Appendix C

Specific reaction rate constants

The rate constant data for the reactions that follow in this appendix are presented as sets of chemical mechanisms for describing high temperature oxidation of various fuels. The order of their presentation follows the hierarchical approach to combustion modeling described by Westbrook and Dryer (Prog Energy Combust Sci 1984;10(1)). In this approach, reaction mechanisms are developed systematically, beginning with the simplest species (fuels) and reactions that are common subelements in the combustion of more complex species, and sequentially constructed by incorporating new species and reactions in order of increasing complexity. For example, the H2/O2 mechanism is a submechanism of the CO/H2/O2 mechanism, which is a submechanism of the CH2O/CO/H2/O2 mechanism, which are all submechanisms of a methanol or methane oxidation mechanism. Tables C1C6 provide examples of oxidation mechanisms for H2, CO, CH2O, CH3OH, CH4, and C2H6, respectively.
References for the origin of each mechanism are listed at the end of each table. The reader should refer to these references for the original source of each rate constant quoted. The backward rate constant at a given temperature is determined through the equilibrium constant at the temperature. The units are in cm3 mol s kJ for the expression k = ATn exp(E/RT).
Complete mechanisms for the high-temperature oxidation of propane and larger hydrocarbons are available in the literature (e.g., Warnatz J. Proc Combust Inst 1992;24:553–79 and Ranzi E, Sogaro A, Gaffuri P, Pennati G, Westbrook CK, Pitz WJ. Combust Flame 1994;99:201. Because of space limitations, only selected reactions for propane oxidation are presented in Table C7.
Significant progress has also been made on the development of low- and intermediate-temperature hydrocarbon oxidation mechanisms, and the reader is again referred to the literature.
Rate constant data for reactions of postcombustion gases including nitrogen oxides, hydrogen chloride, ozone, and sulfur oxides are presented in Tables C8C11.
While Table C8 includes reactions for the formation of thermal NO, it does not include those for prompt NO. Mechanisms and reaction rate data for prompt NO formation and various methods for the reduction of NO have been described by Miller and Bowman (Prog Energy Combust Sci 1989;15:287).
Many detailed reaction mechanisms are available from the Internet. GRI-Mech (http://combustion.berkeley.edu/Combustion_Laboratory/gri-mech/) is an optimized detailed chemical reaction mechanism developed for describing methane and natural gas flames and ignition. The latest release is GRI-Mech 3.0, which was preceded by versions 1.2 and 2.11. The conditions for which GRI-Mech was optimized are roughly 1000–2500 K, 10 Torr to 10 atm, and equivalence ratios from 0.1 to 5 for premixed systems.

Table C1

H2/O2 Mechanisma

AnE
H2–O2 Chain Reactions
1.1H + O2 ⇄ O + OH1.04 × 10140.0064.06
1.2dO + H2 ⇄ H + OH5.08 × 10120.0033.26
8.79 × 10140.0080.21
1.3OH + H2 ⇄ H + H2O2.16 × 1081.5114.35
1.4OH + OH ⇄ O + H2O3.34 × 1042.4280.76
H2–O2 Dissociation/Recombination Reactions
1.5bH2 + M ⇄ H + H + M4.58 × 10191.40435.16
εH2image = 2.5, εH2Oimage = 12.0, εCO = 1.9, εCO2image = 3.8, εAr = 0.0
H2 + Ar ⇄ H + H + Ar5.84 × 10181.10435.16
1.6bO + O + M ⇄ O2 + M6.16 × 10150.500.00
εH2image = 2.5, εH2Oimage = 12.0, εCO = 1.9, εCO2image = 3.8, εAr = 0.0
O + O + Ar ⇄ O2 + Ar1.89 × 10130.007.49
1.7bO + H + M ⇄ OH + M4.71 × 10181.000.00
εH2image = 2.5, εH2Oimage = 12.0, εCO = 1.9, εCO2image = 3.8, εAr = 0.75
1.8bH2O + M ⇄ H + OH + M6.06 × 10273.32505.45
εH2image = 3.0, εH2Oimage = 0.0, εCO = 1.9, εCO2image = 3.8, εO2image = 1.5, εN2image = 2.0
H2O + H2O ⇄ H + OH + H2O1.01 × 10262.44502.94
HO2 Reactions
1.9cH + O2 ⇄ HO2, k4.65 × 10120.440.00
H + O2 + M ⇄ HO2 + M, M = N2, k06.37 × 10201.722.18
α = 0.8, T∗∗∗ = 1.0 × 1030, T = 1.0 × 10+30
εH2image = 2, εH2Oimage = 14.0, εCO = 1.9, εCO2image = 3.8, εO2image = 0.78, εAr = 0.67
H + O2 + M ⇄ HO2 + M, M = Ar, k09.04 × 10191.502.06
α = 0.5, T∗∗∗ = 1.0 × 1030, T = 1.0 × 10+30
εH2image = 3, εH2Oimage = 21, εCO2image = 1.6, εO2image = 1.1, εN2image = 1.5
1.10HO2 + H ⇄ H2 + O22.75 × 1062.096.07
1.11HO2 + H ⇄ OH + OH7.08 × 10130.001.23
1.12HO2 + O ⇄ OH + O22.85 × 10101.003.03
1.13HO2 + OH ⇄ H2O + O22.89 × 10130.002.08
Table Continued

image

AnE
H2O2 Reactions
1.14dHO2 + HO2 ⇄ H2O2 + O24.20 × 10140.0050.21
1.30 × 10110.006.82
1.15cH2O2 ⇄ OH + OH, k2.00 × 10120.90204.00
H2O2 + M ⇄ OH + OH + M, k02.49 × 10242.30204.00
α = 0.42, T∗∗∗ = 1.0 × 1030, T = 1.0 × 10+30
εH2image = 3.7, εH2Oimage = 7.5, εH2O2image = 7.7, εCO = 2.8, εCO2image = 1.6, εO2image = 1.2, εN2image = 1.5
1.16H2O2 + H ⇄ H2O + OH2.41 × 10130.0016.61
1.17H2O2 + H ⇄ H2 + HO24.82 × 10130.0033.26
1.18H2O2 + O ⇄ OH + HO29.55 × 1062.0016.61
1.19dH2O2 + OH ⇄ H2O + HO21.74 × 10120.001.33
7.59 × 10130.0030.42

image

a Reaction rates in cm3 mol s kJ units, k = ATn exp(E/RT).

b ki = εi × kM, εi = 1 for chemical species not defined.

c The fall-off behavior of this reaction is expressed as k = k[Pr/(1 + Pr)]F, Pr = k0[M]/k, log(F) = [1 + [(log Pr + c)/(n  d{log Pr + c})]2]1 logFcent, c = 0.4  0.67log Fcent, n = 0.75  1.27log Fcent, d = 0.14, and Fcent = (1  α)exp(T/T∗∗∗) + αexp(T/T), Gilbert RG, Luther K, Troe J. Ber Bunsenges Phys Chem 1983;87:169.

d Rate represented by the sum of two Arrhenius expressions.

Burke MP, Chaos M, Ju Y, Dryer FL, Klippenstein SJ. Int J Chem Kinet 2012;44:444–74. Li J, Zhao Z, Kazakov A, Chaos M, Dryer FL, Scire Jr JJ. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int J Chem Kinet 2007;39:109–36. Li J, Zhao Z, Kazakov A, Dryer FL. An updated comprehensive kinetic model of hydrogen combustion. Int J Chem Kinet 2004;36:565.

Table C2

CO/H2/O2 Mechanisma

AnE
CO and CO2 Reactions
2.1bCO + O ⇄ CO2, k1.80 × 10100.009.98
CO + O + M ⇄ CO2 + M, k01.55 × 10242.7917.54
εH2image = 2.5, εH2Oimage = 12, εCO = 1.9, εCO2image = 3.8, εAr = 0.87
2.2CO + O2 ⇄ CO2 + O2.53 × 10120.00199.53
2.3CO + OH ⇄ CO2 + H2.23 × 1051.904.85
2.4CO + HO2 ⇄ CO2 + OH3.01 × 10130.0096.23
HCO Reactions
2.5bHCO + M ⇄ H + CO + M4.75 × 10110.70662.34
εH2image = 2.5, εH2Oimage = 6, εCO = 1.9, εCO2image = 3.8
2.6HCO + O2 ⇄ CO + HO27.58 × 10120.001.72
2.7HCO + H ⇄ CO + H27.23 × 10130.000.00
2.8HCO + O ⇄ CO + OH3.02 × 10130.000.00
2.9HCO + O ⇄ CO2 + H3.00 × 10130.000.00
Table Continued

image

AnE
2.10HCO + OH ⇄ CO + H2O3.02 × 10130.000.00
2.11HCO + HO2 ⇄ CO2 + OH + H3.00 × 10130.000.00
2.12HCO + HCO ⇄ H2 + CO + CO3.00 × 10120.000.00

image

a Reaction rates in cm3 mol s kJ units, k = ATn exp(E/RT).

b ki = εi × kM, εi = 1 for chemical species not defined.

Li J, Zhao Z, Kazakov A, Chaos M, Dryer FL, Scire Jr JJ. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int J Chem Kinet 2007;39:109–36.

Table C3

CH2O/CO/H2/O2 Mechanisma

AnE
CH2O Reactions
3.1bCH2O + M ⇄ HCO + H + M3.30 × 10396.30418.00
εH2image = 2.5, εH2Oimage = 12, εCO = 1.9, εCO2image = 3.8, εAr = 0.87
3.2bCH2O + M ⇄ CO + H2 + M3.10 × 10458.00408.00
εH2image = 2.5, εH2Oimage = 12, εCO = 1.9, εCO2image = 3.8, εAr = 0.87
3.3CH2O + H ⇄ HCO + H25.74 × 1071.9011.50
3.4CH2O + O ⇄ HCO + OH1.81 × 10130.0012.89
3.5CH2O + OH ⇄ HCO + H2O3.43 × 1091.201.88
3.6CH2O + O2 ⇄ HCO + HO21.23 × 1063.00217.60
3.7CH2O + HO2 ⇄ HCO + H2O24.11 × 1042.5042.72
3.8HCO + HCO ⇄ CH2O + CO3.00 × 10130.000.00

image

a Reaction rates in cm3 mol s kJ units, k = ATn exp(E/RT).

b ki = εi × kM, εi = 1 for chemical species not defined.

Li J, Zhao Z, Kazakov A, Chaos M, Dryer FL, Scire Jr JJ. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int J Chem Kinet 2007;39:109–36.

Table C4

CH3OH/CH2O/CO/H2/O2 Mechanisma,e

AnE
CH2OH Reactions
4.1CH2OH + M ⇄ CH2O + H + M1.00 × 10140.00105.00
4.2CH2OH + H ⇄ CH2O + H26.00 × 10120.000.00
4.3CH2OH + O ⇄ CH2O + OH4.20 × 10130.000.00
4.4CH2OH + OH ⇄ CH2O + H2O2.40 × 10130.000.00
4.5bCH2OH + O2 ⇄ CH2O + HO22.41 × 10140.0021.00
1.51 × 10151.000.00
4.6CH2OH + HO2 ⇄ CH2O + H2O21.20 × 10130.000.00
4.7CH2OH + HCO ⇄ CH2O + CH2O1.50 × 10130.000.00
CH3O Reactions
4.8CH3O + M ⇄ CH2O + H + M8.30 × 10171.2064.85
4.9CH3O + O ⇄ CH2O + OH6.00 × 10120.000.00
Table Continued

image

AnE
4.10CH3O + OH ⇄ CH2O + H2O1.80 × 10130.000.00
4.11bCH3O + O2 ⇄ CH2O + HO29.03 × 10130.0050.12
2.20 × 10100.007.31
4.12CH3O + HO2 ⇄ CH2O + H2O23.00 × 10110.000.00
CH3OH Reactions
4.13c,dCH2OH + H ⇄ CH3OH, k1.06 × 10120.500.36
CH2OH + H + M ⇄ CH3OH + M, k04.36 × 10314.6521.26
α = 0.6, T∗∗∗ = 1.0 × 102, T = 9.0 × 104, T∗∗ = 1 × 104
εH2image = 2, εH2Oimage = 6, εCO = 1.5, εCO2image = 2, εCH4image = 2
4.14c,dCH3O + H ⇄ CH3OH, k2.43 × 10120.500.21
CH3O + H + M ⇄ CH3OH + M, k04.66 × 10417.4458.91
α = 0.7, T∗∗∗ = 1.0 × 102, T = 9.0 × 104, T∗∗ = 1 × 104
εH2image = 2, εH2Oimage = 6, εCO = 1.5, εCO2image = 2, εCH4image = 2
4.15CH3OH + H ⇄ CH2OH + H23.20 × 10130.0025.50
4.16CH3OH + H ⇄ CH3O + H28.00 × 10120.0025.50
4.17CH3OH + O ⇄ CH2OH + OH3.88 × 1052.5012.89
4.18CH3OH + OH ⇄ CH3O + H2O1.00 × 1062.102.08
4.19CH3OH + OH ⇄ CH2OH + H2O7.10 × 1061.802.49
4.20CH3OH + O2 ⇄ CH2OH + HO22.05 × 10130.00187.86
4.21CH3OH + HO2 ⇄ CH2OH + H2O23.98 × 10130.0081.17
4.22CH2OH + HCO ⇄ CH3OH + CO1.00 × 10130.000.00
4.23CH3O + HCO ⇄ CH3OH + CO9.00 × 10130.000.00
4.24CH3OH + HCO ⇄ CH2OH + CH2O9.64 × 1032.9054.85
4.25CH2OH + CH2OH ⇄ CH3OH + CH2O3.00 × 10120.000.00
4.26CH3O + CH2OH ⇄ CH3OH + CH2O2.40 × 10130.000.00
4.27CH3O + CH3O ⇄ CH3OH + CH2O6.00 × 10130.000.00
4.28CH3OH + CH3O ⇄ CH3OH + CH2OH3.00 × 10110.0016.99

image

a Reaction rates in cm3 mol s kJ units, k = ATn exp(E/RT).

b Rate represented by the sum of two Arrhenius expressions, using the Arrhenius parameters of the current reaction line and the line below.

c ki = εi × kM, εi = 1 for chemical species not defined.

d The fall-off behavior of this reaction is expressed as k = k[Pr/(1 + Pr)]F, Pr = k0[M]/k, log(F) = [1 + [(log Pr + c)/(n  d{log Pr + c})]2]1 log Fcent, c = 0.4  0.67log Fcent, n = 0.75  1.27log Fcent, d = 0.14, and Fcent = (1  α)exp(T/T∗∗∗ + αexp(T/T) + exp(T/T∗∗), Gilbert RG, Luther K, Troe J. Ber Bunsenges Phys Chem 1983;87:169.

e Because of the formation of CH3 radicals, the methanol oxidation mechanism of Li et al. (the source below) also includes reactions 5.30–5.33, 5.36–5.47, 5.49, and 6.82. The heat of formation for OH used by Li et al. was ΔHf,298.15(OH) = 8.91 kcal/mol (Ruscic B, Wagner AF, Harding LB, Asher RL, Feller D, Dixon DA, Peterson KA, Song Y, Qian XM, Ng CY, Liu JB, Chen WW. J Phys Chem A 2002;106:2727) and thermochemical data for CH2OH was from Johnson RO, Hudgens JW. J Phys Chem 1996;100:19874. See the source below for more details.

Li J, Zhao Z, Kazakov A, Chaos M, Dryer FL, Scire Jr JJ. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int J Chem Kinet 2007;39:109–36.

Table C5

CH4/CH3OH/CH2O/CO/H2/O2 Mechanisma

AnE
C Reactions
5.1C + OH ⇄ CO + H5.00 × 10130.000.00
5.2C + O2 ⇄ CO + O2.00 × 10130.000.00
CH Reactions
5.3CH + H ⇄ C + H21.50 × 10140.000.00
5.4CH + O ⇄ CO + H5.70 × 10130.000.00
5.5CH + OH ⇄ HCO + H3.00 × 10130.000.00
5.6CH + O2 ⇄ HCO + O3.30 × 10130.000.00
5.7CH + H2O ⇄ CH2O + H1.17 × 10150.750.00
5.8CH + CO2 ⇄ HCO + CO3.40 × 10120.002.88
CH2 Reactions
5.9CH2 + H ⇄ CH + H21.00 × 10181.560.00
5.10CH2 + O ⇄ CO + H + H5.00 × 10130.000.00
5.11CH2 + O ⇄ CO + H23.00 × 10130.000.00
5.12CH2 + OH ⇄ CH2O + H2.50 × 10130.000.00
5.13CH2 + OH ⇄ CH + H2O1.13 × 1072.0012.55
5.14CH2 + O2 ⇄ CO + H + OH8.60 × 10100.002.10
5.15CH2 + O2 ⇄ CO + H2O1.90 × 10100.004.18
5.16CH2 + O2 ⇄ CO2 + H + H1.60 × 10130.004.18
5.17CH2 + O2 ⇄ CO2 + H26.90 × 10110.002.10
5.18CH2 + O2 ⇄ HCO + OH4.30 × 10100.002.10
5.19CH2 + O2 ⇄ CH2O + O5.00 × 10130.0037.65
5.20CH2 + HO2 ⇄ CH2O + OH1.81 × 10130.000.00
5.21CH2 + CO2 ⇄ CH2O + CO1.10 × 10110.004.18
1CH2 Reactions
5.22b1CH2 + M ⇄ CH2 + M1.00 × 10130.000.00
εH = 0
5.231CH2 + H ⇄ CH2 + H2.00 × 10140.000.00
5.241CH2 + O ⇄ CO + H21.51 × 10130.000.00
5.251CH2 + O ⇄ HCO + H1.51 × 10130.000.00
5.261CH2 + OH ⇄ CH2O + H3.00 × 10130.000.00
5.271CH2 + O2 ⇄ CO + OH + H3.00 × 10130.000.00
CH3 Reactions
5.28CH3 + H ⇄ CH2 + H29.00 × 10130.0063.18
5.291CH2 + H2 ⇄ CH3 + H7.00 × 10130.000.00
5.30CH3 + O ⇄ CH2O + H8.43 × 10130.000.00
5.31CH2OH + H ⇄ CH3 + OH9.64 × 10130.000.00
5.32CH3O + H ⇄ CH3 + OH3.20 × 10130.000.00
Table Continued

image

AnE
5.33b,cCH3 + OH ⇄ CH3OH, k2.79 × 10181.405.56
CH3 + OH + M ⇄ CH3OH + M, k04.00 × 10365.9213.14
α = 0.412, T∗∗∗ = 1.95 × 102, T = 5.9 × 103, T∗∗ = 6.39 × 103
εH2image = 2, εH2Oimage = 6, εCO = 1.5, εCO2image = 2, εCH4image = 2
5.34CH3 + OH ⇄ CH2 + H2O7.50 × 1062.0020.92
5.35CH3 + OH ⇄ 1CH2 + H2O8.90 × 10191.8033.75
5.36CH3 + O2 ⇄ CH3O + O1.99 × 10181.57122.30
5.37CH3 + O2 ⇄ CH2O + OH3.74 × 10110.0061.26
5.38CH3 + HO2 ⇄ CH3O + OH2.41 × 10100.769.73
5.39CH3O + CO ⇄ CH3 + CO21.60 × 10130.0049.37
CH4 Reactions
5.40b,cCH3 + H ⇄ CH4, k1.27 × 10160.631.60
CH3 + H + M ⇄ CH4 + M, k02.48 × 10334.7610.21
α = 0.412, T∗∗∗ = 1.95 × 102, T = 5.9 × 103, T∗∗ = 6.39 × 103
εH2image = 2, εH2Oimage = 6, εCO = 1.5, εCO2image = 2, εCH4image = 2
5.41CH4 + H ⇄ CH3 + H25.47 × 1071.9746.90
5.42CH4 + O ⇄ CH3 + OH3.15 × 10120.5043.06
5.43CH4 + OH ⇄ CH3 + H2O5.72 × 1061.9611.04
5.44CH3 + HO2 ⇄ CH4 + O23.16 × 10120.000.00
5.45CH4 + HO2 ⇄ CH3 + H2O21.81 × 10110.0077.74
5.46CH3 + HCO ⇄ CH4 + CO1.20 × 10140.000.00
5.47CH3 + CH2O ⇄ CH4 + HCO3.64 × 1065.424.18
5.48CH3 + CH3O ⇄ CH4 + CH2O2.41 × 10130.000.00
5.49CH3 + CH3OH ⇄ CH4 + CH2OH3.19 × 1013.1730.01
5.50CH4 + 1CH2 ⇄ CH3 + CH34.00 × 10140.000.00

image

a Reaction rates in cm3 mol s kJ units, k = ATn exp(E/RT).

b ki = εi × kM, εi = 1 for chemical species not defined.

c The fall-off behavior of this reaction is expressed as k = k[Pr/(1 + Pr)]F, Pr = k0[M]/k, log(F) = [1 + [(log Pr + c)/(n  d{log Pr + c})]2]1 log Fcent, c = 0.4  0.67log Fcent, n = 0.75  1.27log Fcent, d = 0.14, and Fcent = (1  α)exp(T/T∗∗∗ + αexp(T/T) + exp(T/T∗∗), Gilbert RG, Luther K, Troe J. Ber Bunsenges Phys Chem 1983;87:169.

Miller JA, Bowman CT. Mechanism and modeling of nitrogen chemistry in combustion. Prog Energy Combust Sci 1989;15:287–338. Li J, Zhao Z, Kazakov A, Chaos M, Dryer FL, Scire Jr JJ. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int J Chem Kinet 2007;39:109–36. Held T. The oxidation of methanol, isobutene, and methyl tertiary-butyl ether, No. 1978-T, PhD dissertation, Princeton University, Princeton, NJ 08544, 1993. Burgess Jr DRF, Zachariah MR, Tsang W, Westmoreland PR. Thermochemical and chemical kinetic data for fluorinated hydrocarbons, NIST technical note 1412, NIST, Gaithersburg, MD, 1995. The CH4 and C2H6 (Table C6) mechanisms are based on the high temperature Miller–Bowman mechanism updated and extended to intermediate temperatures with kinetic data from the other listed sources. The reaction sets provided here have not been evaluated against experimental data. For validated CH4 mechanisms, the reader is referred to those given in the text of this appendix. For example, the GRI-Mech (Bowman CT, Frenklach M, Gardiner W, Golden D, Lissianski V, Smith G, Wang H. Gas Research Institute Report, 1995) mechanisms are optimized mechanisms for describing the combustion kinetics of methane/air mixtures with nitric oxide chemistry.

Table C6

C2H6/CH4/CH3OH/CH2O/CO/H2/O2 Mechanisma

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset