [6.3] cosθ=541, or 54141; tanθ=45; cscθ=414; secθ=415; cotθ=54

  17. 17. [6.4] 7π6

  18. 18. [6.4] 135°

  19. 19. [6.4] 16π316.755 cm

  20. 20. [6.6] 1

  21. 21. [6.6] 2π

  22. 22. [6.6] π2

  23. 23. [6.6] (c)

  24. 24. [6.2] 401 ft

  25. 25. [6.2] About 272 mi

  26. 26. [6.4] 18π56.55 m/min

  27. 27. [6.6]

  28. 28. [6.6] C

  29. 29. [6.5] { x|π2+2kπ<x<π2+2kπ, k an integer }

Chapter 7

Exercise Set 7.1

  1. sin2 xcos2 x

  2. sin y+cos y

  3. 12 sin ϕ cos ϕ

  4. sin3 x+csc3 x

  5. cos x (sin x+cos x)

  6. (sin x+cos x)(sin xcos x)

  7. (2 cos x+3)(cos x1)

  8. (sin x+3)(sin2 x3 sin x+9)

  9. tan x

  10. sin x+1

  11. 2 tan t+13 tan t+1

  12. 1

  13. 5 cot ϕsin ϕ+cos ϕ

  14. 1+2 sin s+2 cos ssin2 scos2 s

  15. 5(sin θ3)3

  16. sin x cos x

  17. cos α(sin αcos α)

  18. 1sin y

  19. sin x cos xcos x

  20. 2 cot y2

  21. cos xsin x cos x

  22. 1+sin ycos y

  23. cos θ=a2x2a, tan θ=xa2x2

  24. sin θ=x29x, cos θ=3x

  25. sin θ tan θ

  26. 624

  27. 3+113, or 23

  28. 6+24

  29. sin 59°0.8572

  30. cos 24°0.9135

  31. tan 52°1.2799

  32. tan (μ + v)=sin (μ + v)cos (μ + v)=sin μ cos v + cos μ sin vcos μ cos v  sin μ sin v=sin μ cos v + cos μ sin vcos μ cos v  sin μ sin v1cos μ cos v1cos μ cos v=sin μcos μ + sin vcos v1  sin μ sin vcos μ cos v =tan μ + tan v1  tan μ tan v

  33. 0

  34. 725

  35. 24+217063

  36. 1.5789

  37. 0.7071

  38. 2 sin α cos β

  39. cos u

  40. All real numbers

  41. No solution

  42. 1.9417

  43. 1.6645

  44. 0°; the lines are parallel

  45. 3π4, or 135°

  46. 4.57°

  47. cos (x+h)cos xh     =cos x cos hsin x sin hcos xh     =cos x cos hcos xhsin x sin hh     =cos x (cos h1h)sin x (sin hh)

  48. Let x=π5. Then sin 5xx=sin ππ/5=0sin 5. Answers may vary.

  49. Let α=π4. Then cos (2α)=cosπ2=0, but 2 cos α=2 cosπ4=2. Answers may vary.

  50. Let x=π6. Then cos 6xcos x=cos πcosπ6=13/26. Answers may vary.

  51. 6339+230.0645

  52. 168.7°

  53. cos 2θ=cos2 θsin2 θ, or 12 sin2 θ, or 2 cos2 θ1

  54. tan (x+π4)=tan x+tanπ41tan x tanπ4=1+tan x1tan x

  55. sin (α+β)+sin (αβ)=sin α cos β+ cos α sin β+sin α cos βcos α sin β=2 sin α cos β

Exercise Set 7.2

  1. 1.

    1. tan3π101.3763, csc3π101.2361, sec3π101.7013, cot3π100.7266;

    2. sinπ50.5878, cosπ50.8090, tanπ50.7266, cscπ51.7013, secπ51.2361, cotπ51.3763

  2. 3.

    1. cos θ=223, tan θ=24, csc θ=3, sec θ=324, cot θ=22;

    2. sin (π2θ)=223, cos (π2θ)=13,tan (π2θ)=22, csc (π2θ)=324,sec (π2θ)=3, cot (π2θ)=24 ;

    3. sin (θπ2)=223, cos (θπ2)=13, tan (θπ2)=22, csc (θπ2)=324, sec (θπ2)=3, cot (θπ2)=24

  3. 5. sec (x+π2)=csc x

  4. 7. tan (xπ2)=cot x

  5. 9. sin 2θ=2425, cos 2θ=725, tan 2θ=247; II

  6. 11. sin 2θ=2425, cos 2θ=725, tan 2θ=247; II

  7. 13. sin 2θ=120169, cos 2θ=119169, tan 2θ=120119; IV

  8. 15. cos 4x=18 sin2 x cos2 x, or cos4 x6 sin2 x cos2 x+sin4 x, or 8 cos4 x8 cos2 x+1

  9. 17. 2+32

  10. 19. 2+22

  11. 21. 2+3

  12. 23. 0.6421

  13. 25. 0.1735

  14. 27. cos x

  15. 29. 1

  16. 31. cos 2x

  17. 33. 8

  18. 35. sin2 x

  19. 36. 1

  20. 37. cos2 x

  21. 38. csc2 x

  22. 39. 1

  23. 40. sec2 x

  24. 41. cos2 x

  25. 42. tan2 x

  26. 43. (a), (e)

  27. 44. (b), (c), (f)

  28. 45. (d)

  29. 46. (e)

  30. 47.

    sin 15°=sin (45°30°)=sin 45° cos 30°cos 45° sin 30°=22322212=6240.2588;

    sin 15° =sin (30°2)=1cos 30°2=1(3/2)2=23212=234=232 0.2588;

    the identities give the same value.

  31. 49. cos x (1+cot x)

  32. 51. cot2 y

  33. 53. sin θ=1517, cos θ=817, tan θ=158

  34. 55.

    1. 9.80359 m/sec2;

    2. 9.80180 m/sec2;

    3. g=9.78049(1+0.005264 sin2 ϕ+0.000024 sin4 ϕ)

Exercise Set 7.3

  1. 1.

  2. 3.

  3. 5.

  4. 7.

  5. 9.

  6. 11.

  7. 13.

  8. 15.

  9. 17.

  10. 19.

  11. 21.

  12. 23.

  13. 25.

  14. 27.

  15. 29.

  16. 31. Sine sum and difference identities:

    sin (x+y)=sin x cos y+cos x sin y,sin (xy)=sin x cos ycos x sin y.

    Add the sum and difference identities:

    sin (x+y)+sin (xy)=2 sin x cos y12 [ sin (x+y)+sin (xy) ]=sin x cos y.(3)

    Subtract the difference identity from the sum identity:

    sin (x+y)sin (xy)=2 cos x sin y12 [ sin (x+y)sin (xy) ]=cos x sin y.(4)
  17. 33. sin 3θsin 5θ=2 cos8θ2 sin2θ2=2 cos 4θ sin θ

  18. 35. sin 8θ+sin 5θ=2 sin13θ2 cos3θ2

  19. 37. sin 7u sin 5u=12(cos 2ucos 12u)

  20. 39. 7 cos θ sin 7θ=72 [ sin 8θsin (6θ) ]=72(sin 8θ+sin 6θ)

  21. 41. cos 55° sin 25°=12(sin 80°sin 30°)=12sin 80°14

  22. 43.

  23. 45.

  24. 47.

  25. 49.

  26. 51.

    1. (a), (d)

    2. (b) yes;

    3. (c) f1(x)=x+23

  27. 52.

    1. (a), (d)

    2. (b) yes;

    3. (c) f1(x)=x13

  28. 53.

    1. (a), (d)

    2. (b) yes;

    3. (c) f1(x)=x+4

  29. 54.

    1. (a), (d)

    2. (b) yes;

    3. (c) f1(x)=x22, x  0

  30. 55. 0, 52

  31. 56. 4, 73

  32. 57. ±2, ±3i

  33. 58. 5±26

  34. 59. 27

  35. 60. 9

  36. 61.

  37. 63. log (cos xsin x)+log (cos x+sin x)=log [ (cos xsin x)(cos x+sin x) ]= log (cos2 xsin2 x)=log cos 2x

  38. 65. 1ωC(tan θ+tan ϕ)=1ωC(sin θcos θ+sin ϕcos ϕ)=1ωC(sin θ cos ϕ+sin ϕ cos θcos θ cos ϕ)=cos θ cos ϕωC sin (θ+ϕ)

Mid-Chapter Mixed Review: Chapter 7

  1. 1. True

  2. 2. False

  3. 3. True

  4. 4. True

  5. 5. J

  6. 6. H

  7. 7. D

  8. 8. I

  9. 9. C

  10. 10. E

  11. 11. A

  12. 12. G

  13. 13. F

  14. 14. B

  15. 15. cos xsin x

  16. 16. 1

  17. 17. 2 cos x+1

  18. 18. cos x

  19. 19. 1sin 2x

  20. 20. cos x

  21. 21. sec x+1sin x

  22. 22. cos 12°0.9781

  23. 23. 222

  24. 24. 6+24

  25. 25. 119120

  26. 26. 2425; quadrant IV

  27. 27.

  28. 28.

  29. 29.

  30. 30.

  31. 31. The expression tan (x+450°) can be simplified using the sine and cosine sum formulas but cannot be simplified using the tangent sum formula because although sin 450° and cos 450° are both defined, tan 450° is not defined.

  32. 32. Each has amplitude 1 and is periodic. The period of y1=sin x is 2π, of y2=sin 2x is π, and of y3=sin (x/2) is 4π.

  33. 33.

    1. xkπ/2, k odd; the tangent function is not defined for these values of x;

    2. sin x=0 for x=kπ, k an integer; cos x=1 for x=kπ, k an odd integer; thus the restriction xkπ, k an integer applies.

  34. 34. In the first line, cos 4x2 cos 2x. In the second line, cos 2xcos2 x+sin2 x. If the second line had been correct, the third line would have been correct as well.

Exercise Set 7.4

  1. 1. π3, 60°

  2. 3. π4, 45°

  3. 5. π4, 45°

  4. 7. 0, 0°

  5. 9. π6, 30°

  6. 11. π6, 30°

  7. 13. 5π6, 150°

  8. 15. π6, 30°

  9. 17. π2, 90°

  10. 19. π3, 60°

  11. 21. 0.3520, 20.2°

  12. 23. 1.2917, 74.0°

  13. 25. 2.9463, 168.8°

  14. 27. 0.1600, 9.2°

  15. 29. 0.8289, 47.5°

  16. 31. 0.9600, 55.0°

  17. 33. sin1: [ 1, 1 ]; cos1: [ 1, 1 ]; tan1: (, )

  18. 35. θ=sin1(2000d)

  19. 37. 0.3

  20. 39. π4

  21. 41. π5

  22. 43. π3

  23. 45. 12

  24. 47. 1

  25. 49. π3

  26. 51. 1133

  27. 53. π6

  28. 55. aa2+9

  29. 57. q2p2p

  30. 59. p3

  31. 61. 32

  32. 63. 210

  33. 65. xy+(1x2)(1y2)

  34. 67. 0.9861

  35. 69. Periodic

  36. 70. Radian measure

  37. 71. Similar

  38. 72. Angle of depression

  39. 73. Angular speed

  40. 74. Supplementary

  41. 75. Amplitude

  42. 76. Circular

  43. 77.

  44. 79.

  45. 81. θ=tan1 y+hxtan1yx ; 38.7°

Visualizing the Graph

  1. D

  2. G

  3. C

  4. H

  5. I

  6. A

  7. E

  8. J

  9. F

  10. B

Exercise Set 7.5

  1. 1. π6+2kπ, 11π6+2kπ, or 30°+k360°, 330°+k360°

  2. 3. 2π3+kπ, or 120°+k180°

  3. 5. π6+2kπ, 5π6+2kπ, or 30°+k360°, 150°+k360°

  4. 7. 3π4+2kπ, 5π4+2kπ, or 135°+k360°, 225°+k360°

  5. 9. 1.7120, 4.5712, or 98.09°, 261.91°

  6. 11. 4π3, 5π3, or 240°, 300°

  7. 13. π4, 3π4, 5π4, 7π4, or 45°, 135°, 225°, 315°

  8. 15. π6, 5π6, 3π2, or 30°, 150°, 270°

  9. 17. π6, π2, 3π2, 11π6, or 30°, 90°, 270°, 330°

  10. 19. 1.9106, 2π3, 4π3, 4.3726, or 109.47°, 120°, 240°, 250.53°

  11. 21. 0, π4, 3π4, π, 5π4, 7π4, or 0°, 45°, 135°, 180°, 225°, 315°

  12. 23. 2.4402, 3.8430, or 139.81°, 220.19°

  13. 25. 0.6496, 2.9557, 3.7912, 6.0973, or 37.22°, 169.35°, 217.22°, 349.35°

  14. 27. 0, π, 7π6, 11π6

  15. 29. 0, π

  16. 31. 0, π

  17. 33. 3π4, 7π4

  18. 35. 2π3, 4π3, 3π2

  19. 37. π4, 3π4, 5π4, 7π4

  20. 39. π12, 5π12

  21. 41. 0.967, 1.853, 4.108, 4.994

  22. 43. 2π3, 4π3

  23. 45.

    1. April: 59°, October: 63°

    2. March

  24. 47. November: $72,853; March: $101,853

  25. 49. B=35°, b140.7, c245.4

  26. 50. R15.5°, T74.5°, t13.7

  27. 51. 36

  28. 52. 14

  29. 53. π3, 2π3, 4π3, 5π3

  30. 55. π3, 4π3

  31. 57. 0

  32. 59. e3π/2+2kπ, where k (an integer)1

  33. 61. 1.24 days, 6.76 days

  34. 63. 16.5°N

  35. 65. 1

  36. 67. 526, or about 0.1923

Review Exercises: Chapter 7

  1. 1. True

  2. 2. True

  3. 3. True

  4. 4. False

  5. 5. False

  6. 6. csc2 x

  7. 7. 1

  8. 8. tan2 ycot2 y

  9. 9. (cos2 x+1)2cos2 x

  10. 10. csc x (sec xcsc x)

  11. 11. (3 sin y+5)(sin y4)

  12. 12. (10cos u)(100+10 cos u+cos2 u)

  13. 13. 1

  14. 14. 12sec x

  15. 15. 3 tan xsin xcos x

  16. 16. 3 cos y+3 sin y+2cos2 ysin2 y

  17. 17. 1

  18. 18. 14cot x

  19. 19. sin x+cos x

  20. 20. cos x1sin x

  21. 21. cos xsin x

  22. 22. 3 sec θ

  23. 23. cos x cos3π2sin x sin3π2

  24. 24. tan 45°tan 30°1+tan 45° tan 30°

  25. 25. cos (27°16°), or cos 11°

  26. 26. 624

  27. 27. 23

  28. 28. 0.3745

  29. 29. sin x

  30. 30. sin x

  31. 31. cos x

  32. 32.

    1. sin α=45, tan α=43, cot α=34, sec α=53,csc α=54 ;

    2. sin (π2α)=35,cos (π2α)=45,tan (π2α)=34, cot (π2α)=43,sec (π2α)=54, csc (π2α)=53 ;

    3. sin (α+π2)=35, cos (α+π2)=45, tan (α+π2)=34, cot (α+π2)=43, sec (α+π2)=54, csc (α+π2)=53

  33. 33. sec x

  34. 34. tan 2θ=247, cos 2θ=725, sin 2θ=2425; I

  35. 35. 222

  36. 36. sin 2β=0.4261, cosβ2=0.9940,cos 4β=0.6369

  37. 37. cos x

  38. 38. 1

  39. 39. sin 2x

  40. 40. tan 2x

  41. 41.

  42. 42.

  43. 43.

  44. 44.

  45. 45. 3 cos 2θ sin θ=32 (sin 3θsin θ)

  46. 46. sin θsin 4θ=2 cos5θ2 sin3θ2

  47. 47. π6, 30°

  48. 48. π6, 30°

  49. 49. π4, 45°

  50. 50. 0, 0°

  51. 51. 1.7920, 102.7°

  52. 52. 0.3976, 22.8°

  53. 53. 12

  54. 54. 33

  55. 55. π7

  56. 56. 22

  57. 57. 3b2+9

  58. 58. 725

  59. 59. 3π4+2kπ, 5π4+2kπ, or135°+k360°, 225°+k360°

  60. 60. π3+kπ, or 60°+k180°

  61. 61. π6, 5π6, 7π6, 11π6

  62. 62. π4, π2, 3π4, 5π4,3π2, 7π4

  63. 63. 2π3, π, 4π3

  64. 64. 0, π

  65. 65. π4, 3π4, 5π4, 7π4

  66. 66. 0, π2, π, 3π2

  67. 67. 7π12, 23π12

  68. 68. 0.864, 2.972, 4.006, 6.114

  69. 69. B

  70. 70. A

  71. 71. C

  72. 72. 108.4°

  73. 73. cos (u+v)=cos u cos vsin u sin v =cos u cos vcos (π2u) cos (π2v)

  74. 74. cos2 x

  75. 75. sin θ=12+65 ;cos θ=1265 ; tan θ=5+26526

  76. 76. Let x=22. Then tan1 220.6155 and sin1 22cos1 22=π4π4=1.

  77. 77. π2, 3π2

  78. 78. The ranges of the inverse trigonometric functions are restricted in order that they might be functions.

  79. 79. Yes; first note that 7π/6=π/6+π. Since π/6+kπ includes both odd and even multiples of π, it is equivalent to π/6+2kπ and 7π/6+2kπ.

  80. 80. The graphs have different domains and ranges. The graph of y=sin1 x is the reflection of the portion of the graph of y=sin x for π/2xπ/2, across the line y=x.

  81. 81. A trigonometric equation that is an identity is true for all possible replacements of the variables. A trigonometric equation that is not true for all possible replacements is not an identity. The equation sin2 x+cos2 x=1 is an identity whereas sin2 x=1 is not.

  82. 82. The range of the arcsine function does not include 5π/6. It is [ π/2, π/2 ].

Test: Chapter 7

  1. [7.1] 2 cos x+1

  2. [7.1] 1

  3. [7.1] cos θ1+sin θ

  4. [7.1] 2 cos θ

  5. [7.1] 2+64

  6. [7.1] 333+3

  7. [7.1] 120169

  8. [7.2] 53

  9. [7.2] 2425, II

  10. [7.2] 2+32

  11. [7.2] 0.9304

  12. [7.2] 3 sin 2x

  13. [7.3]

  14. [7.3]

  15. [7.3]

  16. [7.3]

  17. [7.4] cos 8αcos α=2 sin9α2 sin7α2

  18. [7.4] 4 sin β cos 3β=2 (sin 4βsin 2β)

  19. [7.4] 45°

  20. [7.4] π3

  21. [7.4] 2.3072

  22. [7.4] 32

  23. [7.4] 5x225

  24. [7.4] 0

  25. [7.5] π6, 5π6, 7π6, 11π6

  26. [7.5] 0, π4, 3π4, π

  27. [7.5] π2, 11π6

  28. [7.4] D

  29. [7.2] 1112

Chapter 8

Exercise Set 8.1

  1. 1. A=121°, a33, c14

  2. 3. B57.4°, C86.1°, c40, or B122.6°, C20.9°, c14

  3. 5. B44°24, A74°26, a33.3

  4. 7. A=110.36°, a5 mi, b3.4 mi

  5. 9. B83.78°, A12.44°, a12.30 yd

  6. 11. B14.7°, C135.0°, c28.04 cm

  7. 13. No solution

  8. 15. B=125.27°, b302 m, c138 m

  9. 17. 8.2 ft2

  10. 19. 12 yd2

  11. 21. 596.98 ft2

  12. 23. About 3894 ft

  13. 25. 787 ft2

  14. 27. About 51 ft

  15. 29. From A: about 35 mi; from B: about 66 mi

  16. 31. About 102 mi

  17. 33. 1.348, 77.2°

  18. 34. No angle

  19. 35. 18.24°

  20. 36. 125.06°

  21. 37. 22

  22. 38. 32

  23. 39. 12

  24. 40. 32

  25. 41. Use the formula for the area of a triangle and the law of sines.

    K=12bc sin Aandb=c sin Bsin C,

    so K=c2 sin A sin B2 sin C.

    K=12ab sin Candb=a sin Bsin A,

    so K=a2 sin B sin C2 sin A.

    K=12bc sin Aandc=b sin Csin B,

    so K=b2 sin A sin C2 sin B.

  26. 43.

    For the quadrilateral ABCD, we have

    Area=12bd sin θ+12ac sin θ+12ad(sin 180°θ)+ 12bc sin (180°θ)  Note:  sin θ=sin (180°θ).=12(bd+ac+ad+bc) sin θ=12(a+b)(c+d) sin θ=12d1d2 sin θ,

    where d1=a+b and d2=c+d.

  27. 45. 44.1 from wall 1 and 104.3 from wall 4

Exercise Set 8.2

  1. 1. a15, B24°, C126°

  2. 3. A36.18°, B43.53°, C100.29°

  3. 5. b75 m, A94°51, C12°29

  4. 7. A24.15°, B30.75°, C125.10°

  5. 9. No solution

  6. 11. A79.93°, B53.55°, C46.52°

  7. 13. c45.17 mi, A89.3°, B42.0°

  8. 15. a13.9 in., B36.127°, C90.417°

  9. 17. Law of sines; C=98°, a96.7, c101.9

  10. 19. Law of cosines; A73.71°, B51.75°, C54.54°

  11. 21. Cannot be solved

  12. 23. Law of cosines; A33.71°, B107.08°, C39.21°

  13. 25. 63 ft and 74 ft

  14. 27. 30.76 ft

  15. 29. About 1.5 mi

  16. 31. S112.5°, T27.2°, U40.3°

  17. 33. About 912 km

  18. 35.

    1. About 16 ft;

    2. about 122 ft2

  19. 37. About 4.7 cm

  20. 39. Quartic

  21. 40. Linear

  22. 41. Trigonometric

  23. 42. Exponential

  24. 43. Rational

  25. 44. Cubic

  26. 45. Exponential

  27. 46. Logarithmic

  28. 47. Trigonometric

  29. 48. Quadratic

  30. 49. About 9386 ft

  31. 51. A=12a2 sin θ; when θ=90°

Exercise Set 8.3

  1. 1. 5;

  2. 3. 1;

  3. 5. 17;

  4. 7. 3;

  5. 9. 33i; 32 (cos 7π4+i sin 7π4), or 32 (cos 315°+i sin 315°)

  6. 11. 4i; 4(cos π2+i sin π2),or 4(cos 90°+i sin 90°)

  7. 13. 2 (cos 7π4+i sin 7π4), or2 (cos 315°+i sin 315°)

  8. 15. 3(cos 3π2+i sin 3π2), or 3(cos 270°+i sin 270°)

  9. 17. 2(cos π6+i sin π6), or 2(cos 30°+i sin 30°)

  10. 19. 25(cos 0+i sin 0), or 25(cos 0°+i sin 0°)

  11. 21. 6(cos 5π4+i sin 5π4), or 6(cos 225°+i sin 225°)

  12. 23. 332+32i

  13. 25. 10i

  14. 27. 2+2i

  15. 29. 2i

  16. 31. 2262i

  17. 33. 4(cos 42°+i sin 42°)

  18. 35. 11.25(cos 56°+i sin 56°)

  19. 37. 4

  20. 39. i

  21. 41. 6+63i

  22. 43. 2i

  23. 45. 8(cos π+i sin π)

  24. 47. 8(cos 3π2+i sin 3π2)

  25. 49. 272+2732i

  26. 51. 4+4i

  27. 53. 1

  28. 55. 22+22i,2222i

  29. 57. 2(cos 157.5°+i sin 157.5°), 2(cos 337.5°+i sin 337.5°)

  30. 59. 32+12i,32+12i,i

  31. 61. 43 (cos 110°+i sin 110°), 43 (cos 230°+i sin 230°), 43 (cos 350°+i sin 350°)

  32. 63. 2, 2i, 2,2i;

  33. 65. cos 36°+i sin 36°, cos 108°+i sin 108°,1,cos 252°+i sin 252°,cos 324°+i sin 324°;

  34. 67. 810, 810(cos 36°+i sin 36°), 810(cos 72°+i sin 72°), 810(cos 108°+i sin 108°), 810(cos 144°+i sin 144°),810,810(cos 216°+i sin 216°), 810(cos 252°+i sin 252°),810(cos 288°+i sin 288°), 810(cos 324°+i sin 324°)

  35. 69. 32+12i, i,32+12i,3212i,i,3212i

  36. 71. 1,12+32i,1232i

  37. 73. cos 67.5°+i sin 67.5°, cos 157.5°+i sin 157.5°, cos 247.5°+i sin 247.5°, cos 337.5°+i sin 337.5°

  38. 75. 3+i, 2i,3+i,3i,2i, 3i

  39. 77. 15°

  40. 78. 540°

  41. 79. 11π6

  42. 80. 5π4

  43. 81. 32

  44. 82. 32

  45. 83. 22

  46. 84. 12

  47. 85. cos θi sin θ

  48. 87. z=a+bi, |z|=a2+b2; z¯=abi, |z¯|=a2+(b)2=a2+b2,  |z|=|z¯|

  49. 89. |(a+bi)2| = |a2b2+2abi|=(a2b2)2+4a2b2=a4+2a2b2+b4=a2+b2,|a+bi|2=(a2+b2)2=a2+b2

  50. 91.

Mid-Chapter Mixed Review: Chapter 8

  1. 1. True

  2. 2. True

  3. 3. False

  4. 4. True

  5. 5. B=63°, b9.4 in., c9.5 in.

  6. 6. No solution

  7. 7. A40.5°, B28.5°, C111.0°

  8. 8. B70.2°, C67.1°, c39.9 cm  or B109.8°, C27.5°, c20.0 cm

  9. 9. a370 yd, B16.6°, C15.4°

  10. 10. C45°, A107°, a37 ft, or C135°, A17°, a11 ft

  11. 11. About 446 in2

  12. 12.

    ;34
  13. 13.

    ; 1
  14. 14.

    ; 4
  15. 15.

    ;26
  16. 16. 2 (cos π3+i sin π3), or 2 (cos 60°+i sin 60°)

  17. 17. 2(cos 5π3+i sin 5π3), or 2(cos 300°+i sin 300°)

  18. 18. 5(cos π2+i sin π2), or 5(cos 90°+i sin 90°)

  19. 19. 22 (cos 5π4+i sin 5π4), or 22 (cos 225°+i sin 225°)

  20. 20. 22i

  21. 21. 63+6i

  22. 22. 5

  23. 23. 4i

  24. 24. 16(cos 45°+i sin 45°)

  25. 25. 9[ cos (π12)+i sin (π12) ]

  26. 26. 22 (cos 285°+i sin 285°)

  27. 27. 2 (cos 255°+i sin 255°)

  28. 28. 82 (cos 45°+i sin 45°)

  29. 29. 8+83i

  30. 30. 2(cos 120°+i sin 120°) and 2(cos 300°+i sin 300°), or 1+3i and 13i

  31. 31. 1(cos 60°+i sin 60°),1(cos 180°+i sin 180°), and 1(cos 300°+i sin 300°), or 12+32i,1, and 1232i

  32. 32. Using the law of cosines, it is necessary to solve the quadratic equation:

    (11.1)2=a2+(28.5)22a(28.5) cos 19°,or 0=a2[ 2(28.5) cos 19° ]a+[ (28.5)2(11.1)2 ].

    The law of sines requires less complicated computations.

  33. 33. A nonzero complex number has n different complex nth roots. Thus, 1 has three different complex cube roots, one of which is the real number 1. The other two roots are complex conjugates. Since the set of real numbers is a subset of the set of complex numbers, the real cube root of 1 is also a complex root of 1.

  34. 34. The law of sines involves two angles of a triangle and the sides opposite them. Three of these four values must be known in order to find the fourth. Given SAS, only two of these four values are known.

  35. 35. The law of sines involves two angles of a triangle and the sides opposite them. Three of these four values must be known in order to find the fourth. Thus we must know the measure of one angle in order to use the law of sines.

  36. 36. Trigonometric notation is not unique because there are infinitely many angles coterminal with a given angle. Standard notation is unique because any point has a unique ordered pair (a, b) associated with it.

  37. 37.

    x62x3+1=0(x31)2=0x31=0x3=1x=11/3

    This equation has three distinct solutions because there are three distinct cube roots of 1.

    x62x3=0x3(x32)=0x3=0or  x32=0x3=0or  x3=2x=0or  x=21/3

    This equation has four distinct solutions because 0 is one solution and the three distinct cube roots of 2 provide an additional three solutions.

        x62x=0x(x52)=0x=0orx52=0x=0orx5=2x=0orx=21/5

    This equation has six distinct solutions because 0 is one solution and the five fifth roots of 2 provide an additional five solutions.

Visualizing the Graph

  1. J

  2. C

  3. E

  4. H

  5. I

  6. A

  7. D

  8. G

  9. B

  10. F

Exercise Set 8.4

  1. 13.

    A:   (4, 30°), (4, 390°), (4, 210°); B:   (5, 300°), (5,60°), (5, 120°); C:   (2, 150°), (2, 510°), (2, 330°); D:   (3, 225°), (3,135°), (3, 45°); answers may vary
  2. 15. (3, 270°), (3,3π2)

  3. 17. (6, 300°), (6,5π3)

  4. 19. (8, 330°), (8,11π6)

  5. 21. (2, 225°), (2,5π4)

  6. 23. (2, 60°), (2,π3)

  7. 25. (5, 315°), (5,7π4)

  8. 27. (52,532)

  9. 29. (322,322)

  10. 31. (32,332)

  11. 33. (1, 3)

  12. 35. (3,1)

  13. 37. (33,3)

  14. 39. r(3 cos θ+4 sin θ)=5

  15. 41. r cos θ=5

  16. 43. r=6

  17. 45. r2 cos2 θ=25r sin θ

  18. 47. r2 sin2 θ5r cos θ25=0

  19. 49. r2=2r cos θ

  20. 51. x2+y2=25

  21. 53. y=2

  22. 55. y2=6x+9

  23. 57. x29x+y27y=0

  24. 59. x=5

  25. 61. y=3x

  26. 63.

  27. 65.

  28. 67.

  29. 69.

  30. 71. 12

  31. 72. 15

  32. 73.

  33. 74.

  34. 75.

  35. 76.

  36. 77. (d)

  37. 79. (g)

  38. 81. (j)

  39. 83. (b)

  40. 85. (e)

  41. 87. (k)

  42. 89. y2=4x+4

Exercise Set 8.5

  1. 1. Yes

  2. 3. No

  3. 5. Yes

  4. 7. No

  5. 9. No

  6. 11. Yes

  7. 13. 55 N, 55°

  8. 15. 929 N, 19°

  9. 17. 57.0, 38°

  10. 19. 18.4, 37°

  11. 21. 20.9, 58°

  12. 23. 68.3, 18°

  13. 25. 11 ft/sec, 63°

  14. 27. 726 lb, 47°

  15. 29. 60°

  16. 31. 70.7 east; 70.7 south

  17. 33. Horizontal: 215.17 mph forward; vertical: 65.78 mph up

  18. 35. Horizontal: 390 lb forward; vertical: 675.5 lb up

  19. 37. Northerly: 115 km/h; westerly: 164 km/h

  20. 39. Perpendicular: 90.6 lb; parallel: 42.3 lb

  21. 41. 48.1 lb

  22. 43. Natural

  23. 44. Half-angle

  24. 45. Linear speed

  25. 46. Cosine

  26. 47. Identity

  27. 48. Cotangent of θ

  28. 49. Coterminal

  29. 50. Sines

  30. 51. Horizontal line; inverse

  31. 52. Reference angle; acute

  32. 53.

    1. (4.950, 4.950);

    2. (0.950,1.978)

Exercise Set 8.6

  1. 1. 9, 5 ; 106

  2. 3. 3, 6 ; 35

  3. 5. 4, 0 ; 4

  4. 7. 37

  5. 9. 4,5

  6. 11. 257

  7. 13. 9, 9

  8. 15. 41,38

  9. 17. 26165

  10. 19. 1,1

  11. 21. 8, 14

  12. 23. 1

  13. 25. 34

  14. 27.

  15. 29.

  16. 31.

    1. w=u+v;

    2. v=wu

  17. 33. 513, 1213

  18. 35. 1101,10101

  19. 37. 117,417

  20. 39. w=4i+6j

  21. 41. s=2i+5j

  22. 43. 7i+5j

  23. 45.

    1. 3i+29j;

    2. 3, 29

  24. 47.

    1. 4i+16j;

    2. 4, 16

  25. 49. j, or 0, 1

  26. 51. 12i32j, or  12,32

  27. 53. 248°

  28. 55. 63°

  29. 57. 50°

  30. 59. |u|=3; θ=45°

  31. 61. 1; 120°

  32. 63. 144.2°

  33. 65. 14.0°

  34. 67. 101.3°

  35. 69.

  36. 71.

  37. 73. u= 1010i+31010j

  38. 75. 13 (21313i31313j)

  39. 77.

  40. 79. 174 nautical mi, S17°E

  41. 81. 60°

  42. 83. 500 lb on left, 866 lb on right

  43. 85. Cable: 224-lb tension; boom: 167-lb compression

  44. 87. 0, 4

  45. 88. 113, 52

  46. 89. cos θ=uv| u | | v |=0| u | | v |; cos θ=0 and θ=90°.

  47. 91. 35i45j,35i+45j

  48. 93. (5, 8)

Review Exercises: Chapter 8

  1. 1. True

  2. 2. False

  3. 3. False

  4. 4. False

  5. 5. False

  6. 6. True

  7. 7. A153°, B18°, C9°

  8. 8. A=118°, a37 in., c24 in.

  9. 9. B=14°50, a2523 m, c1827 m

  10. 10. No solution

  11. 11. 33 m2

  12. 12. 13.72 ft2

  13. 13. 63 ft2

  14. 14. 92°, 33°, 55°

  15. 15. 419 ft

  16. 16. About 650 km

  17. 17. 29;

  18. 18. 4;

  19. 19. 2;

  20. 20. 10;

  21. 21. 2 (cos π4+i sin π4), or 2(cos 45°+i sin 45°)

  22. 22. 4(cos 3π2+i sin 3π2), or 4(cos 270°+i sin 270°)

  23. 23. 10(cos 5π6+i sin 5π6), or 10(cos 150°+i sin 150°)

  24. 24. 34(cos 0+i sin 0),  or  34(cos 0°+i sin 0°)

  25. 25. 2+23i

  26. 26. 7

  27. 27. 52+532i

  28. 28. 3i

  29. 29. 1+3+(1+3)i

  30. 30. i

  31. 31. 2i

  32. 32. 33+3i

  33. 33. 8(cos 180°+i sin 180°)

  34. 34. 4(cos 7π+i sin 7π)

  35. 35. 8i

  36. 36. 1232i

  37. 37. 24(cos 3π8+i sin 3π8), 24(cos 11π8+i sin 11π8)

  38. 38. 63(cos 110°+i sin 110°), 63(cos 230°+i sin 230°), 63(cos 350°+i sin 350°)

  39. 39. 3, 3i, 3,, 3i

  40. 40. 1, cos 72°+i sin 72°, cos 144°+i sin 144°, cos 216°+i sin 216°, cos 288°+i sin 288°

  41. 41. cos 22.5°+i sin 22.5°, cos 112.5°+i sin 112.5°, cos 202.5°+i sin 202.5°, cos 292.5°+i sin 292.5°

  42. 42. 12+32i,1,1232i

  43. 43. A:   (5, 120°),  (5, 480°),  (5, 300°); B:   (3, 210°),  (3, 30°),  (3, 390°); C:  (4, 60°),  (4, 420°), (4, 240°);D:  (1, 300°), (1,60°), (1, 120°); answers may vary

  44. 44. (8, 135°), (8,3π4)

  45. 45. (5, 270°), (5,3π2)

  46. 46. (5.385, 111.8°), (5.385, 1.951)

  47. 47. (4.964, 147.8°), (4.964, 2.579)

  48. 48. (322,322)

  49. 49. (3, 33)

  50. 50. (1.93,0.52)

  51. 51. (1.86,1.35)

  52. 52. r(5 cos θ2 sin θ)=6

  53. 53. r sin θ=3

  54. 54. r=3

  55. 55. r2 sin2 θ4r cos θ16=0

  56. 56. x2+y2=36

  57. 57. x2+2y=1

  58. 58. y26x=9

  59. 59. x22x+y23y=0

  60. 60. (b)

  61. 61. (d)

  62. 62. (a)

  63. 63. (c)

  64. 64. 13.7, 71°

  65. 65. 98.7, 15°

  66. 66.

  67. 67.

  68. 68. 666.7 N, 36°

  69. 69. 29 km/h, 149°

  70. 70. 102.4 nautical mi, S43°E

  71. 71. 4, 3

  72. 72. 2,6

  73. 73. 61

  74. 74. 10,21

  75. 75. 14,64

  76. 76. 5+116

  77. 77. 14

  78. 78. 310,110

  79. 79. 9i+4j

  80. 80. 194.0°

  81. 81. 34; θ=211.0°

  82. 82. 111.8°

  83. 83. 85.1°

  84. 84. 34i55j

  85. 85. i12j

  86. 86. 52

  87. 87. 365+109

  88. 88. 5i+5j

  89. 89.

  90. 90.

  91. 91. 10(31010i1010j)

  92. 92. D

  93. 93. A

  94. 94. D

  95. 95. 3613i+1513j

  96. 96. 50.52°, 129.48°

  97. 97. A triangle has no solution when a sine value or a cosine value found is less than 1 or greater than 1. A triangle also has no solution if the sum of the angle measures calculated is greater than 180°. A triangle has only one solution if only one possible answer is found, or if one of the possible answers has an angle sum greater than 180°. A triangle has two solutions when two possible answers are found and neither results in an angle sum greater than 180°.

  98. 98. One example is the equation of a circle not centered at the origin. Often, in rectangular coordinates, we must complete the square in order to graph the circle.

  99. 99. Rectangular coordinates are unique because any point has a unique ordered pair (x, y) associated with it. Polar coordinates are not unique because there are infinitely many angles coterminal with a given angle and also because r can be positive or negative depending on the angle used.

  100. 100. Vectors QR and RQ have opposite directions, so they are not equivalent.

  101. 101. The terminal point of a unit vector in standard position is a point on the unit circle.

  102. 102. Answers may vary. For u=3i4j and w=2i4j, find v, where v=u+w.

Test: Chapter 8

  1. [8.1] A=83°, b14.7 ft, c12.4 ft

  2. [8.1] A73.9°, B70.1°, a8.2 m, or A34.1°, B109.9°,a4.8 m

  3. [8.2] A99.9°, B36.8°, C43.3°

  4. [8.1] About 43.6 cm2

  5. [8.1] About 77 m

  6. [8.5] About 930 km

  7. [8.3]

  8. [8.3] 13

  9. [8.3] 32(cos 315°+i sin 315°), or 32 (cos 7π4+i sin 7π4)

  10. [8.3] 14i

  11. [8.3] 16

  12. [8.4] 2(cos 120°+i sin 120°)

  13. [8.4] (12,32)

  14. [8.4] r=10

  15. [8.4]

  16. [8.5] Magnitude: 11.2; direction: 23.4°

  17. [8.6] 11i17j

  18. [8.6] 45i+35j

  19. [8.4] A

  20. [8.1] 28.9°, 151.1°

Chapter 9

Visualizing the Graph

  1. C

  2. G

  3. D

  4. J

  5. A

  6. F

  7. I

  8. B

  9. H

  10. E

Exercise Set 9.1

  1. 1. (c)

  2. 3. (f)

  3. 5. (b)

  4. 7. (−1, 3)

  5. 9. (−1, 1)

  6. 11. No solution

  7. 13. (−2, 4)

  8. 15. Infinitely many solutions; (x, x12) or (2y+1, y)

  9. 17. (5, 4)

  10. 19. (1, −3)

  11. 21. (2, −2)

  12. 23. No solution

  13. 25. (3911, 111)

  14. 27. (12, 34)

  15. 29. Infinitely many solutions; (x, 3x5) or (13y+53, y)

  16. 31. (1, 3); consistent, independent

  17. 33. (−4, −2); consistent, independent

  18. 35. Infinitely many solutions; (4y+2, y) or (x, 14x12); consistent, dependent

  19. 37. No solution; inconsistent, independent

  20. 39. (1, 1); consistent, independent

  21. 41. (−3, 0); consistent, independent

  22. 43. (10, 8); consistent, independent

  23. 45. True

  24. 47. False

  25. 49. True

  26. 51. Liposuction: 363,912 surgeries; breast augmentation: 313,327 surgeries

  27. 53. Boston: $1881; San Francisco: $3023

  28. 55. Wisconsin: 14,957 Amish; Ohio: 59,103 Amish

  29. 57. Standard: 76 packages; express: 44 packages

  30. 59. 4%: $6000; 5%: $9000

  31. 61. Embroidered floral scarves: 16; sheer chevron scarves: 23

  32. 63. 1.5 servings of spaghetti, 2 servings of lettuce

  33. 65. Boat: 20 km/h; stream: 3 km/h

  34. 67. 2 hr

  35. 69. (15, $200)

  36. 71. 140

  37. 73. 6000

  38. 75. 115,017 registered snowmobiles

  39. 76. About 22,960 adoptions

  40. 77. −2, 6

  41. 78. −1, 5

  42. 79. 15

  43. 80. 1, 3

  44. 81. City: 66 mi; highway: 248 mi

  45. 83. First train: 36 km/h; second train: 54 km/h

  46. 85. A=110, B=710

Exercise Set 9.2

  1. 1. (3, −2, 1)

  2. 3. (−3, 2, 1)

  3. 5. (2, 12, 2)

  4. 7. No solution

  5. 9. Infinitely many solutions; (11y+195, y, 9y+115)

  6. 11. (12, 23, 56)

  7. 13. (−1, 4, 3)

  8. 15. (1, −2, 4, −1)

  9. 17. Russian Federation: 80 medals; Ukraine: 25 medals; United States: 18 medals

  10. 19. In a restaurant: 78 meals; in a car: 34 meals; at home: 58 meals

  11. 21. Bacon: $142.4 million; Warhol: $105.4 million; Koons: $58.4 million

  12. 23. Dogs: 69.9 million; cats: 74.1 million; birds: 8.3 million

  13. 25. United States: $31.5 billion; Great Britain: $17.9 billion; Germany: $14.1 billion

  14. 27. 114 servings of beef, 1 baked potato, 34 serving of strawberries

  15. 29. 2%: $300; 3%: $800; 4%: $2400

  16. 31. Orange juice: $2.00; bagel: $2.50; coffee: $1.80

  17. 33.

    1. f(x)=340x274x+43;

    2. 2007: 33.625% 2014: 40.8%

  18. 35.

    1. f(x)=7x2+55x+291;

    2. 333,000 deportations

  19. 37. Perpendicular

  20. 38. The leading-term test

  21. 39. Vertical line

  22. 40. One-to-one function

  23. 41. Rational function

  24. 42. Inverse variation

  25. 43. Vertical asymptote

  26. 44. Horizontal asymptote

  27. 45. (1, 15, 12)

  28. 47. 180°

  29. 49. 3x+4y+2z=12

  30. 51. y=4x3+5x23x+1

  31. 53. Adults: 5; students: 1; children: 94

Exercise Set 9.3

  1. 1. 3×2

  2. 3. 1×4

  3. 5. 3×3

  4. 7. [ 217145 ]

  5. 9. [ 1231220480317 ]

  6. 11. 3x5y=1,x+4y=2

  7. 13. 2x+y4z=12,3x+5z=1,xy+z=2

  8. 15. (32, 52)

  9. 17. (6329, 11429)

  10. 19. (1, 52)

  11. 21. (0, 3)

  12. 23. No solution

  13. 25. Infinitely many solutions; (3y2, y)

  14. 27. (−1, 2, −2)

  15. 29. (32, 4, 3)

  16. 31. (−1, 6, 3)

  17. 33. Infinitely many solutions; (12z+12, 12z12, z)

  18. 35. Infinitely many solutions; (r2, 2r+3, r)

  19. 37. No solution

  20. 39. (1, −3, −2, −1)

  21. 41. 8%: $8000; 10%: $12,000; 12%: $10,000

  22. 43. 49¢: 160 stamps; 21¢: 40 stamps

  23. 45. Exponential

  24. 46. Linear

  25. 47. Rational

  26. 48. Quartic

  27. 49. Logarithmic

  28. 50. Cubic

  29. 51. Linear

  30. 52. Quadratic

  31. 53. y=3x2+52x152

  32. 55. [ 1501 ], [ 1001 ]

  33. 57. (43, 13, 1)

  34. 59. Infinitely many solutions; (1413z1, 313z2, z)

  35. 61. (−3, 3)

Exercise Set 9.4

  1. 1. x=3, y=5

  2. 3. x=1, y=1

  3. 5. [ 2762 ]

  4. 7. [ 1326 ]

  5. 9. [ 9933 ]

  6. 11. [ 111353 ]

  7. 13. [ 4324 ]

  8. 15. [ 17921 ]

  9. 17. [ 0000 ]

  10. 19. [ 1243 ]

  11. 21. [ 140]

  12. 23. [ 1028142606 ]

  13. 25. Not defined

  14. 27. [ 31630320645 ]

  15. 29.

    1. [ 402030 ];

    2. [ 442233 ];

    3. [ 844263 ]; the total amount of each type of produce ordered for both weeks

  16. 31.

    1. C=[ 1402731364 ], P=[ 18041124662 ], B=[ 50518220 ];

    2. [ 65050283071448 ]; the total nutritional value of a meal of 1 serving of chicken, 1 cup of potato salad, and 3 broccoli spears

  17. 33.

    1. [ 1.500.300.360.450.641.550.280.480.570.751.620.520.650.380.531.700.430.400.420.68 ];

    2. [ 65489357 ];

    3. [ 419.46105.81129.69115.89165.65 ];

    4. the total cost, in dollars, for each item for the day’s meals

  18. 35.

    1. [ 81561043 ];

    2. [ 42.53 ];

    3. [ 5994 ];

    4. the total cost, in dollars, of ingredients for each coffee shop

  19. 37.

    1. [ 7.504.806.25 ];

    2. PS=[ 113.80179.25 ]

  20. 39. [ 2315 ][ xy]=[ 76]

  21. 41. [ 112311253 ][ xyz]=[ 678]

  22. 43. [ 324215 ][ xyz]=[ 1713]

  23. 45. [ 4112121111432357 ][ wxyz]=[ 12019]

  24. 47.

    1. (12, 254);

    2. x=12;

    3. minimum: 254;

  25. 48.

    1. (54, 498);

    2. x=54;

    3. minimum: 498;

  26. 49.

    1. (32, 174);

    2. x=32;

    3. maximum: 174;

  27. 50.

    1. (23, 163);

    2. x=23;

    3. maximum: 163;

  28. 51. (A+B)(AB)=[ 2121 ]; A2B2=[ 0303 ]

  29. 53. (A+B)(AB)=[ 2121 ]=A2+BAABB2 =A2+BAABB2

Mid-Chapter Mixed Review: Chapter 9

  1. 1. False

  2. 2. True

  3. 3. True

  4. 4. False

  5. 5. (−3, 2)

  6. 9. No solution

  7. 7. (1, −2)

  8. 8. Infinitely many solutions; (x, x13) or (3y+1, y)

  9. 9. (13, 16, 43)

  10. 10. Under 10 lb: 60 packages; 10 lb up to 15 lb: 70 packages; 15 lb or more: 20 packages

  11. 11. (4, −3)

  12. 12. (−3, 2, −1)

  13. 13. [ 1561 ]

  14. 14. [ 5747 ]

  15. 15. [ 812044812164 ]

  16. 16. [ 016131 ]

  17. 17. [ 721618 ]

  18. 18. [ 24261213 ]

  19. 19. [ 2016101085 ]

  20. 20. Not defined

  21. 21. [ 213121342 ][ xyz]=[ 735]

  22. 22. When a variable is not alone on one side of an equation or when solving for a variable is difficult or produces an expression containing fractions, the elimination method is preferable to the substitution method.

  23. 23. Add a nonzero multiple of one equation to a nonzero multiple of the other equation, where the multiples are not opposites.

  24. 24. The last row of the matrix corresponds to the equation 0=0, which is true for all values of x, y, and z. Therefore, the equations are dependent.

  25. 25. No; for example, let A=[ 1111 ] and B=[ 1111 ]; then AB=[ 0000 ] and neither A nor B is [ 0000 ].

Exercise Set 9.5

  1. 1. Yes

  2. 3. No

  3. 5. [ 3253 ]

  4. 7. Does not exist

  5. 9. [ 25351545 ]

  6. 11. [ 381418183438141214 ]

  7. 13. Does not exist

  8. 15. [ 116102013 ]

  9. 17. [ 112111234 ]

  10. 19. Does not exist

  11. 21. [ 1238013100120001 ]

  12. 23. [ 0.250.251.250.250.51.251.7510.250.250.750.750.250.50.750.5 ]

  13. 25. (−23, 83)

  14. 27. (−1, 5, 1)

  15. 29. (2, −2)

  16. 31. (0, 2)

  17. 33. (3, −3, −2)

  18. 35. (−1, 0, 1)

  19. 37. (1, −1, 0, 1)

  20. 39. Wisconsin: 450 lb; Massachusetts: 210 lb

  21. 41. Topsoil: $239; mulch: $179; pea gravel: $222

  22. 43. −48

  23. 44. 194

  24. 45. 1±574

  25. 46. −3, −2

  26. 47. 4

  27. 48. 9

  28. 49. (x+2)(x1)(x4)

  29. 50. (x+5)(x+1)(x1)(x3)

  30. 51. A1 exists if and only if x0.A1=[ 1x ]

  31. 53. A1 exists if and only if xyz0.A1=[ 001z01y01x00 ]

Exercise Set 9.6

  1. 1. −14

  2. 3. −2

  3. 5. −11

  4. 7. x34x

  5. 9. M11=6, M32=9, M22=29

  6. 11. A11=6, A32=9, A22=29

  7. 13. −10

  8. 15. −10

  9. 17. M12=32, M44=7

  10. 19. A22=10, A34=1

  11. 21. 110

  12. 23. −109

  13. 25. x4+x25x

  14. 27. (252, 112)

  15. 29. (3, 1)

  16. 31. (12, 13)

  17. 33. (1, 1)

  18. 35. (32, 1314, 3314)

  19. 37. (3, −2, 1)

  20. 39. (1, 3, −2)

  21. 41. (12, 23, 56)

  22. 43. f1(x)=x23

  23. 44. Not one-to-one

  24. 45. Not one-to-one

  25. 46. f1(x)=(x1)3

  26. 47. 53i

  27. 48. 62i

  28. 49. 1010i

  29. 50. 925+1325i

  30. 51. 3, −2

  31. 53. 4

  32. 55. Answers may vary. | abba |

  33. 57. Answers may vary. | 2πr2πrhr |

Exercise Set 9.7

  1. 1. (f)

  2. 3. (h)

  3. 5. (g)

  4. 7. (b)

  5. 9.

  6. 11.

  7. 13.

  8. 15.

  9. 17.

  10. 19.

  11. 21.

  12. 23.

  13. 25.

  14. 27.

  15. 29.

  16. 31. (f)

  17. 33. (a)

  18. 35. (b)

  19. 37. yx+4,y3x

  20. 39. x<2,y>1

  21. 41. yx+3,yx+1,x0,y0

  22. 43.

  23. 45.

  24. 47.

  25. 49.

  26. 51.

  27. 53.

  28. 55.

  29. 57.

  30. 59.

  31. 61. Maximum: 179 when x=7 and y=0; minimum: 48 when x=0 and y=4

  32. 63. Maximum: 216 when x=0 and y=6; minimum: 0 when x=0 and y=0

  33. 65. Maximum number of miles is 480 when the truck uses 9 gal and the moped uses 3 gal.

  34. 67. Maximum profit of $54,800 is achieved when 80 acres of corn and 160 acres of soybeans are planted.

  35. 69. Minimum cost of $51913 is achieved by using 11113 sacks of soybean meal and 11113 sacks of oats.

  36. 71. Maximum income of $1575 is achieved when $10,000 is invested in corporate bonds and $30,000 is invested in municipal bonds.

  37. 73. Minimum cost of $460 thousand is achieved using 30P1’s and 10P2’s.

  38. 75. Maximum profit per week of $2210 is achieved when 5 silk organza dresses and 2 lace dresses are made.

  39. 77. Minimum weekly cost of $19.05 is achieved when 1.5 lb of meat and 3 lb of cheese are used.

  40. 79. Maximum total number of 800 is achieved when there are 550 of A and 250 of B.

  41. 81. {x|7x<2}, or [7, 2)

  42. 82. {x|x1 or x5}, or (, 1][5, )

  43. 83. {x|1x3}, or [−1, 3]

  44. 84. {x|3<x<2}, or (−3, −2)

  45. 85.

  46. 87.

  47. 89.

  48. 91. Maximum income of $19,000 is achieved by making 95 chairs and 0 sofas.

Exercise Set 9.8

  1. 1. 2x31x+2

  2. 3. 52x143x1

  3. 5. 2x+23x2+4x+1

  4. 7. 3(x+2)21x+2+1x1

  5. 9. 3x142x1

  6. 11. x2+ 1716x+1114(x+1)21716x3

  7. 13. 3x+5x2+24x1

  8. 15. 32x12x+2+10(x+2)2

  9. 17. 3x+1+22x1+3x+1

  10. 19. 1x3+3xx2+2x5

  11. 21. 53x+53x+1+4(x+1)2

  12. 23. 84x5+33x+2

  13. 25. 2x53x2+12x2

  14. 27. 1,±3i

  15. 28. 3,±i

  16. 29. 2, 1±52

  17. 30. 2, 3,±i

  18. 31. 3, 1±2

  19. 33. 12a2xx2+a2+ 14a2xa+14a2x+a

  20. 35. 325(ln x+2)+325(ln x3)+75(ln x3)2

Review Exercises: Chapter 9

  1. 1. True

  2. 2. False

  3. 3. True

  4. 4. False

  5. 5. (a)

  6. 9. (e)

  7. 7. (h)

  8. 8. (d)

  9. 9. (b)

  10. 10. (g)

  11. 11. (c)

  12. 12. (f)

  13. 13. (−2, −2)

  14. 14. (−5, 4)

  15. 15. No solution

  16. 16. Infinitely many solutions; (y2, y) or (x, x2)

  17. 17. (3, −1, −2)

  18. 18. No solution

  19. 19. (−5, 13, 8, 2)

  20. 20. Consistent: 13, 14, 16, 17, 19; the others are inconsistent.

  21. 21. Dependent: 16; the others are independent.

  22. 22. (1, 2)

  23. 23. (−3, 4, −2)

  24. 24. Infinitely many solutions; (z2, z2, z)

  25. 25. (−4, 1, −2, 3)

  26. 26. Nickels: 31; dimes: 44

  27. 27. 3%: $1600; 3.5%: $3400

  28. 28. 1 bagel, 12 serving of cream cheese, 2 bananas

  29. 29. 75, 69, 82

  30. 30.

    1. f(x)=1.125x25.25x+145;

    2. 154 million persons employed

  31. 31. [ 016312212 ]

  32. 32. [ 330696603 ]

  33. 33. [ 110232201 ]

  34. 34. [ 22618182115 ]

  35. 35. Not defined

  36. 36. [ 216152214 ]

  37. 37. [ 1316374835 ]

  38. 38. [ 2118532238 ]

  39. 39.

    1. [ 2.250.380.550.330.853.090.420.460.480.512.400.310.590.360.641.800.290.340.550.52 ];

    2. [ 41183936 ];

    3. [ 306.2745.6766.0856.0187.71 ];

    4. the total cost, in dollars, for each item for the day’s meals

  40. 40. [ 1201613 ]

  41. 41. [ 001401201300 ]

  42. 42. [ 100001951800192900001 ]

  43. 43. [ 324153237 ][ xyz]=[ 1378]

  44. 44. (−8, 7)

  45. 45. (1, −2, 5)

  46. 46. (2, −1, 1, −3)

  47. 47. 10

  48. 48. −18

  49. 49. −6

  50. 50. −1

  51. 51. (3, −2)

  52. 52. (−1, 5)

  53. 53. (32, 1314, 3314)

  54. 54. (2, −1, 3)

  55. 55.

  56. 56.

  57. 57.

  58. 58. Minimum: 52 when x=2 and y=4; maximum: 92 when x=2 and y=8

  59. 59. Maximum score of 96 is achieved when 0 group A questions and 8 group B questions are answered.

  60. 60. 5x+15x+25(x+2)2

  61. 61. 22x35x+4

  62. 62. C

  63. 63. A

  64. 64. B

  65. 65. 4%: $10,000; 5%: $12,000; 512%: $18,000

  66. 66. (518, 17)

  67. 67. (1, 12, 13)

  68. 68.

  69. 69.

  70. 70. The solution of the equation 2x+5=3x7 is the first coordinate of the point of intersection of the graphs of y1=2x+5 and y2=3x7. The solution of the system of equations y=2x+5, y=3x7 is the ordered pair that is the point of intersection of y1 and y2.

  71. 71. In general, (AB)2A2B2. (AB)2=ABAB and A2B2=AABB. Since matrix multiplication is not commutative, BAAB, so (AB)2A2B2.

  72. 72. If |a1b1a2b2|=0, then a1=ka2 and b1=kb2 for some number k. This means that the equations a1x+b1y=c1 and a2x+b2y=c2 are dependent if c1=kc2, or the system is inconsistent if c1kc2.

  73. 73. If a1x+b1y=c1 and a2x+b2y=c2 are parallel lines, then a1=ka2, b1=kb2, and c1kc2, for some number k. Then |a1b1a2b2|=0, |c1b1c2b2|0, and |a1c1a2c2|0.

  74. 74. The graph of a linear equation consists of a set of points on a line. The graph of a linear inequality consists of the set of points in a half-plane and might also include the points on the line that is the boundary of the half-plane.

  75. 75. The denominator of the second fraction, x25x+6, can be factored into linear factors with real coefficients: (x3)(x2). Thus the given expression is not a partial fraction decomposition.

Test: Chapter 9

  1. [9.1] (−3, 5); consistent, independent

  2. [9.1] Infinitely many solutions; (x, 2x3) or (y+32, y); consistent, dependent

  3. [9.1] No solution; inconsistent, independent

  4. [9.1] (1, −2); consistent, independent

  5. [9.2] (−1, 3, 2)

  6. [9.1] Student: 462 tickets; nonstudent: 158 tickets

  7. [9.2] Hui: 120 orders; Ashlyn: 104 orders; Sheriann: 128 orders

  8. [9.4] [ 2334 ]

  9. [9.4] Not defined

  10. [9.4] [ 71351 ]

  11. [9.4] Not defined

  12. [9.4] [ 2264104 ]

  13. [9.5] [ 011434 ]

  14. [9.4]

    1. [ 1.551.000.991.700.951.011.650.990.96 ];

    2. [ 261823 ];

    3. [ 108.8565.8766.00 ];

    4. the total cost, in dollars, for each type of menu item served on the given day

  15. [9.4] [ 342231153 ][ xyz]=[ 873]

  16. [9.5] (−2, 1, 1)

  17. [9.6] 61

  18. [9.6] −33

  19. [9.6] (12, 34)

  20. [9.7]

  21. [9.7] Maximum: 15 when x=3 and y=3; minimum: 2 when x=1 and y=0

  22. [9.7] Maximum profit of $750 is achieved when 25 pound cakes and 75 carrot cakes are prepared.

  23. [9.8] 2x1+5x+3

  24. [9.7] D

  25. [9.2] A=1, B=3, C=2

Chapter 10

Exercise Set 10.1

  1. 1. (f)

  2. 3. (b)

  3. 5. (d)

  4. 7. V: (0, 0); F: (0, 5); D: y=5

  5. 9. V: (0, 0); F: (32, 0); D: x=32

  6. 11. V: (0, 0); F: (0, 1); D: y=1

  7. 13. V: (0, 0); F: (18, 0); D: x=18

  8. 15. y2=12x

  9. 17. y2=28x

  10. 19. x2=4πy

  11. 21. (y2)2=14(x+12)

  12. 23. V: (2, 1); F: (2, 12); D: y=52

  13. 25. V: (−1, −3); F: (1, 72); D: y=52

  14. 27. V: (0, 2); F: (0, 134); D: y=214

  15. 29. V: (−2, −1); F: (2, 34); D: y=114

  16. 31. V: (534, 12); F: (6, 12); D: x=512

  17. 33.

    1. y2=16x;

    2. 33364 ft

  18. 35. 23 ft, or 8 in.

  19. 37. (h)

  20. 38. (d)

  21. 39. (a), (b), (f), (g)

  22. 40. (b)

  23. 41. (b)

  24. 42. (f)

  25. 43. (a) and (g)

  26. 44. (a) and (h); (g) and (h); (b) and (c)

  27. 45. (x+1)2=4(y2)

  28. 47. 10 ft, 11.6 ft, 16.4 ft, 24.4 ft, 35.6 ft, 50 ft

Exercise Set 10.2

  1. 1. (b)

  2. 3. (d)

  3. 5. (a)

  4. 7. (7, −2); 8

  5. 9. (−3, 1); 4

  6. 11. (−2, 3); 5

  7. 13. (3, 4); 3

  8. 15. (3, 5);34

  9. 17. (92, 2); 552

  10. 19. (c)

  11. 21. (d)

  12. 23. V: (2, 0), (−2, 0); F: (3, 0), (3, 0)

  13. 25. V: (0, 4), (0, −4); F: (0,7), (0, 7)

  14. 27. V: (3, 0), (3, 0); F: (−1, 0), (1, 0)

  15. 29. V: (12, 0), (12, 0); F: ( 56, 0), (56, 0) 

  16. 31. x249+y240=1

  17. 33. x225+y264=1

  18. 35. x29+y25=1

  19. 37. C: (1, 2); V: (4, 2), (2, 2); F: (1+5, 2), (15, 2)

  20. 39. C: (3, 5); V: (3, 11), (3, 1); F: (3, 5+11), (3, 511)

  21. 41. C: (−2, 1); V: (−10, 1), (6, 1); F: (−6, 1), (2, 1)

  22. 43. C: (2, 1); V: (1, 1), (5, 1); F: (2+5, 1), (25, 1)

  23. 45. C: (1, 1); V: (1, 3), (1, −1); F: (1, 1+3), (1, 13)

  24. 47. Example 2; 35<124

  25. 49. x215+y216=1

  26. 51. x2502+y2122=1

  27. 53. 33.5 ft

  28. 55. 2×106mi

  29. 57. Midpoint

  30. 58. Zero

  31. 59. y-intercept

  32. 60. Two different real-number solutions

  33. 61. Remainder

  34. 62. Ellipse

  35. 63. Parabola

  36. 64. Circle

  37. 65. (x3)24+(y1)225=1

  38. 67. x29+y2484/5=1

  39. 69. About 9.1 ft

Exercise Set 10.3

  1. 1. (b)

  2. 3. (c)

  3. 5. (a)

  4. 7. y29x216=1

  5. 9. x24y29=1

  6. 11. C: (0, 0); V: (2, 0), (−2, 0); F: (22, 0), (22, 0); A: y=x, y=x

  7. 13. C: (2, −5); V: (−1, −5), (5, −5); F: (210, 5), (2+10, 5); A: y=x3133, y=x3173

  8. 15. C: (−1, −3); V: (−1, −1), (−1, −5); F: (1, 3+25), (1, 325); A: y=12x52, y=12x72

  9. 17. C: (0, 0); V: (−2, 0), (2, 0); F: (5, 0), (5, 0); A: y=12x, y=12x

  10. 19. C: (0, 0); V: (0, −3), (0, 3); F: (0, 310), (0, 310); A: y=13x, y=13x

  11. 21. C: (0, 0); V: (2, 0), (2, 0); F: (2, 0), (2, 0); A: y=x, y=x

  12. 23. C: (0, 0); V: (0, 12), (0, 12); F: (0, 22), (0, 22 ); A: y=x, y=x

  13. 25. C: (1, 2); V: (0, 2), (2, 2); F: (12, 2), (1+2, 2); A: y=x1, y=x3

  14. 27. C: (13, 3); V: (23, 3), (43, 3); F: (1337, 3), (13+37, 3); A: y=6x+1, y=6x+5

  15. 29. C: (3, 1); V: (3, 3), (3, −1); F: (3, 1+13), (3, 113); A: y=23x1, y=23x+3

  16. 31. C: (1, −2); V: (2, −2), (0, −2); F: (1+2, 2), (12, 2); A: y=x3, y=x1

  17. 33. C: (−3, 4); V: (−3, 10), (−3, −2); F: (3, 4+62), (3, 462); A: y=x+7, y=x+1

  18. 35. Example 3; 51>54

  19. 37. x29(y7)216=1

  20. 39. y225x211=1

  21. 41.

    1. Yes;

    2. f1(x)=x+32

  22. 42.

    1. Yes;

    2. f1(x)=x23

  23. 43.

    1. Yes;

    2. f1(x)=5x+1, or 5+xx

  24. 44.

    1. Yes;

    2. f1(x)=x24, x0

  25. 45. (6, −1)

  26. 46. (1, −1)

  27. 47. (2, −1)

  28. 48. (−3, 4)

  29. 49. (y+5)29(x3)2=1

  30. 51. x2345.9622,154.0422,154.04=1

Visualizing the Graph

  1. B

  2. J

  3. F

  4. I

  5. H

  6. G

  7. E

  8. D

  9. C

  10. A

Exercise Set 10.4

  1. 1. (e)

  2. 3. (c)

  3. 5. (b)

  4. 7. (−4, −3), (3, 4)

  5. 9. (0, 2), (3, 0)

  6. 11. (−5, 0), (4, 3), (4, −3)

  7. 13. (3, 0), (−3, 0)

  8. 15. (0, −3), (4, 5)

  9. 17. (−2, 1)

  10. 19. (3, 4), (−3, −4), (4, 3), (−4, −3)

  11. 21. (6217, 4i357), (6217, 4i357), (6217, 4i357), (6217, 4i357)

  12. 23. (3, 2), (4, 32)

  13. 25. (5+703, 1+703), (5703, 1703)

  14. 27. (2,14), (2,14), (2, 14), (2, 14)

  15. 29. (1, 2), (−1, −2), (2, 1), (−2, −1)

  16. 31. (15+5618, 1135618), (155618, 11+35618)

  17. 33. (7332, 7+332), (7+332, 7332)

  18. 35. (3, 2), (−3, −2), (2, 3), (−2, −3)

  19. 37. (591520, 45+31520), (5+91520, 4531520)

  20. 39. (3, −5), (−1, 3)

  21. 41. (8, 5), (−5, −8)

  22. 43. (3, 2), (−3, −2)

  23. 45. (2, 1), (−2, −1), (1, 2), (−1, −2)

  24. 47. (4+ 3i62, 4+3i62), (43i62, 43i62)

  25. 49. (3,5), (3, 5), (5, 3), (5, 3)

  26. 51. (855i, 31055), (855i, 31055), (855i, 31055), (855i, 31055)

  27. 53. (2, 1), (2, 1), (i5, 2i55), (i5,2i55)

  28. 55. True

  29. 57. True

  30. 59. 24 in. by 10 in.

  31. 61. 4 in. by 5 in.

  32. 63. 30 yd by 75 yd

  33. 65. Length: 3 m; width: 1 m

  34. 67. 16 ft, 24 ft

  35. 69. (b)

  36. 71. (d)

  37. 73. (a)

  38. 75.

  39. 77.

  40. 79.

  41. 81.

  42. 83.

  43. 83. 2

  44. 86. 2.048

  45. 87. 81

  46. 88. 5

  47. 89. (x2)2+(y3)2=1

  48. 91. x24+y2=1

  49. 93. There is no number x such that x2a2(baa)2b2=1, because the left side simplifies to x2a2x2a2, which is 0.

  50. 95. Factor: x3+y3=(x+y)(x2xy+y2). We know that x+y=1, so (x+y)2=x2+2xy+y2=1, or x2+y2=12xy. We also know that xy=1, so x2+y2=121=1. Then x3+y3=1(11)=2.

  51. 97. (2, 4), (4, 2)

  52. 99. (3, −2), (−3, 2), (2, −3), (−2, 3)

Mid-Chapter Mixed Review: Chapter 10

  1. 1. True

  2. 2. False

  3. 3. False

  4. 4. True

  5. 5. (c)

  6. 6. (h)

  7. 7. (d)

  8. 8. (a)

  9. 9. (b)

  10. 10. (f)

  11. 11. (g)

  12. 12. (e)

  13. 13. V: (0, 0); F: (3, 0); D: x=3

  14. 14. V: (3, 2); F: (3, 3); D: y=1

  15. 15. x2=4(y2)

  16. 16. (y6)2=12(x+1)

  17. 17. (−2, 4); 5

  18. 18. (3, −1); 4

  19. 19. V: (0, −3), (0, 3); F: (0, 22), (0, 22)

  20. 20. V: (6, 0), (6, 0); F: (2, 0), (2, 0)

  21. 21. V: (−2, −1), (6, −1); F: (223, 1), (2+23, 1)

  22. 22. V: (1, −6), (1, 4); F: (1, 121), (1, 1+21)

  23. 23. x225+y221=1

  24. 24. x24+y29=1

  25. 25. x216+y27=1

  26. 26. No; parabolas with a horizontal axis of symmetry fail the vertical-line test.

  27. 27. See the development of the formula for the standard form of a parabola that follows Figure 1 at the beginning of Section 7.1.

  28. 28. Circles and ellipses are not functions.

  29. 29. No; the center of an ellipse is not part of the graph of the ellipse. Its coordinates do not satisfy the equation of the ellipse.

Exercise Set 10.5

  1. 1. (0,2)

  2. 3. (1, 3)

  3. 5. (2, 0)

  4. 7. (3, 1)

  5. 9. Ellipse or circle

  6. 11. Hyperbola

  7. 13. Parabola

  8. 15. Hyperbola

  9. 17. Ellipse or circle

  10. 19.

  11. 21.

  12. 23.

  13. 25.

  14. 27.

  15. 29.

  16. 31.

  17. 33.

  18. 35.

  19. 37.

  20. 39. 2π3

  21. 40. 7π4

  22. 41. 60°

  23. 42. 135°

  24. 43. x=xcos θysin θ, y=xsin θ+ycos θ

  25. 45. A+C=A cos2θ+B sinθ cosθ+C sin2θ+  A sin2θB sinθ cosθ+C cos2θ=A(sin2θ+cos2θ)+C(sin2θ+cos2θ)=A+C

Exercise Set 10.6

  1. 1. (b)

  2. 3. (a)

  3. 5. (d)

  4. 7.

    1. Parabola;

    2. vertical, 1 unit to the right of the pole;

    3. (12, 0);

  5. 9.

    1. Hyperbola;

    2. horizontal, 32 units below the pole;

    3. (3,π2), (1,3π2);

  6. 11.

    1. Ellipse;

    2. vertical, 83 units to the left of the pole;

    3. (83, 0), (89, π);

  7. 13.

    1. Hyperbola;

    2. horizontal, 43 units above the pole;

    3. (45,π2), (4,3π2);

  8. 15.

    1. Ellipse;

    2. vertical, 3 units to the right of the pole;

    3. (1, 0), (3, π);

  9. 17.

    1. Parabola;

    2. horizontal, 32 units below the pole;

    3. (34,3π2);

  10. 19.

    1. Ellipse;

    2. vertical, 4 units to the left of the pole;

    3. (4, 0), (43, π);

  11. 21.

    1. Hyperbola;

    2. horizontal, 710 units above the pole;

    3. (712,π2), (78,3π2);

  12. 23. y2+2x1=0

  13. 25. x23y212y9=0

  14. 27. 27x2+36y248x64=0

  15. 29. 4x25y2+24y16=0

  16. 31. 3x2+4y2+6x9=0

  17. 33. 4x212y9=0

  18. 35. 3x2+4y28x16=0

  19. 37. 4x296y2+140y49=0

  20. 39. r=61+2 sin θ

  21. 41. r=41+ cos θ

  22. 43. r=22 cos θ

  23. 45. r=154 + 3 sin θ

  24. 47. r=814 sin θ

  25. 49. f (t)=(t3)2+4, or t26t+13

  26. 50. f (2t)=(2t3)2+4, or 4t212t+13

  27. 51. f (t1)=(t4)2+4, or t28t+20

  28. 52. f (t+2)=(t1)2+4, or t22t+5

  29. 53. r=1.5×1081+ sin θ

Exercise Set 10.7

  1. 1. y=12x7,12x3

  2. 3. x=y2, 0x4

  3. 5. x=y4, 0x16

  4. 7. y=1x, 1x5

  5. 9. y=14(x+1)2,7x5

  6. 11. y=1x, x>0

  7. 13. x2+y2=9,3x3

  8. 15. x2+y24=1,1x1

  9. 17. y=1x, x  1

  10. 19. (x1)2+(y2)2=4,1x3

  11. 21. Answers may vary. x=t, y=4t3; x=t4+3, y=t+9

  12. 23. Answers may vary. x=t,y=(t2)26t; x=t+2, y=t26t12

  13. 25.

    1. x=403t, y=7+40t16t2;

    2. 31 ft, 23 ft;

    3. about 2.7 sec;

    4. about 187.1 ft;

    5. 32 ft

  14. 27.

  15. 28.

  16. 29.

  17. 30.

  18. 31. x=3 cos t, y=3 sin t

Review Exercises: Chapter 10

  1. 1. True

  2. 2. False

  3. 3. False

  4. 4. True

  5. 5. False

  6. 6. (d)

  7. 7. (a)

  8. 8. (e)

  9. 9. (g)

  10. 10. (b)

  11. 11. (f)

  12. 12. (h)

  13. 13. (c)

  14. 14. x2=6y

  15. 15. F: (3, 0); V: (0, 0); D: x=3

  16. 16. V: (5, 8); F: (5, 152); D: y=172

  17. 17. C: (2,1); V: (3,1), (7,1); F: (1,1), (5,1)

  18. 18. x29+y216=1

  19. 19. C: (2,14); V: (0,14), (4,14); F: (2+6,14), (26,14); A: y14=22 (x+2), y14=22 (x+2)

  20. 20. 0.167 ft

  21. 21. (82, 8), (82, 8)

  22. 22. (3,292), (3,292), (3,292), (3,292)

  23. 23. (7, 4)

  24. 24. (2, 2), (329,109)

  25. 25. (0,3), (2, 1)

  26. 26. (4, 3), (4,3), (4, 3), (4,3)

  27. 27. (3, 0), (3, 0), (2, 1), (2, 1)

  28. 28. ( 35, 215), (3,3)

  29. 29. (6, 8), (6,8), (6, 8), (6, 8)

  30. 30. (2, 2), (2,2), (22,2), (22,2)

  31. 31. 7, 4

  32. 32. 7 m by 12 m

  33. 33. 4, 8

  34. 34. 32 cm, 20 cm

  35. 35. 11 ft, 3 ft

  36. 36.

  37. 37.

  38. 38.

  39. 39.

  40. 40.

  41. 41.

  42. 42.

  43. 43.

  44. 44. Horizontal directrix 2 units below the pole; vertex: (1,3π2)

  45. 45. Vertical directrix 2 units to the right of the pole; vertices: (43, 0), (4, π)

  46. 46. Vertical directrix 4 units to the left of the pole; vertices: (4, 0), (43, π)

  47. 47. Horizontal directrix 3 units above the pole; vertices: (65,π2), (6,3π2)

  48. 48. x24y4=0

  49. 49. 3x2y216x+16=0

  50. 50. 3x2+4y28x16=0

  51. 51. 9x2+5y2+24y36=0

  52. 52. r=11+12 cos θ, or r=22+cos θ

  53. 53. r=1813 sin θ

  54. 54. r=41cos θ

  55. 55. r=61+2 sin θ

  56. 56. y=2+x,3x3

  57. 57. y=x21, 0x3

  58. 58. x2+y2=4

  59. 59. x29+y2=1

  60. 60. Answers may vary. x=t, y=2t3; x=t+1,y=2t1

  61. 61. Answers may vary. x=t, y=t2+4; x=t2, y=t24t+8

  62. 62.

    1. x=752t, y=752t16t2;

    2. 174.2 ft, 60.4 ft;

    3. about 6.6 sec;

    4. about 700.0 ft;

    5. about 175.8 ft

  63. 63. B

  64. 64. D

  65. 65. C

  66. 66. 87, 72

  67. 67. (x2)2+(y1)2=100

  68. 68. x2+y29=1

  69. 69. x2778.41y239,221.59=1

  70. 70. See the development of the formula for the standard form of a parabola that follows Fig. 1 at the beginning of Section 10.1.

  71. 71. Circles and ellipses are not functions.

  72. 72. The procedure for rotation of axes would be done first when B0. Then we would proceed as when B=0.

  73. 73. Each graph is an ellipse. The value of e determines the location of the center and the lengths of the major and minor axes. The larger the value of e, the farther the center is from the pole and the longer the axes.

Test: Chapter 10

  1. [10.3] (c)

  2. [10.1] (b)

  3. [10.2] (a)

  4. [10.2] (d)

  5. [10.1] V: (0, 0); F: (0, 3); D: y=3

  6. [10.1] V: (1,1); F: (1,1); D: x=3

  7. [10.1] x2=8y

  8. [10.2] Center: (1, 3); radius: 5

  9. [10.2] C: (0, 0); V: (4, 0), (4, 0); F: (7, 0), (7, 0)

  10. [10.2] C: (1, 2); V: (1,1), (1, 5); F: (1, 25 ), (1, 2+5 )

  11. [10.2] x24+y225=1

  12. [10.3] C: (0, 0); V: (1, 0), (1, 0); F: (5, 0), (5, 0) A: y=2x, y=2x

  13. [10.3] C: (1, 2); V: (1, 0), (1, 4); F: (1, 213 ), (1, 2+13 ); A: y=23x+43, y=23 x+83

  14. [10.3] y=22 x, y=22 x

  15. [10.1] 278 in.

  16. [10.4] (1, 2), (1,2), (1, 2), (1,2)

  17. [10.4] (3,2), (2, 3)

  18. [10.4] (2, 3), (3, 2)

  19. [10.4] 5 ft by 4 ft

  20. [10.4] 60 ft by 45 ft

  21. [10.4]

  22. [10.5] After using the rotation of axes formulas with θ=45°, we have (x)29+(y)2=1.

  23. [10.6] Horizontal directrix 2 units below the pole; vertex: (1,3π2)

  24. [10.6] r=61+2 cos θ

  25. [10.7]

  26. [10.7] x2+y2=9,3x3

  27. [10.7] Answers may vary. x=t, y=t5; x=t+5, y=t

  28. [10.7]

    1. x=1253t, y=10+125t16t2;

    2. 119 ft, 241 ft;

    3. about 7.9 sec;

    4. about 1710.4 ft;

    5. about 254.1 ft

  29. [10.1] A

  30. [10.2] (x3)2+(y+1)2=8

Chapter 11

Exercise Set 11.1

  1. 1. 3, 7, 11, 15; 39; 59

  2. 3. 2, 32, 43, 54; 109; 1514

  3. 5. 0, 35, 45, 1517; 99101; 112113

  4. 7. −1, 4, −9, 16; 100; −225

  5. 9. 7, 3, 7, 3; 3; 7

  6. 11. 34

  7. 13. 225

  8. 15. −33, 880

  9. 17. 67

  10. 19. 2n

  11. 21. (1)n23n1

  12. 23. n+1n+2

  13. 25. n(n+1)

  14. 27. log 10n1, or n1

  15. 29. 6; 28

  16. 31. 20; 30

  17. 33. 12+14+16+18+110=137120

  18. 35. 1+2+4+8+16+32+64=127

  19. 37. ln 7+ln 8+ln 9+ln 10=ln (78910)=ln 50408.5252

  20. 39. 12+23+34+45+56+67+78+89=15,5512520

  21. 41. 1+11+11=1

  22. 43. 36+912+1518+2124=12

  23. 45. 2+1+25+15+217+113+237=157,35140,885

  24. 47. 3+2+3+6+11+18=43

  25. 49. 12+23+45+89+1617+3233+6465+128129+256257+512513+102410259.736

  26. 51. k=15k

  27. 53. k=16(1)k+12k

  28. 55. k=16(1)kkk+1

  29. 57. k=2n(1)kk2

  30. 59. k=11k(k+1)

  31. 61. 4, 114, 145, 159

  32. 63. 6561, 81, 9i, 3i

  33. 65. 2, 3, 5, 8

  34. 67.

    1. 1062, 1127.84, 1197.77, 1272.03, 1350.90, 1434.65, 1523.60, 1618.07, 1718.39, 1824.93;

    2. $3330.35

  35. 69. $9.80, $10.90, $12.00, $13.10, $14.20, $15.30, $16.40, $17.50, $18.60, $19.70

  36. 71. 1, 1, 2, 3, 5, 8, 13

  37. 72. (−1, −3)

  38. 73. Illinois: 16,200 acres; Ohio: 7200 acres

  39. 74. (3, −2); 4

  40. 75. (52, 4); 972

  41. 77. i, −1, −i, 1, i; i

  42. 79. ln (123n)

Exercise Set 11.2

  1. 1. a1=3, d=5

  2. 3. a1=9, d=4

  3. 5. a1=32, d=34

  4. 7. a1=$316, d=$3

  5. 9. a12=46

  6. 11. a14=173

  7. 13. a10=$7941.62

  8. 15. 27th term

  9. 17. 46th term

  10. 19. a1=5

  11. 21. n=39

  12. 23. a1=13; d=12; 13, 56, 43, 116, 73

  13. 25. 670

  14. 27. 160,400

  15. 29. 735

  16. 31. 990

  17. 33. 1760

  18. 35. 652

  19. 37. 602613

  20. 39. 4960¢, or $49.60

  21. 41. 1320 seats

  22. 43. Yes; 32; 1600 ft

  23. 45. 3 plants; 171 plants

  24. 47. Yes; 3

  25. 48. (2, 5)

  26. 49. (2, −1, 3)

  27. 50. (4, 0), (4, 0); (7, 0), (7, 0)

  28. 51. x24+y225=1

  29. 53. n2

  30. 55. a1=605p5q; d=5p+2q20

  31. 57. 545, 735, 925, 1115

Visualizing the Graph

  1. J

  2. A

  3. C

  4. G

  5. F

  6. H

  7. E

  8. D

  9. B

  10. I

Exercise Set 11.3

  1. 1. 2

  2. 3. −1

  3. 5. −2

  4. 7. 0.1

  5. 9. a2

  6. 11. 128

  7. 13. 162

  8. 15. 7(5)40

  9. 17. 3n1

  10. 19. (1)n1

  11. 21. 1xn

  12. 23. 762

  13. 25. 492118

  14. 27. True

  15. 29. True

  16. 31. True

  17. 33. 8

  18. 35. 125

  19. 37. Does not exist

  20. 39. 23

  21. 41. S1129.65317

  22. 43. 2

  23. 45. Does not exist

  24. 47. $4545.45¯

  25. 49. 1609

  26. 51. 1399

  27. 53. 9

  28. 55. 34,0919990

  29. 57. $2,684,354.55

  30. 59.

    1. About 297 ft;

    2. 300 ft

  31. 61. $39,505.71

  32. 63. 10,485.76 in.

  33. 65. $19,694.01

  34. 67. $86,666,666,667

  35. 69. (fg)(x)=16x2+40x+25; (gf)(x)=4x2+5

  36. 70. (fg)(x)=x2+x+2; (gf)(x)=x2x+3

  37. 71. 2.209

  38. 72. 116

  39. 73. (46)/(32)=23+2,

    (6322)/(46)=23+2; there exists a common ratio, 23+2; thus the sequence is geometric.

  40. 75.

    1. 133; 223, 343, 463, 583;

    2. 113;23, 103, 503, 2503 or 5; 8, 12, 18, 27

  41. 77. Sn=x2(1(x)n)x+1

Exercise Set 11.4

  1. 1. 12<13, false; 22<23, true; 32<33, true; 42<43, true; 52<53, true

  2. 3. A polygon of 3 sides has 3(33)2 diagonals. True; A polygon of 4 sides has 4(43)2 diagonals.

    True; A polygon of 5 sides has 5(53)2 diagonals. True; A polygon of 6 sides has 6(63)2 diagonals. True; A polygon of 7 sides has 7(73)2 diagonals. True.

  3. 5.

    Sn: 2+4+6++2n=n(n+1) S1: 2=1(1+1) Sk: 2+4+6++2k=k(k+1) Sk+1: 2+4+6++2k+2(k+1) =(k+1)(k+2)
    1. Basis step: S1 true by substitution.

    2. Induction step: Assume Sk. Deduce Sk+1. Starting with the left side of Sk+1, we have

      2+4+6++2k+2(k+1)=k(k+1)+2(k+1) By Sk=(k+1)(k+2). Distributive law
  4. 7.

    Sn:1+5+9++(4n3)=n(2n1)S1:1=1(211)Sk:1+5+9++(4k3)=k(2k1)Sk+1:1+5+9++(4k3)+[4(k+1)3]=(k+1)[2(k+1)1]=(k+1)(2k+1)
    1. Basis step: S1 true by substitution.

    2. Induction step: Assume Sk. Deduce Sk+1. Starting with the left side of Sk+1, we have

    1+5+9++(4k3)+[4(k+1)3]=k(2k1)+[4(k+1)3] By Sk=2k2k+4k+43=2k2+3k+1=(k+1)(2k+1).
  5. 9.

    Sn:2+4+8++2n=2(2n1)S1:2=2(21)Sk:2+4+8++2k=2(2k1)Sk+1:2+4+8++2k+2k+1=2(2k+11)
    1. Basis step: S1 true by substitution.

    2. Induction step: Assume Sk. Deduce Sk+1. Starting with the left side of Sk+1, we have

    2+4+8++2k+2k+1=2(2k1)+2k+1 By Sk=2k+12+2k+1=22k+12=2(2k+11).

  6. 11.

    Sn:n<n+1S1:1<1+1Sk:k<k+1Sk+1:k+1<(k+1)+1
    1. Basis step: Since 1<1+1, S1 is true.

    2. Induction step: Assume Sk. Deduce Sk+1. Now

    k<k+1By Skk+1<k+1+1Adding 1k+1<k+2.Simplifying

  7. 13.

    Sn:2n2nS1:2121Sk:2k2kSk+1:2(k+1)2k+1
    1. Basis step: Since 2=2, S1 is true.

    2. Induction step: Let k be any natural number. Assume Sk. Deduce Sk+1.

    2k2kBy Sk22k22kMultiplying by 24k2k+1

    Since 1k, k+1k+k, or k+12k.

    Then 2(k+1)4k.  Multiplying by 2

    Thus, 2(k+1)4k2k+1, so 2(k+1)2k+1.

  8. 15.

    Sn:1123+1234+1345++1n(n+1)(n+2)=n(n+3)4(n+1)(n+2)S1:1123=1(1+3)4(1+1)(1+2)Sk:1123+1234++1k(k+1)(k+2)=k(k+3)4(k+1)(k+2)Sk+1:1123+1234++1k(k+1)(k+2)+1(k+1)(k+2)(k+3)=(k+1)(k+1+3)4(k+1+1)(k+1+2)=(k+1)(k+4)4(k+2)(k+3)
    1. Basis step: Since 1123=16 and 1(1+3)4(1+1)(1+2)=14423=16, S1 is true.

    2. Induction step: Assume Sk. Deduce Sk+1. Add 1(k+1)(k+2)(k+3) on both sides of Sk and simplify the right side. Only the right side is shown here.

    k(k+3)4(k+1)(k+2)+1(k+1)(k+2)(k+3)=k(k+3)(k+3)+44(k+1)(k+2)(k+3)=k3+6k2+9k+44(k+1)(k+2)(k+3)=(k+1)2(k+4)4(k+1)(k+2)(k+3)=(k+1)(k+4)4(k+2)(k+3)

  9. 17.

    Sn:1+2+3++n=n(n+1)2S1:1=1(1+1)2Sk:1+2+3++k=k(k+1)2Sk+1:1+2+3++k+(k+1)=(k+1)(k+2)2
    1. Basis step: S1 true by substitution.

    2. Induction step: Assume Sk. Deduce Sk+1. Starting with the left side of Sk+1, we have

    1+2+3++k+(k+1)=k(k+1)2+(k+1)By Sk=k(k+1)+2(k+1)2Adding=(k+1)(k+2)2.  Distributive law

  10. 19.

    Sn:13+23+33++n3=n2(n+1)24S1:13=12(1+1)24Sk:13+23+33++k3=(k+1)24Sk+1:13+23+33++k3+(k+1)3=(k+1)2[(k+1)+1]24
    1. Basis step: S1:13=12(1+1)24=1. True.

    2. Induction step: Assume Sk. Deduce Sk+1.

    13+23++k3=k2(k+1)24Sk

    13+23++k3+(k+1)3=k2(k+1)24+(k+1)3Adding (k+1)3=k2(k+1)2+4(k+1)34=(k+1)24[k2+4(k+1)]=(k+1)24(k2+4k+4)=(k+1)2(k+2)24

  11. 21.

    Sn:2+6+12++n(n+1)=n(n+1)(n+2)3S1:1(1+1)=1(1+1)(1+2)3Sk:2+6+12++k(k+1)=k(k+1)(k+2)3Sk+1:2+6+12++k(k+1)+(k+1)[(k+1)+1]=(k+1)[(k+1)+1][(k+1)+2]3
    1. Basis step: S1:1(1+1)=1(1+1)(1+2)3. True.

    2. Induction step: Assume Sk:

      2+6+12++k(k+1)=k(k+1)(k+2)3.

    Then 2+6+12++k(k+1)+(k+1)(k+1+1)

    =k(k+1)(k+2)3+(k+1)(k+2)=k(k+1)(k+2)+3(k+1)(k+2)3=(k+1)(k+2)(k+3)3=(k+1)(k+1+1)(k+1+2)3.
  12. 23.

    Sn:a1+(a1+d)+(a1+2d)++[a1+(n1)d]=n2[2a1+(n1)d]S1:a1=12[2a1+(11)d]Sk:a1+(a1+d)+(a1+2d)++[a1+(k1)d]=k2[2a1+(k1)d]Sk+1:a1+(a1+d)+(a1+2d)++[a1+(k1)d]+[a1+((k+1)1)d]=k+12[2a1+((k+1)1)d]
    1. Basis step: Since 12[2a1+(11)d]=122a1=a1, S1 is true.

    2. Induction step: Assume Sk. Deduce Sk+1. Starting with the left side of Sk+1, we have

    a1+(a1+d)++[a1+(k1)d]+[a1+kd]=k2[2a1+(k1)d]+[a1+kd] By Sk=[2a1+(k1)d]2+2[a1+kd]2=2ka1+k(k1)d+2a1+2kd2=2a1(k+1)+k(k1)d+2kd2=2a1(k+1)+(k1+2)kd2=2a1(k+1)+(k+1)kd2=k+12[2a1+kd].

  13. 24. (5, 3)

  14. 25. 1.5%: $800; 2%: $1600; 3%: $2000

  15. 27. Sn:x+yis a factor ofx2ny2n.S1:x+yis a factor ofx2y2.Sk:x+yis a factor ofx2ky2k.Sk+1:x+yis a factor ofx2(k+1)y2(k+1).

    1. Basis step:

      S1:x+y is a factor of x2y2. True.

      S2:x+y is a factor of x4y4. True.

    2. Induction step: Assume Sk1: x+y is a factor of x2(k1)y2(k1). Then x2(k1)y2(k1)=(x+y)Q(x) for some polynomial Q(x).

      Assume Sk: x+y is a factor of x2ky2k. Then x2ky2k=(x+y)P(x) for some polynomial P(x).

    x2(k+1)y2(k+1)=(x2ky2k)(x2+y2)(x2(k1)y2(k1))(x2y2)=(x+y)P(x)(x2+y2)(x+y)Q(x)(x2y2)=(x+y)[P(x)(x2+y2)Q(x)(x2y2)]

    so x+y is a factor of x2(k+1)y2(k+1).

  16. 29.

    S2:loga(b1b2)=logab1+logab2Sk:loga(b1b2bk)=logab1+logab2++logabkSk+1:loga(b1b2bk+1)=logab1+logab2++logabk+1
    1. Basis step: S2 is true by the properties of logarithms.

    2. Induction step: Let k be a natural number k2. Assume Sk. Deduce Sk+1.

    loga(b1b2bk+1)Left side of Sk+1=loga(b1b2bk)+logabk+1 By S2=logab1+logab2++logabk+logabk+1

  17. 31.

    S2:z1+z2¯=z¯1+z¯2(a+bi)+(c+di)¯=(a+c)+(b+d)i¯=(a+c)(b+d)i(a+bi)¯+(c+di)¯=abi+cdi=(a+c)(b+d)i.Sk: z1+z2++zk¯=z¯1+z¯2++z¯k.(z1+z2++zk)+zk+1¯=(z1+z2++zk)¯+zk+1¯By S2=z¯1+z¯2++z¯k+zk+1By SK

Mid-Chapter Mixed Review: Chapter 11

  1. 1. False

  2. 2. True

  3. 3. False

  4. 4. False

  5. 5. 8, 11, 14, 17; 32; 47

  6. 6. 0, −1, 2, −3; 8; −13

  7. 7. an=3n

  8. 11. an=(1)nn2

  9. 9. 178, or 158

  10. 10. 2+6+12+20+30=70

  11. 11. k=1(1)k4k

  12. 12. 2, 6, 22, 86

  13. 13. −5

  14. 14. 22

  15. 15. 21

  16. 16. 696

  17. 17. 12

  18. 18.

    1. 8;

    2. 102316, or 63.9375

  19. 19. 163

  20. 20. Does not exist

  21. 21. 126 plants

  22. 22. $6369.70

  23. 23.

    Sn:1+4+7++(3n2)=12n(3n1)S1:312=121(311)Sk:1+4+7++(3k2)=12k(3k1)Sk+1:1+4+7++(3k2)+[3(k+1)2]=12(k+1)[3(k+1)1]=12(k+1)(3k+2)
    1. Basis step: S1:312=121(311). True

    2. Induction step: Assume Sk:

    1+4+7++(3k2)=12k(3k1).

    Then 1+4+7++(3k2)+[3(k+1)2]

    =12k(3k1)+[3(k+1)2]=32k212k+3k+1=32k2+52k+1=12(3k2+5k+2)=12(k+1)(3k+2).
  24. 24. The first formula can be derived from the second by substituting a1+(n1)d for an. When the first and last terms of the sum are known, the second formula is the better one to use. If the last term is not known, the first formula allows us to compute the sum in one step without first finding an.

  25. 25. 1+2+3++100

    =(1+100)+(2+99)+(3+98)++(50+51)=101+101+101++10150 addends of 101=50101=5050

    A formula for the first n natural numbers is n2(1+n).

  26. 26. Answers may vary. One possibility is given. Casey invests $900 at 8% interest, compounded annually. How much will be in the account at the end of 40 years?

  27. 27. We can prove an infinite sequence of statements Sn by showing that a basis statement S1 is true and then that for all natural numbers k, if Sk is true, then Sk+1 is true.

Exercise Set 11.5

  1. 1. 720

  2. 3. 604,800

  3. 5. 120

  4. 7. 1

  5. 9. 3024

  6. 11. 120

  7. 13. 120

  8. 15. 1

  9. 17. 6,497,400

  10. 19. n(n1)(n2)

  11. 21. n

  12. 23. 6!=720

  13. 25. 9!=362,880

  14. 27. 9P4=3024

  15. 29. 5P5=120; 55=3125

  16. 31. 5P54P4=2880

  17. 33. 8106=8,000,000;8million

  18. 35. 9!2!3!4!=1260

  19. 37.

    1. 6P5=720;

    2. 65=7776;

    3. 15P4=120;

    4. 114P3=24

  20. 39.

    1. 105, or 100,000;

    2. 100,000

  21. 41.

    1. 109=1,000,000,000;

    2. yes

  22. 42. 94, or 2.25

  23. 43. −3, 2

  24. 44. 3±174

  25. 45. −2, 1, 5

  26. 47. 8

  27. 49. 11

  28. 51. n1

Exercise Set 11.6

  1. 1. 78

  2. 3. 78

  3. 5. 7

  4. 7. 10

  5. 9. 1

  6. 11. 15

  7. 13. 128

  8. 15. 270,725

  9. 17. 13,037,895

  10. 19. n

  11. 21. 1

  12. 23. 36C4=58, 905

  13. 25. 13C10=286

  14. 27. (107)(53)=1200

  15. 29. (525)=2,598,960

  16. 31.

    1. 31P2=930;

    2. 312=961;

    3. 31C2=465

  17. 33. 172

  18. 34. 1, 32

  19. 35. 5±212

  20. 36. −4, −2, 3

  21. 37. (135)=1287

  22. 39. (n2); 2(n2)

  23. 41. 4

  24. 43. 7

  25. 45. Line segments:

    nC2=n!2!(n2)!=n(n1)(n2)!21(n2)!=n(n1)2

    Diagonals: The n line segments that form the sides of the n-gon are not diagonals. Thus the number of diagonals is

    nC2n=n(n1)2n=n2n2n2=n23n2=n(n3)2, n4.

    Let Dn be the number of diagonals of an n-gon. Prove the result above for diagonals using mathematical induction.

    Sn:Dn=n(n3)2,forn=4, 5, 6,S4:D4=412Sk:Dk=k(k3)2Sk+1:Dk+1=(k+1)(k2)2
    1. Basis step: S4 is true (a quadrilateral has 2 diagonals).

    2. Induction step: Assume Sk. Note that when an additional vertex Vk+1 is added to the k-gon, we gain k segments, 2 of which are sides of the (k+1)-gon, and a former side V1Vk¯ becomes a diagonal. Thus the additional number of diagonals is k2+1, or k1. Then the new total of diagonals is Dk+(k1), or

    Dk+1=Dk+(k1)=k(k3)2+(k1)By Sk=(k+1)(k2)2

Exercise Set 11.7

  1. 1. x4+20x3+150x2+500x+625

  2. 3. x515x4+90x3270x2+405x243

  3. 5. x55x4y+10x3y210x2y3+5xy4y5

  4. 7. 15,625x6+75,000x5y+150,000x4y2+160,000x3y3+96,000x2y4+30,720xy5+4096y6

  5. 9. 128t7+448t5+672t3+560t+280t1+84t3+14t5+t7

  6. 11. x105x8+10x610x4+5x21

  7. 13. 125+1505t+375t2+1005t3+75t4+65t5+t6

  8. 15. a918a7+144a5672a3+2016a4032a1+5376a34608a5+2304a7512a9

  9. 17. 1402

  10. 19. x8+4x4+6+4x4+x8

  11. 21. 21a5b2

  12. 23. 252x5y5

  13. 25. 745,472a3

  14. 27. 1120x12y2

  15. 29. 1,959,552u5v10

  16. 31. 27, or 128

  17. 33. 224, or 16,777,216

  18. 35. 20

  19. 37. 12+316i

  20. 39. 742i

  21. 41. k=0n(nk)(1)kankbk

  22. 43. k=1n(nk)xnkhk1

  23. 44. x2+2x2

  24. 45. 2x33x2+2x3

  25. 46. 4x212x+10

  26. 47. 2x21

  27. 49. 3, 9, 6±3i

  28. 51. 35x1/6

  29. 53. 2100

  30. 55. [loga(xt)]23

  31. 57.

    1. Basis step: Since a+b=(a+b)1, S1 is true.

    2. Induction step: Let Sk be the statement of the binomial theorem with n replaced by k. Multiply both sides of Sk by (a+b) to obtain

    (a+b)k+1=[ ak++(kr1)ak(r1)br1+(kr)akrbr++bk ](a+b)=ak+1++[ (kr1)+(kr) ]a(k+1)rbr++bk+1=ak+1++(k+1r)a(k+1)rbr++bk+1.

    This proves Sk+1, assuming Sk. Hence Sn is true for n=1, 2, 3,.

Exercise Set 11.8

  1. 1.

    1. 0.18, 0.24, 0.23, 0.23, 0.12;

    2. Opinions may vary, but it seems that people tend not to pick the first or last numbers.

  2. 3. 5187 e-mails

  3. 5.

    1. 27;

    2. 57;

    3. 0;

    4. 1

  4. 7. 12

  5. 9.

    1. 113;

    2. 213;

    3. 14;

    4. 126

  6. 11. 15525

  7. 13. 135323

  8. 15. 1108, 290

  9. 17. 3366, 640

  10. 19.

    1. HHH, HHT, HTH, HTT, THH, THT, TTH, TTT;

    2. 38;

    3. 78;

    4. 78;

    5. 38

  11. 21. 919

  12. 23. 138

  13. 25. 1819

  14. 27. 919

  15. 29. Zero

  16. 30. One-to-one

  17. 31. Function; domain; range; domain; range

  18. 32. Zero

  19. 33. Combination

  20. 34. Inverse variation

  21. 35. Factor

  22. 36. Geometric sequence

  23. 37.

    1. (132)(42)(42)(441)=123,552

    2. 0.0475

  24. 39.

    1. 13(43)(482)3744, or 54,912;

    2. 54,912(525)0.0211

Review Exercises: Chapter 11

  1. 1. True

  2. 2. False

  3. 3. True

  4. 4. False

  5. 5. 12, 417, 982, 16257;12114, 642;529279, 842

  6. 6. (1)n+1(n2+1)

  7. 7. 3298+27268180=4171040

  8. 11. k=17(k21)

  9. 9. 154

  10. 10. a+4b

  11. 11. 531

  12. 12. 20,100

  13. 13. 11

  14. 14. −4

  15. 15. n=6, Sn=126

  16. 16. a1=8, a5=12

  17. 17. Does not exist

  18. 18. 311

  19. 19. 38

  20. 20. 24199

  21. 21. 545, 635, 725, 815

  22. 22. 167.3 ft

  23. 23. $45,993.04

  24. 24.

    1. $7.38;

    2. $1365.10

  25. 25. $88,888,888,889

  26. 26.

    Sn:1+4+7++(3n2)=n(3n1)2S1:1=1(31)2Sk:1+4+7++(3k2)=k(3k1)2Sk+1:1+4+7++(3k2)+[3(k+1)2]=1+4+7++(3k2)+(3k+1)=(k+1)(3k+2)2
    1. Basis step: 1(31)2=22=1 is true.

    2. Induction step: Assume Sk. Add (3k+1) on both sides.

      1+4+7++(3k2)+(3k+1)
    =k(3k1)2+(3k+1)=k(3k1)2+2(3k+1)2=3k2k+6k+22=3k2+5k+22=(k+1)(3k+2)2
  27. 27.

    Sn:1+3+32++3n1=3n12S1:1=3112Sk:1+3+32++3k1=3k12Sk+1:1+3+32++3(k+1)1=3k+112
    1. Basis step: 3112=22=1 is true.

    2. Induction step: Assume Sk. Add 3k on both sides.

      1+3++3k1+3k
      =3k12+3k=3k12+3k22=33k12=3k+112
  28. 28.

    Sn:(112)(113)(11n)=1nS2:(112)=12Sk:(112)(113)(11k)=1kSk+1:(112)(113)(11k)(11k+1)=1k+1.
    1. Basis step: S2 is true by substitution.

    2. Induction step: Assume Sk. Deduce Sk+1. Starting with the left side of Sk+1, we have

    (112)(113)(11k)(11k+1)=1k(11k+1)By Sk=1k(k+11k+1)=1kkk+1=1k+1.  Simplifying

  29. 29. 6!=720

  30. 30. 9876=3024

  31. 31. (158)=6435

  32. 32. 242322=12, 144

  33. 33. 9!1!4!2!2!=3780

  34. 34. 343=36

  35. 35.

    1. 6P5=720;

    2. 65=7776;

    3. 5P4=120;

    4. 3P2=6

  36. 36. 28, or 256

  37. 37. m7+7 m6n+21 m5n2+35 m4n3+35 m3n4+21 m2n5+7mn6+n7

  38. 38. x552x4+20x3202x2+20x42

  39. 39. x812x6y+54x4y2108x2y3+81y4

  40. 40. a8+8a6+28a4+56a2+70+56a2+28a4+8a6+a8

  41. 41. 6624+16, 280i

  42. 42. 220a9x3

  43. 43. (1811)128a7b11

  44. 44. 112; 0

  45. 45. 14

  46. 46. 65525

  47. 47. 862060.42, 972060.47, 232060.11

  48. 48. B

  49. 49. A

  50. 50. D

  51. 51.

    1. No (unless an is all positive or all negative);

    2. yes;

    3. yes;

    4. no (unless an is constant);

    5. no (unless an is constant);

    6. no (unless an is constant)

  52. 52. ak+1ak=r1, bk+1bk=r2, so ak+1bk+1akbk=r1r2, a constant.

  53. 53. 12, 16, 118

  54. 54. −2, 0, 2, 4

  55. 55. (logxy)10

  56. 56. 18

  57. 57. 36

  58. 58. −9

  59. 59. For each circular arrangement of the numbers on a clock face, there are 12 distinguishable ordered arrangements on a line. The number of arrangements of 12 objects on a line is 12P12, or 12!. Thus the number of circular permutations is 12P1212=12!12=11!=39,916,800. In general, for each circular arrangement of n objects, there are n distinguishable ordered arrangements on a line. The total number of arrangements of n objects on a line is nPn, or n!. Thus the number of circular permutations is n!n=n(n1)!n=(n1)!.

  60. 60. Put the following in the form of a paragraph. First find the number of seconds in a year (365 days): 365days 24hr1day 60min1hr60 sec1min=31,536,000 sec. The number of arrangements possible is 15!. The time is 15!31, 536, 00041,466 years.

  61. 61. Order is considered in a combination lock.

  62. 62. Choosing k objects from a set of n objects is equivalent to not choosing the other nk objects.

Test: Chapter 11

  1. [11.1] −43

  2. [11.1] 23, 34, 45, 56, 67

  3. [11.1] 2+5+10+17=34

  4. [11.1] k=164k

  5. [11.1] k=12k

  6. [11.1] 3, 213, 237, 2717

  7. [11.2] 44

  8. [11.2] 38

  9. [11.2] −420

  10. [11.2] 675

  11. [11.3] 5512

  12. [11.3] 1000

  13. [11.3] 510

  14. [11.3] 27

  15. [11.3] 5699

  16. [11.1] $10,000, $8000, $6400, $5120, $4096, $3276.80

  17. [11.2] $17.05

  18. [11.3] $74,399.77

  19. [11.4]

    Sn:2+5+8++(3n1)=n(3n+1)2S1:2=1(31+1)2Sk:2+5+8++(3k1)=k(3k+1)2Sk+1:2+5+8++(3k1)+[3(k+1)1]=(k+1)[3(k+1)+1]2
    1. Basis step: 1(31+1)2=142=2, so S1 is true.

    2. Induction step:

      2+5+8++(3k1)+[3(k+1)1]
      =k(3k+1)2+[3k+31] By Sk=3k22+k2+3k+2=3k22+7k2+2=3k2+7k+42=(k+1)(3k+4)2=(k+1)[3(k+1)+1]2
  20. [11.5] 3,603,600

  21. [11.6] 352,716

  22. [11.6] n(n1)(n2)(n3)24

  23. [11.5] 6P4=360

  24. [11.5]

    1. 64=1296;

    2. 5P3=60

  25. [11.6] 28C4=20, 475

  26. [11.6] 12C88C4=34, 650

  27. [11.7] x5+5x4+10x3+10x2+5x+1

  28. [11.7] 35x3y4

  29. [11.7] 29=512

  30. [11.8] 47

  31. [11.8] 481001

  32. [11.1] B

  33. [11.5] 15

Just-In-Time

1. Real Numbers

  1. 1. 23, 6, 2.45, 18.4¯, 11, 273, 516, 87, 0, 16

  2. 2. 23, 2.45, 18.4¯, 516, 87

  3. 3. 3, 266, 7.151551555 , 35, 35

  4. 4. 6, 11, 273, 0, 16

  5. 5. 6, 273, 0, 16

  6. 6. All of them

2. Properties of Real Numbers

  1. 1. Additive inverse property

  2. 2. Associative property of multiplication

  3. 3. Distributive property

  4. 4. Commutative property of addition

  5. 5. Multiplicative identity property

  6. 6. Commutative property of multiplication

  7. 7. Additive identity property

  8. 8. Multiplicative inverse property

  9. 9. Associative property of addition

  10. 10. Distributive property

3. Absolute Value

  1. 1. 98

  2. 2. 0

  3. 3. 4.7

  4. 4. 23

  5. 5. 20

  6. 6. 12.6

  7. 7. 11

  8. 8. 218

4. Operations with Real Numbers

  1. 1. 19

  2. 2. 110

  3. 3. −5

  4. 4. −3

  5. 5. −350

  6. 6. −5.5

  7. 7. 24

  8. 8. 10

  9. 9. −12.6

  10. 10. 20

  11. 11. −15

  12. 12. 16

  13. 13. −8

  14. 14. −22

  15. 15. 45

5. Order on the Number Line

  1. 1. False

  2. 2. True

  3. 3. True

  4. 4. True

  5. 5. False

  6. 6. True

6. Interval Notation

  1. 1. [−5, 5]

  2. 2. (−3, −1]

  3. 3. (, 2]

  4. 4. (3.8, )

  5. 5. (7, )

  6. 6. (−2, 2)

  7. 7. (−4, 5)

  8. 8. [1.7, )

  9. 9. (5, 2]

  10. 10. (, 5)

7. Integers as Exponents

  1. 1. 136

  2. 2. (0.2)5

  3. 3. z9w4

  4. 4. z2y2

  5. 5. 1

  6. 6. a8

  7. 7. 6x4y4,or  6y4x4

  8. 8. x11, or 1x11

  9. 9. m6n6, or 1m6n6

  10. 10. t20, or 1t20

8. Scientific Notation

  1. 1. 1.85×107

  2. 2. 7.86×104

  3. 3. 2.3×109

  4. 4. 8.927×109

  5. 5. 0.000000043

  6. 6. 5,170,000

  7. 7. 620,300,000,000

  8. 8. 0.0000294

9. Order of Operations

  1. 1. 3

  2. 2. 103

  3. 3. −235

  4. 4. 2048

  5. 5. 2

  6. 6. 5

10. Introduction to Polynomials

  1. 1. 6

  2. 2. 8

  3. 3. 4

  4. 4. 0

  5. 5. 8

  6. 6. Binomial

  7. 7. Monomial

  8. 8. Trinomial

11. Add and Subtract Polynomials

  1. 1. 9y4

  2. 2. 2x2+6x2

  3. 3. 3x+2y2z3

  4. 4. 2ab2a2b+6ab+10

  5. 5. 4x2+8xy5y2+3

12. Multiply Polynomials

  1. 1. 21a6

  2. 2. y2+2y15

  3. 3. x2+9x+18

  4. 4. 2a2+13a+15

  5. 5. 4x2+8xy+3y2

  6. 6. x2+6x+9

  7. 7. 25x230x+9

  8. 8. 4x2+12xy+9y2

  9. 9. n236

  10. 10. 9y216

13. Factor Polynomials

  1. 1. 3(x+6)

  2. 2. 2z2(z4)

  3. 3. (3x1)(x2+6)

  4. 4. (t+6)(t22)

  5. 5. (w5)(w2)

  6. 6. (t+3)(t+5)

  7. 7. 2(n12)(n+2)

  8. 8. y2(y2)(y7)

  9. 9. (2n7)(n+8)

  10. 10. (2y3)(y+2)

  11. 11. (z+9)(z9)

  12. 12. (4x+3)(4x3)

  13. 13. 7p(q2+y2)(q+y)(qy)

  14. 14. (x+6)2

  15. 15. (3z2)2

  16. 16. a(a+12)2

  17. 17. (x+4)(x24x+16)

  18. 18. (m6)(m2+6m+36)

  19. 19. 3a2(a2)(a2+2a+4)

  20. 20. (t2+1)(t4t2+1)

14. Equation-Solving Principles

  1. 1. 10

  2. 2. 12

  3. 3. −4

  4. 4. 10

  5. 5. 2

  6. 6. −3

  7. 7. 0

  8. 8. 5

15. Inequality-Solving Principles

  1. 1. p125

  2. 2. x<9

  3. 3. x<2

  4. 4. x56

  5. 5. y<27

  6. 6. w11

16. Principle of Zero Products

  1. 1. −7, 1

  2. 2. 35, 4

  3. 3. 53, 12

  4. 4. 0, 8

  5. 5. −3, 11

  6. 6. −15, 2

  7. 7. 34, 43

17. Principle of Square Roots

  1. 1. −6 and 6, or ±6

  2. 2. 10 and 10, or ±10

  3. 3. 3 and 3, or ±3

  4. 4. 5 and 5, or ±5

  5. 5. −5 and 5, or ±5

  6. 6. 15 and 15, or ±15

18. Simplify Rational Expressions

  1. 1. The set of all real numbers except 0 and 1.

  2. 2. The set of all real numbers except −7 and 3.

  3. 3. x+2x2

  4. 4. x1x3

  5. 5. x3x

  6. 6. 2(y+4)y1

19. Multiply and Divide Rational Expressions

  1. 1. 1

  2. 2. m+n

  3. 3. 4x+13x2

  4. 4. a+1a3

  5. 5. 3(x4)2(x+4)

  6. 6. 1x+y

20. Add and Subtract Rational Expressions

  1. 1. 2

  2. 2. 2(3x2+2x7)3(3x+1)(x2)

  3. 3. 2a(a+1)(a1)

  4. 4. 3x4(x2)(x1)

  5. 5. y+10(y+4)(y5)

  6. 6. y(y2)(y3)

21. Simplify Complex Rational Expressions

  1. 1. xy

  2. 2. aa+b

  3. 3. w22w+4w

  4. 4. x+yx

  5. 5. ab

22. Simplify Radical Expressions

  1. 1. 21

  2. 2. 3y

  3. 3. a2

  4. 4. 3x

  5. 5. 3x2

  6. 6. 2

  7. 7. 2xy 3x24

  8. 8. 521

  9. 9. 5y

  10. 10. 12x

  11. 11. x2

  12. 12. 2x2y6

  13. 13. 3x4y3

  14. 14. 172

  15. 15. 123

  16. 16. 22

  17. 17. 45

  18. 18. 16+93

  19. 19. −12

  20. 20. 4+23

23. Rationalizing Denominators and Numerators

  1. 1. 41111

  2. 2. 217

  3. 3. 2832

  4. 4. 2633

  5. 5. 330+1214

  6. 6. 33

  7. 7. 6m+6nmn

24. Rational Exponents

  1. 1. y56

  2. 2. x23

  3. 3. 8

  4. 4. 128

  5. 5. 15

  6. 6. 116

  7. 7. y1/3

  8. 8. x5/2

  9. 9. xx6

  10. 10. (a2)2

  11. 11. nmn23

25. Pythagorean Theorem

  1. 1. 17

  2. 2. 325.657

  3. 3. 12

  4. 4. 5

  5. 5. 315.568

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset