Chapter 1. SOA Service Oriented Architecture

In this chapter, we will explain the concepts and definitions related to SOA, and clarify some confusions regarding SOA. Let's discuss each of the following in detail:

  • What is SOA?
  • Why do we need SOA?
  • What are the various approaches to implementing SOA and what are the key differences between them?
  • What is a web service and how is it related to SOA?
  • What standards and specifications are there for web services?

What is SOA?

SOA is the acronym for Service Oriented Architecture. As it has come to be known, SOA is an architectural design pattern by which several guiding principles determine the nature of the design. Basically, SOA states that every component of a system should be a service, and the system should be composed of several loosely-coupled services. A service here means a unit of a program that serves a business process. "Loosely-coupled" here means that these services should be independent of each other, so that changing one of them should not affect any other services.

SOA is not a specific technology, nor a specific language. It is just a blueprint, or a system design approach. It is an architecture model that aims to enhance the efficiency, agility, and productivity of an enterprise system. The key concepts of SOA are services, high interoperability and loose coupling.

Several other architecture/technologies such as RPC, DCOM, and CORBA have existed for a long time, and attempted to address the client/server communication problems. The difference between SOA and these other approaches is that SOA is trying to address the problem from the client side, and not from the server side. It tries to decouple the client side from the server side, instead of bundling them, to make the client side application much easier to develop and maintain.

This is exactly what happened when object-oriented programming (OOP) came into play 20 years ago. Prior to object-oriented programming, most designs were procedure-oriented, meaning the developer had to control the process of an application. Without OOP, in order to finish a block of work, the developer had to be aware of the sequence that the code would follow. This sequence was then hard-coded into the program, and any change to this sequence would result in a code change. With OOP, an object simply supplied certain operations; it was up to the caller of the object to decide the sequence of those operations. The caller could mash up all of the operations, and finish the job in whatever order needed. There was a paradigm shift from the object side to the caller side.

This same paradigm shift is happening today. Without SOA, every application is a bundled, tightly coupled solution. The client-side application is often compiled and deployed along with the server-side applications, making it impossible to quickly change anything on the server side. DCOM and CORBA were on the right track to ease this problem by making the server-side components reside on remote machines. The client application could directly call a method on a remote object, without knowing that this object was actually far away, just like calling a method on a local object. However, the client-side applications continue to remain tightly coupled with these remote objects, and any change to the remote object will still result in a recompiling or redeploying of the client application.

Now, with SOA, the remote objects are truly treated as remote objects. To the client applications, they are no longer objects; they are services. The client application is unaware of how the service is implemented, or of the signature that should be used when interacting with those services. The client application interacts with these services by exchanging messages. What a client application knows now is only the interfaces, or protocols of the services, such as the format of the messages to be passed in to the service, and the format of the expected returning messages from the service.

Historically, there have been many other architectural design approaches, technologies, and methodologies to integrate existing applications. EAI (Enterprise Application Integration) is just one of them. Often, organizations have many different applications, such as order management systems, accounts receivable systems, and customer relationship management systems. Each application has been designed and developed by different people using different tools and technologies

at different times, and to serve different purposes. However, between these applications, there are no standard common ways to communicate. EAI is the process of linking these applications and others in order to realize financial and operational competitive advantages.

It may seem that SOA is just an extension of EAI. The similarity is that they are both designed to connect different pieces of applications in order to build an enterprise-level system for business. But fundamentally, they are quite different. EAI attempts to connect legacy applications without modifying any of the applications, while SOA is a fresh approach to solve the same problem. And in the following chapters, you will come to understand why SOA is a better designed approach.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset