References

[1] Lacal Arántegui R, Serrano González J. Technology, market and economic aspects of wind energy in Europe, JRC wind status report. 2015. http://www.evwind.es/2015/06/26/the-technology-market-and-economic-aspects-of-wind-energy/52993.

[2] Robertscribbler. Denmark kicking fossil fuels addiction with record 39 percent (and Growing) wind generation (http://robertscribbler.com/tag/wind-energy/).

[3] New record in worldwide wind installations, February 5, 2015 (http://www.wwindea.org/new-record-in-worldwide-wind-installations/).

[4] Hill J.S. A record year for wind, emerging markets driving global wind energy growth, CleanTechnica report, April, 2015. 2014. http://cleantechnica.com/2015/04/02/emerging-markets-driving-global-wind-energy-growth/.

[5] Burton T, Sharpe D, Jenkins N, Bossanyi E. Wind energy handbook. John Wiley & Sons; 2001.

[6] Wu B, Lang Y, Zargari N, Kouro S. Power conversion and control of wind energy systems. Wiley-IEEE Press; 2011.

[7] Blaabjerg F, Ma K. Future on power electronics for wind turbine systems. IEEE Journal of Emerging and Selected Topics in Power Electronics. September 2013;1(3).

[8] Edon M. 38 meter wind turbine blade design, Internship report. Denmark: Folkecenter for Renewable Energy; 2007.

[9] Jureczko M, Pawlak M, Mezyk A. Optimization of wind turbine blades. Journal of Materials Processing Technology. 2005;167:463–471.

[10] Xudong W, Zhong Shen W, Zhu W.J, Nørkær Sørensen J.N. Blade optimizations for wind turbines. Wind Energy. 2009;12:781–803.

[11] Satean T, Boonruang W, Chakrapong C, Suksri T. Grid connected based six-pulse converter applied a self-excited induction generator for wind turbine applications. Energy Procedia. 2011;9:128–139.

[12] Deraz S.A, Abdel Kader F.E. A new control strategy for a stand-alone self-excited induction generator driven by a variable speed wind turbine. Renewable Energy. 2013;51:263–273.

[13] Multon B, Gergaud O, Ben Ahmed H, Roboam X, Astier S, Dakyo B, et al. Etat de l'art dans les aérogénérateurs électriques, l'electronique de puissance vecteur d'optimisation pour les energies renouvelables. 2002:97–154.

[14] Abdullah M.A, Yatim A.H.M, Tan C.W, Saidur R. A review of maximum power tracking algorithms for wind energy systems,. Renewable Sustainable Energy Reviews. 2012;16(5):2355–3558.

[15] Blaabjerg F, Chen Z, Kjaer S.B. Power electronics as efficient interface in dispersed power generation systems. IEEE Transactions on Power Electronics. 2004;19(4):1184–1194.

[16] Lei Y, Mullane A, Lightbody G, Yacamini R. Modeling of the wind turbine with a doubly fed induction generator for grid integration studies. IEEE Transactions on Energy Conversion. 2006;21(1):257–264.

[17] Xiu-xing Y, Yong-gang L, Wei L, Ya-jing G, Xiao-jun W, Peng-fei L. Design, modeling and implementation of a novel pitch angle control system for wind turbine. Renewable Energy. 2015;81:599–608.

[18] Girsang I.P, Dhupia J.S. Pitch controller for wind turbine load mitigation through consideration of yaw misalignment. Mechatronics. 2015;32:44–58.

[19] Wei X, Pan Z, Liping L. Wind tunnel experiments for innovative pitch regulated blade of horizontal axis wind turbine. Energy. 2015;91:1070–1080.

[20] Anderson P.M, Bose A. Stability simulation of wind turbine systems. IEEE Transactions on Power Apparatus and Systems. 1983;PAS-102(12):3791–3795.

[21] Wasynczuk O, Man D.T, Sullivan J.P. Dynamic behavior of a class of wind turbine generators during random wind fluctuations. IEEE Transactions on Power Apparatus and Systems. 1981;PAS-100(6):2837–2845.

[22] Slootweg J.G, De Haan S.W.H, Polinder H, Kling W.L. General model for representing variable speed wind turbines in power system dynamics simulations. IEEE Transactions on Power Systems. 2003;18(1):144–151.

[23] Ackermann T, Söder L. An Overview of wind energy-status 2002. Renewable and Sustainable Energy Reviews. 2002;6:67–127.

[24] Heier S. Grid integration of wind energy conversion systems. Wiley; 2006.

[25] Chinchilla M, Arnaltes S, Burgos J.C. Control of permanent-magnet generator applied to variable-speed wind-energy systems connected to the grid. IEEE Transactions on Energy Conversion. 2006;21(1):130–135.

[26] Hansen A.D, Michalke G. Multi-pole permanent magnet synchronous generator wind turbines' grid support capability in uninterrupted operation during grid faults. IET Renewable Power Generation. 2009;3(3):333–348.

[27] Abedini A, Nasiri A. PMSG wind turbine performance analysis during short circuit faults. In: Proceedings of 2007 IEEE Canada electrical power Conference, 160–65, Canada, 25–26. October 2007.

[28] Zhang Y, Gong J, Xie D.J. Inverter control strategy for direct-drive permanent magnet wind generator under unbalance of three-phase source voltage. In: Proceedings of 11th International Conference on electrical machines and systems, 2497–501, Wuhan, China. 2008.

[29] Ng C.H, Li R, Bumby J. Unbalanced-grid-fault ride-through control for a wind turbine inverter. IEEE Transactions on Industrial Electronics. 2008;44(3):845–856.

[30] Song H.S, Nam V. Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Transactions on Industrial Electron. 1999;46(5):953–959.

[31] Yazdani A, Iravani R. A unified dynamic model and control for the voltage-source converter under unbalanced grid conditions. IEEE Transactions on Power Delivery. 2006;21(3):1620–1629.

[32] Bhattacharya L, Woodward J.L. Excitation Balancing of a self-excited induction generator for maximum power output. IEE Proceedings. 1998;135 Part C.

[33] Manwell J.F, McGowan J.G, Rogers A.L. Wind energy explained – theory, design and application. John Wiley & Sons; 2002.

[34] Vongmanee V, Monyakul V. A modeling of self-excited induction generators driven by compressed air energy based on field oriented control principle. In: 2nd IEEE International Conference on power and energy, Johor Baharu, Malaysia, December 1–3. 2008.

[35] Ong C.M. Dynamic simulation of electric machinery. Prentice Hall; 1997.

[36] Novotny D.W, Lipo T.A. Vector control and dynamics of AC drives. Clarendon Press Oxford; 1997.

[37] Krause P.C, Wasynczuk O, Sudhoff S.D. Analysis of electric machinery. IEEE Press; 1994.

[38] Murray A, Mirzaeva G. Renewable energy source emulator, Final Report. 2010.

[39] Mekhtoub S, Khaldi T, Ivanes M. Amplitude des courants et du couple de reconnexion d'une machine asynchrone auto-amorcée. Revue Internationale de Génie Electrique (RIGE). 2001;4(1–2):149–172.

[40] Al-Bahrani A.H. Analysis of Self-excited induction generators under unbalanced conditions. Electric Machines and Power Systems. 1996;24:117–129.

[41] Seyoum D. The dynamic analysis and control of a self-excited induction generator driven by a wind turbine [Ph.D. thesis]. Sydney, Australia: School of Electrical Engineering and Telecommunications, UNSW; 2003.

[42] Simões M.G, Bose B.K, Spiegel R.J. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. IEEE Transactions on Power Electronics. 1997;12(1):87–95.

[43] Martins C.A, Carvalho A.S. Technological trends in induction motor electrical drives. Power Tech Proceedings, IEEE Porto. 2001;2.

[44] Adzic E, Ivanovic Z, Adzic M, Katic V. Maximum power search in wind turbine based on fuzzy logic control. Acta Polytechnica Hungarica. 2009;6(1).

[45] Yidong C, Yulin Y, Liqiao W, Zhiyun J, Weiyang W. Grid-connected and control of MPPT for wind power generation systems based on the SCIG. In: 2nd International Asia Conference on informatics in control. Hong Kong: Automation and Robotics; March 2010:6–7.

[46] Krichen L, François B, Ouali A. Modélisation, commande et interaction de deux éoliennes à vitesse variable. Revue des Energies Renouvelables. 2007;10(2):225–230.

[47] Abad G, Rodríguez M.A, Poza J. Three level NPC converter based predictive direct power control of the doubly fed induction machine at low constant switching frequency. IEEE Transactions on Industrial Electronics. 2008;55(12):4417–4429.

[48] Nicolás C.V, Lafoz M, Iglesias J. Guidelines for the design and control of electrical generator systems for new grid connected wind turbine generator. In: Proceedings of 28th IECON Conference. vol. 4. November 2002:2898–2902.

[49] Rodriguez-Amenedo J.L, Arnalte S, Burgos J.C. Automatic generation control of a wind farm with variable speed wind turbines. IEEE Transactions on Energy Conversion. 2002;17(2):279–284.

[50] Hansen A.D, Sørensen P, Iov F, Blaabjeg F. Centralised power control of wind farm with doubly fed induction generators. Renewable Energy. 2006;31(7):935–951.

[51] Sørensen P, Hansen A.D, Iov F, Blaabjerg F, Donovan M.H. Wind farm models and control strategies report Risø-R-1464(EN). Roskilde, Denmark: Risø National Laboratory; August 2005.

[52] De Almeida R.G, Castronuovo E.D, Lopes J.A.P. Optimum generation control in wind parks when carrying out system operator requests. IEEE Transactions on Power Systems. 2006;21(2):718–725.

[53] Pena R, Cardenas R, Escobar E, Clare J, Wheeler P. Control system for unbalanced operation of stand-alone doubly fed induction generators. IEEE Transactions on Energy Conversion. 2007;22(2):544–545.

[54] Seman S, Niiranen J, Arkkio A. Ride-through analysis of doubly fed induction wind-power generator under unsymmetrical network disturbance. IEEE Transactions on Power Systems. 2006;21(4):1782–1789.

[55] Nass B.I, Undeland T.M, Gjengedal T. Methods for reduction of voltage unbalance in weak grids connected to wind plants. In: Proc. IEEE Workshop wind power impacts power systems, Oslo, Norway. 17–18 June 2002:1–7.

[56] Rathi M.R, Jose P.P, Mohan N. A novel H based controller for wind turbine applications operating under unbalanced voltage conditions. In: Proc. 13th International Conference in intelligent systems applications in power systems. 6-9 November 2005:355–360.

[57] Brekken T, Mohan N. A novel doubly-fed induction wind generator control scheme for reactive power control and torque pulsation compensation under unbalanced grid voltage conditions. In: Proceedings of PESC. vol. 2. 2003:760–764.

[58] Brekken T, Mohan N. Control of a doubly-fed induction wind generator under unbalanced grid voltage conditions. IEEE Transactions on Energy Conversion. 2005;22(1):129–135.

[59] Xu L, Wang Y. Dynamic modeling and control of DFIG based wind turbines under unbalanced network conditions. IEEE Transactions on Power Systems. 2007;22(1):314–323.

[60] Tahri A, Merabet Boulouiha H, Allali A, Tahri F.A. Multi-variable LQG controller-based robust control strategy applied to an advanced static VAR compensator, Acta Polytechnica Hungarica. Journal of Applied Sciences. 2013;10(4).

[61] Merabet Boulouiha H, Allali A, Tahri A, Draou A, Denai M. A simple MPPT based control strategy applied to a variable speed squirrel cage induction generator. Journal of Renewable and Sustainable Energy. 2012;4.

[62] Rashid M.H. Power electronics, circuits, devices and applications. 3rd ed. Prentice-Hall; 2007.

[63] Espinoza J.R. Inverters. In: Rashid M.H, ed. Power electronics handbook. Academic Press; 2001:225–267.

[64] Patel H.S, Hoft R.G. Generalized of harmonic elimination and voltage control in thyristor inverters Part I-Harmonic elimination. IEEE Transactions on Industrial Applications. 1973;IA-9:310–317.

[65] Rathnakumar D, Perumal J.L, Srinivasan T. A new software implementation of space vector PWM. In: Proceedings of IEEE SouthEast Conference. 8-10 April, 2005.

[66] Khalfallah M, El-Afia A, Saad A, Ghouili J. Etude comparative des performances de la modulation sinusoïdale régulière et la modulation vectorielle d'un onduleur à MLI. In: Canadian conference on electrical and computer Engineering. 1-4 May, 2005.

[67] Parekh R. V/F control of 3-phase induction motor using space vector modulation AN 955. Microchip Technology Inc; 2005.

[68] Rodríguez J, Lai J.S, Peng F.Z. Multilevel inverters: a survey of topologies, controls, and applications. IEEE Transactions on Industrial Electronics. 2002;49(4).

[69] Rodríguez J, Correa P, Morán L. A vector control technique for medium voltage multilevel inverters. IEEE Transactions on Industrial Electronics. 2002;49(4):882–888.

[70] Celanovic N, Boroyevic D. A fast space vector modulation algorithm for multilevel three-phase converters. In: Conf. Rec. IEEE-IAS annual meeting, Phoenix, AZ, Oct. 1999. 1999:1173–1177.

[71] Hammond P. A new approach to enhance power quality for medium voltage ac drives. IEEE Transactions on Industrial Applications. 1997;33:202–208.

[72] Tolbert L, Habetler T.G. Novel multilevel inverter carrier-based PWM method. IEEE Transactions on Industrial Applications. 1999;35:1098–1107.

[73] Liang Y, Nwankpa C.O. A new type of STATCOM based on cascading voltage-source inverters with phase-shifted unipolar SPWM. IEEE Transactions on Industrial Applications. 1999;35:1118–1123.

[74] Saeedifard M, Iravani R, Pou J. Analysis and control of DC capacitor-voltage-drift phenomenon of a passive front-end five level converter. IEEE Transactions on Industrial Electronics. 2007;54(6):3255–3266.

[75] Abad G, Lopez J, Rodriguez M, Marroyo L, Iwanski G. Doubly fed Induction machine modeling and control for wind energy generation. Wiley-IEEE Press; 2011.

[76] Guerrero J.M, de Vicuna L.G, Uceda J. Uninterruptible power supply systems provide protection. IEEE Industrial Electronics Magazine. 2007;1(1):28–38.

[77] Kocalmis A, Sunter S. Modelling and simulation of a multilevel inverter using space vector modulation technique. In: Proceedings of the Int. Conf. on TPE, Ankara, Turkey, May 2006. 2006:940–943.

[78] Chandra Sekhar O, Chandra Sekhar K. Simulation and comparison of 2-L & 3-L inverter fed induction motor DTC drives. International Journal of Computer and Electrical Engineering. 2001;3(5):676–681.

[79] Habetler T.G, et al. Direct torque control of induction machines using space vector modulation. IEEE Transactions on Industry Applications. 1992;28(5):1045–1053.

[80] Sapran S, Navani J.P. Three level inverter using MATLAB. MIT International Journal of Electrical and Instrumentation Engineering. 2011;1(1):20–24.

[81] Hasse K. About the dynamics of adjustable-speed drives with converter fed squirrel-cage induction motors (in German) [Ph.D. Dissertation]. Darmstadt Technische Hochschule; 1969.

[82] Blaschke. The principle of field orientation as applied to the new transvector closed loop control system for rotating field machines. Siemens Review. 1972;34:217–220 Reprinted in: Bose BK. Adjustable Speed AC drive systems. IEEE Press 1980;99:162–5.

[83] Abdul Wahab H.F, Sanusi H. Simulink model of direct torque control of induction machine. American Journal of Applied Sciences. 2008;5(8):1083–1090.

[84] Merabet Boulouiha H, Allali A, Laouer M, Tahri A, Denai M, Draou A. Direct torque control of multilevel SVPWM inverter in variable speed SCIG-based wind energy conversion system. Renewable Energy. 2015;80:140–152.

[85] EEE Std 519-1992, IEEE recommended practices and requirements for harmonic control in electrical power systems.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset