7.1 Identities: Pythagorean and Sum and Difference

  • State the Pythagorean identities.

  • Simplify and manipulate expressions containing trigonometric expressions.

  • Use the sum and difference identities to find function values.

An identity is an equation that is true for all possible replacements of the variables. The following is a list of the identities studied in Chapter 6.

In this section, we will develop some other important identities.

Pythagorean Identities

We now consider three other identities that are fundamental to a study of trigonometry. They are called the Pythagorean identities. Recall that the equation of a unit circle in the xy-plane is

x2+y2=1.

For any point on the unit circle, the coordinates x and y satisfy this equation. Suppose that a real number s determines a point on the unit circle with coordinates (x,y), or (coss,sins). Then x=coss and y=sins. Substituting cos s for x and sin s for y in the equation of the unit circle gives us the identity

(cos s)2+(sin s)2=1,Substituting cos s for x and sin s for y

which can be expressed as

sin2 s+cos2 s=1.

It is conventional in trigonometry to use the notation sin2s rather than (sins)2. Note that sin2ssins2.

The identity sin2 s+cos2 s=1 gives a relationship between the sine and the cosine of any real number s. It is an important Pythagorean identity.

We can divide by sin2 s on both sides of the preceding identity:

sin2 ssin2 s+cos2 ssin2 s=1sin2 s.Dividing by sin2 s

Simplifying gives us a second Pythagorean identity:

1+cot2s=csc2 s.

This equation is true for any replacement of s with a real number for which sin2s0, since we divided by sin2s. But the numbers for which sin2s=0 (orsins=0) are exactly the ones for which the cotangent function and the cosecant function are not defined. Hence our new equation holds for all real numbers s for which cot s and csc s are defined and is thus an identity.

The third Pythagorean identity is obtained by dividing by cos2s on both sides of the first Pythagorean identity:

sin2 scos2 s+cos2 scos2 s=1cos2 sDividing by cos2stan2s+1=sec2 s.Simplifying

This equation is true for any replacement of s with a real number for which cos2 s0, since we divided by cos2 s. But the numbers for which cos2 s=0 (or cos s=0) are exactly those for which the tangent function and the secant function are not defined. Thus our new equation holds for all real numbers s for which tan s and sec s are defined and is thus an identity.

The identities we have developed hold no matter what symbols are used for the variables. For example, we could write

sin2 s+cos2 s=1,sin2 θ+cos2 θ=1,orsin2 x+cos2 x=1.

It is often helpful to express the Pythagorean identities in equivalent forms.

Pythagorean Identities Equivalent Forms

sin2 x+cos2 x=1

sin2 x=1-cos2 x
cos2 x=1-sin2 x

1+cot2 x=csc2 x

1=csc2 x-cot2 x
cot2 x=csc2 x-1

1+tan2 x=sec2 x

1=sec2 x-tan2 x
tan2 x=sec2 x-1

Simplifying Trigonometric Expressions

We can factor, simplify, and manipulate trigonometric expressions in the same way that we manipulate strictly algebraic expressions.

Example 1

Multiply and simplify: cosx (tanx-secx).

Solution

cos x (tan x-sec x)=cos x tan x-cos x sec xMultiplying=cos x sin xcos x-cos x 1cos xRecallingtheidentitiestan x=sin xcos xandsecx=1cos xand substituting=sin x-1Simplifying

Now Try Exercise 3.

There is no general procedure for simplifying trigonometric expressions, but it is often helpful to write everything in terms of sines and cosines, as we did in Example 1. We also look for a Pythagorean identity within a trigonometric expression.

Example 2

Factor and simplify: sin2x cos2x+cos4x.

Solution

sin2xcos2x+cos4x=cos2x(sin2x+cos2x)Removing a common factor=cos2x(1)Using sin2x+cos2x=1=cos2x

Now Try Exercise 9 and 13.

Example 3

Simplify each of the following trigonometric expressions.

  1. a) cot (-θ)csc (-θ)

  2. b) 2 sin2 t+sin t-31-cos2 t-sin t

Solution

  1. a) cot (-θ)csc (-θ)=cos (-θ)sin (-θ)1sin (-θ)Rewriting in terms of sines and cosines=cos (-θ)sin (-θ)sin (-θ)Multiplying by the reciprocal,sin (-θ)/1=cos (-θ)Removing a factor of 1,sin (-θ)/sin (-θ)=cos θThe cosine function is even.

    Recall that the sine function is odd, sin (-θ)=-sin θ, and the cosine function is even, cos (-θ)=cos θ. It can be shown that the tangent, the cotangent, and the cosecant functions are odd and the secant function is even. We can also simplify this expression using those identities:

    cot(-θ)csc(-θ)=-cotθ-cscθ=cotθcscθ=cosθsinθ1sinθ=cosθsinθsinθ1=cosθ.
  2. b) 2 sin2 t+sin t-31-cos2 t-sin t

    =2 sin2 t+sin t-3sin2 t-sin t=(2 sin t+3)(sin t-1)sin t (sin t-1)Substituting sin2 t for 1-cos2 t=2 sin t+3sin tFactoring in both the numerator and the denominator=2 sin tsin t+3sin tSimplifying=2+3sin t,or2+3 csc t

Now Try Exercises 17 and 19.

We can add and subtract trigonometric rational expressions in the same way that we do algebraic expressions, writing expressions with a common denominator before adding and subtracting numerators.

Example 4

Add and simplify: cosx1+sinx+tanx.

Solution

cos x1+sin x+tan x=cos x1+sin x+sin xcos xUsingtan x=sin xcos x=cos x1+sin xcos xcos x+sin xcos x1+sin x1+sin xMultiplying by forms of 1=cos2 x+sin x+sin2 xcos x (1+sin x)Adding=1+sin xcos x (1+sin x)Usingsin2 x+cos2 x = 1=1cos x,orsec xSimplifying

Now Try Exercise 27.

When radicals occur, the use of absolute value is sometimes necessary, but it can be difficult to determine when to use it. In Examples 5 and 6, we will assume that all radicands are nonnegative. This means that the identities are meant to be confined to certain quadrants.

Example 5

Multiply and simplify: sin3 x cos xcos x.

Solution

sin3 x cos xcos x=sin3 x cos2 x=sin2 x cos2 x sin x=sin x cos x sin x

Now Try Exercise 31.

Example 6

Rationalize the denominator:2tanx.

Solution

2tan x=2tan xtan xtan x=2 tan xtan2 x=2 tan xtan x

Now Try Exercise 37.

Often in calculus, a substitution is a useful manipulation, as we show in the following example.

Example 7

Express 9+x2 as a trigonometric function of θ without using radicals by letting x=3 tan θ. Assume that 0<θ<π/2. Then find sin θ and cos θ.

Solution

We have

9+x2=9+(3 tan θ)2Substituting 3 tan θ for x=9+9 tan2 θ=9 (1+tan2 θ)Factoring=9 sec2 θUsing1+tan2x=sec2x=3|secθ|=3secθ.For 0<θ<π/2,secθ>0, so|secθ|=sec θ.We can express9+x2=3 sec θassec θ=9+x23.

In a right triangle, we know that sec θ is hypotenuse/adjacent, when θ is one of the acute angles. Using the Pythagorean theorem, we can determine that the side opposite θ is x. Then from the right triangle, we see that

sin θ=x9+x2andcos θ=39+x2.

Now Try Exercise 45.

Sum and Difference Identities

We now develop some important identities involving sums or differences of two numbers (or angles), beginning with an identity for the cosine of the difference of two numbers. We use the letters u and v for these numbers.

Let’s consider a real number u in the interval [π/2, π] and a real number v in the interval [0, π/2]. These determine points A and B on the unit circle, as shown below. The arc length s is u-v, and we know that 0sπ. Recall that the coordinates of A are (cos u, sin u), and the coordinates of B are (cos v, sin v).

Using the distance formula, we can write an expression for the distance AB:

AB=(cos u-cos v)2+(sin u-sin v)2.

This can be simplified as follows:

AB=cos2 u-2 cos u cos v+cos2 v+sin2 u-2 sin u sin v+sin2 v=(sin2 u+cos2 u)+(sin2 v+cos2 v)-2(cos u cos v+sin u sin v)=2-2(cos u cos v+sin u sin v).

Now let’s imagine rotating the circle so that point B is at (1, 0), as shown at left. Although the coordinates of point A are now (cos s, sin s), the distance AB has not changed.

Again, we use the distance formula to write an expression for the distance AB:

AB=(cos s-1)2+(sin s-0)2.

This can be simplified as follows:

AB=cos2 s-2 cos s+1+sin2 s=(sin2 s+cos2 s)+1-2 cos s=2-2 cos s.

Equating our two expressions for AB, we obtain

2-2 (cos u cos v+sin u sin v)=2-2 cos s.

Solving this equation for cos s gives

(1)

cos s=cos u cos v+sin u sin v.

But s=u-v, so we have the equation

(2)

cos (u-v)=cos u cos v+sin u sin v.

Formula (1) above holds when s is the length of the shortest arc from A to B. Given any real numbers u and v, the length of the shortest arc from A to B is not always u-v. In fact, it could be v-u. However, since cos (-x)=cos x, we know that cos (v-u)=cos (u-v). Thus, cos s is always equal to cos (u-v). Formula (2) holds for all real numbers u and v. That formula is thus the identity we sought:

cos (u-v) = cos u cos v+sin u sin v.

The cosine sum formula follows easily from the one we have just derived. Let’s consider cos (u+v). This is equal to cos [u-(-v)], and by the identity above, we have

cos (u+v)=cos [u-(-v)]=cos u cos (-v)+sin u sin (-v).

But cos (-v)=cos v and sin (-v)=-sin v, so the identity we seek is the following:

cos (u+v) = cos u cos v-sin u sin v.

Example 8

Find cos (5π/12) exactly.

Solution

We can express 5π/12 as a difference of two numbers whose exact sine and cosine values are known:

5π12=9π12-4π12,or3π4-π3.

Then, using cos (u-v)=cos u cos v+sin u sin v, we have

cos 5π12=cos (3π4-π3)=cos 3π4 cos π3+sin 3π4 sin π3=-2212+2232=-24+64=6-24.

Now Try Exercise 51.

Consider cos (π/2-θ). We can use the identity for the cosine of a difference to simplify as follows:

cos(π2-θ)=cos π2 cos θ+sinπ2 sin θ=0cos θ+1sin θ=sin θ.

Thus we have developed the identity

(3)

sinθ=cos (π2-θ).This cofunction identity first appeared in Section 6.1.

This identity holds for any real number θ. From it we can obtain an identity for the cosine function. We first let α be any real number. Then we replace θ in sin θ=cos (π/2-θ) with π/2-α. This gives us

sin (π2-α)=cos [π2-(π2-α)]=cos α,

which yields the identity

(4)

cos α = sin (π2-α).

Using identities (3) and (4) and the identity for the cosine of a difference, we can obtain an identity for the sine of a sum. We start with identity (3) and substitute u+v for θ:

sin θ=cos (π2-θ)Identity (3)sin (u+v)=cos [π2-(u+v)]Substituting u+v for θ=cos [(π2-u)-v]=cos (π2-u) cos v+sin (π2-u) sin vUsing the identity for the cosine of a difference=sin u cos v+cos u sin v.Using identities (3) and (4)

Thus the identity we seek is

sin (u+v) = sin u cos v+cos u sin v.

To find a formula for the sine of a difference, we can use the identity just derived, substituting -v for v:

sin (u+(-v))=sin u cos (-v)+cos u sin (-v).

Simplifying gives us

sin (u-v) = sin u cos v-cos u sin v.

Example 9

Find sin 105° exactly.

Solution

We express 105° as the sum of two measures:

105°=45°+60°.

Then

sin 105°=sin (45°+60°)=sin 45° cos 60°+cos 45° sin 60°Usingsin (u+v) = sin u cos v+cos u sin v=2212+2232=2+64.

Now Try Exercise 55.

Formulas for the tangent of a sum or a difference can be derived using identities already established. A summary of the sum and difference identities follows.

Example 10

Find tan 15° exactly.

Solution

We rewrite 15° as 45°-30° and use the identity for the tangent of a difference:

tan 15°=tan (45°-30°)=tan 45°-tan 30°1+tan 45° tan 30°=1-3/31+13/3=3-33+3.

Now Try Exercise 53.

Example 11

Assume that sinα=23 and sinβ=13 and that α and β are between 0 and π/2. Then evaluate sin(α+β).

Solution

Using the identity for the sine of a sum, we have

sin (α+β)=sin α cos β+cos α sin β=23 cos β+13 cos α.

To finish, we need to know the values of cosβ and cosα. Using reference triangles and the Pythagorean theorem, we can determine these values from the diagrams:

cos α=53andcos β=223.Cosine values are positive in the first quadrant.

Substituting these values gives us

sin (α+β)=23223+1353=49 2+19 5,or42+59.

Now Try Exercise 65.

Example 12

Assume that cosα=-45 with α between π and 3π/2 and that cosβ=-25 with β between π/2 and π. Then evaluate cos(α-β).

Solution

Using the identity for the cosine of a difference, we have

cos (α-β)=cos α cos β+sin α sin β=(-45)(-25)+sin α sin β=825+sin α sin β.

We need to know the values of sinα and sinβ. Using reference triangles and the Pythagorean theorem, we can determine these values from the diagrams:

sin α=-35andsin β=215.

Substituting these values gives us

cos (α-β)=825+(-35)(215)=825-32125=8-32125.

Now Try Exercise 69.

7.1 Exercise Set

Multiply and simplify.

  1. 1. (sinx-cosx)(sinx+cosx)

  2. 2. tanx(cosx-cscx)

  3. 3. cosysiny(secy+cscy)

  4. 4. (sinx+cosx)(secx+cscx)

  5. 5. (sinϕ-cosϕ)2

  6. 6. (1+tanx)2

  7. 7. (sinx+cscx)(sin2x+csc2x-1)

  8. 8. (1-sint)(1+sint)

Factor and simplify.

  1. 9. sinxcosx+cos2x

  2. 10. tan2θ-cot2θ

  3. 11. sin4x-cos4x

  4. 12. 4sin2y+8siny+4

  5. 13. 2cos2x+cosx-3

  6. 14. 3cot2β+6cotβ+3

  7. 15. sin3x+27

  8. 16. 1-125tan3s

Simplify.

  1. 17. sin2xcosxcos2xsinx

  2. 18. 30sin3xcosx6cos2xsinx

  3. 19. sin2x+2sinx+1sinx+1

  4. 20. cos2α-1cosα+1

  5. 21. 4tantsect+2sect6tantsect+2sect

  6. 22. csc(-x)cot(-x)

  7. 23. sin4x-cos4xsin2x-cos2x

  8. 24. 4cos3xsin2x(sinx4cosx)2

  9. 25. 5cosϕsin2ϕsin2ϕ-sinϕcosϕsin2ϕ-cos2ϕ

  10. 26. tan2ysecy÷3tan3ysecy

  11. 27. 1sin2s-cos2s-2coss-sins

  12. 28. (sinxcosx)2-1cos2x

  13. 29. sin2θ-92cosθ+110cosθ+53sinθ+9

  14. 30. 9cos2α-252cosα-2cos2α-16cosα-10

Simplify. Assume that all radicands are nonnegative.

  1. 31. sin2xcosxcosx

  2. 32. cos2xsinxsinx

  3. 33. cosαsin2α-cos3α

  4. 34. tan2x-2tanxsinx+sin2x

  5. 35. (1-siny)(siny+1)

  6. 36. cosθ(2cosθ+sinθcosθ)

Rationalize the denominator.

  1. 37. sinxcosx

  2. 38. cosxtanx

  3. 39. cos2y2sin2y

  4. 40. 1-cosβ1+cosβ

Rationalize the numerator.

  1. 41. cosxsinx

  2. 42. sinxcotx

  3. 43. 1+siny1-siny

  4. 44. cos2x2sin2x

Use the given substitution to express the given radical expression as a trigonometric function without radicals. Assume that a>0 and 0<θ<π/2. Then find expressions for the indicated trigonometric functions.

  1. 45. Let x=asinθ in a2-x2. Then find cosθ and tanθ.

  2. 46. Let x=2tanθ in 4+x2. Then find sinθ and cosθ.

  3. 47. Let x=3secθ in x2-9. Then find sinθ and cosθ.

  4. 48. Let x=asecθ in x2-a2. Then find sinθ and cosθ.

Use the given substitution to express the given radical expression as a trigonometric function without radicals. Assume that 0<θ<π/2.

  1. 49. Let x=sinθ in x21-x2.

  2. 50. Let x=4secθ in x2-16x2.

Use the sum and difference identities to evaluate exactly.

  1. 51. sinπ12

  2. 52. cos75°

  3. 53. tan105°

  4. 54. tan5π12

  5. 55. cos15°

  6. 56. sin7π12

First write each of the following as a trigonometric function of a single angle. Then evaluate.

  1. 57. sin37°cos22°+cos37°sin22°

  2. 58. cos83°cos53°+sin83°sin53°

  3. 59. cos19°cos5°-sin19°sin5°

  4. 60. sin40°cos15°-cos40°sin15°

  5. 61. tan 20°+tan32°1-tan 20°tan 32°

  6. 62. tan35°-tan 12°1+tan35°tan12°

  7. 63. Derive the formula for the tangent of a sum.

  8. 64. Derive the formula for the tangent of a difference.

Assuming that sinu=35 and sinv=45 and that u and v are between 0 and π/2, evaluate each of the following exactly.

  1. 65. cos(u+v)

  2. 66. tan(u-v)

  3. 67. sin(u-v)

  4. 68. cos(u-v)

Assuming that cosα=-37 with α between π/2 and π and that cosβ=89 with β between 3π/2 and 2π, evaluate each of the following exactly.

  1. 69. cos(α+β)

  2. 70. sin(α-β)

Assuming that sinθ=0.6249 and cosϕ=0.1102 and that both θ and ϕ are first-quadrant angles, evaluate each of the following.

  1. 71. tan(θ+ϕ)

  2. 72. sin(θ-ϕ)

  3. 73. cos(θ-ϕ)

  4. 74. cos(θ+ϕ)

Simplify.

  1. 75. sin(α+β)+sin(α-β)

  2. 76. cos(α+β)-cos(α-β)

  3. 77. cos(u+v)cosv+sin(u+v)sinv

  4. 78. sin(u-v)cosv+cos(u-v)sinv

Skill Maintenance

Solve. [1.5]

  1. 79. 2x-3=2(x-32)

  2. 80. x-7=x+3.4

Given that sin31°=0.5150 and cos31°=0.8572, find the specified function value. [6.1]

  1. 81. sec59°

  2. 82. tan59°

Synthesis

Angles Between Lines. One of the identities gives an easy way to find an angle formed by two lines. Consider two lines with equations l1: y=m1x+b1 and l2: y=m2x+b2.

The slopes m1 and m2 are the tangents of the angles θ1 and θ2 that the lines form with the positive direction of the x-axis. Thus we have m1=tanθ1 and m2=tanθ2. To find the measure of θ2-θ1, or ϕ, we proceed as follows:

tanϕ=tan(θ2-θ1)=tanθ2-tanθ11+tanθ2tanθ1=m2-m11+m2m1.

This formula also holds when the lines are taken in the reverse order. When ϕ is acute, tanϕ will be positive. When ϕ is obtuse, tanϕ will be negative.

Find the measure of the angle from l1 to l2.

  1. 83. l1:2x=3-2y,

    l2:x+y=5

  2. 84. l1:3y=3x+3,

    l2:y=3x+2

  3. 85. l1:y=3,

    l2:x+y=5

  4. 86. l1:2x+y-4=0,

    l2:y-2x+5=0

  5. 87. Rope Course and Climbing Wall. For a rope course and climbing wall, a guy wire R is attached 47 ft high on a vertical pole. Another guy wire S is attached 40 ft above the ground on the same pole. (Source: Experiential Resources, Inc., Todd Domeck, Owner) Find the angle α between the wires if they are attached to the ground 50 ft from the pole.

  6. 88. Circus Guy Wire. In a circus, a guy wire A is attached to the top of a 30-ft pole. Wire B is used for performers to walk up to the tight wire, 10 ft above the ground. Find the angle ϕ between the wires if they are attached to the ground 40 ft from the pole.

  7. 89. Given that f(x)=cosx, show that

    f(x+h)-f(x)h=cosx(cosh-1h)-sinx(sinhh).
  8. 90. Given that f(x)=sinx, show that

    f(x+h)-f(x)h=sinx(cosh-1h)+cosx(sinhh).

Show that each of the following is not an identity by finding a replacement or replacements for which the sides of the equation do not name the same number.

  1. 91. sin5xx=sin5

  2. 92. sin2θ=sinθ

  3. 93. cos(2α)=2cosα

  4. 94. sin(-x)=sinx

  5. 95. cos6xcosx=6

  6. 96. tan2θ+cot2θ=1

Find the slope of line l1, where m2 is the slope of line l2 and ϕ is the smallest positive angle from l1 to l2.

  1. 97. m2=23,ϕ=30°

  2. 98. m2=43,ϕ=45°

  3. 99. Line l1 contains the points (-3,7) and (-3,-2). Line l2 contains (0,-4) and (2,6). Find the smallest positive angle from l1 to l2.

  4. 100. Line l1 contains the points (-2,4) and (5,-1). Find the slope of line l2 such that the angle from l1 to l2 is 45°.

  5. 101. Find an identity for cos2θ. (Hint: 2θ=θ+θ.)

  6. 102. Find an identity for sin2θ. (Hint: 2θ=θ+θ.)

Derive the identity.

  1. 103. tan(x+π4)=1+tanx1-tanx

  2. 104. sin(x-3π2)=cosx

  3. 105. sin(α+β)+sin(α-β)=2sinαcosβ

  4. 106. sin(α+β)cos(α-β)=tanα+tanβ1+tanαtanβ

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset