Index

Note: Page numbers followed by f indicate figures and t indicate tables.

A

AA2024 alloy 25
Abdelmalek, F. 616
Abdullayev, E. 299–300
Absorption 615f
Absorption switching 478f
Accelerated salt immersion corrosion test 509–512, 525–526
Accelerated weathering 389–396
Acidic pickling surface modification 549f, 551f
Acrylic latex pilot plant 
agitation system in 359t
charging process 358
impeller selection 360t
mixing engineering parameters 360t
setup 359
Active agents 318–321
Active feedback 287–288, 301
Active-passive dissolution 5f
Additives 
applications of 337
definition of 337
overview of 337
Adhesion 378–379
Agitation system 359t
Air atmosphere 375
Air plasma spraying (APS) 45
Aircraft, corrosion in 603–604, 622–623, 624–625
Akid, R. 416–417
Al  See Aluminum
Al-acetylacetonate 107
Alkaline etching surface modification 550f, 551f
Alkyd coatings 318f
All-optical switches 471–473
Alloys 
corrosion of 
costs of 62–63
definition of 60–62
overview of 59–64, 79
prevention of 62–63
in gas turbine engines 32–33, 32f
magnesium 
overview of 537
SCC mechanisms in 545–546
types of 538
in marine applications 33
pretreatment coating selection of 64–65, 65f
super- 32–33, 32f
chemical composition of 39t
Cr content influencing 41
hot corrosion of 37
nickel-based 32–33, 32f, 48
type-I corrosion conditions and 37, 38f, 39f
type-II corrosion conditions and 38f
titanium 585–587
oxidized 598, 598f
two-layer model for 598, 598f
Alumina precursors 
Al-acetylacetonate 107
aluminum isopropoxide 106
overview of 106–107
Alumina scales 41, 53–55, 54f
Aluminide coatings, platinum incorporated into 42
Aluminum (Al) 27–28
corrosion sensor 615f
overlay coatings influenced by 42–43, 43f
precursors 112–114
Aluminum isopropoxide 106
Aluminum modified silica microparticles 297f
Aluminum modified silica submicroparticles 293f
American Society for Testing and Materials (ASTM) seawater 384–387
Ammonium molybdate 297f
Anastas, Paul 363–364
Anchor stirrer 349f
Annealing 666–667
Anodic inhibitor 10, 10f, 11f
Anodic oxidation 590–591
Anodic oxide film formation 680–681
Anodic protection 560
Anodizing 66–67
Anticorrosion coatings 
conducting polymer 
coating procedure in 412–413
examples 415–419
mechanism of protection 414–415
overview of 411–419
superhydrophobic coating 
fabrication procedures of 421–424
overview of 419–424
theoretical background of 419–420
superhydrophobic conducting polymers as 424–427
Antipina, M. N. 307
Aquence 21–22, 22f
Aqueous corrosion 
anodic oxide film formation 680–681
general 679
in situ FTIR 690
Aqueous emulsion based pilot plants 
buffers in 344
components involved in 343–346
emulsifiers in 344
emulsion feed process in 344
emulsion stabilizers in 343
initiators in 344
monomers in 343, 344
water in 344
Arc spraying 44–45
Army, U.S. 24
Artificial saliva 597t
Artificial scratch 271f
Artificial sweat 598t
ASTM-B117 standard 389–394
Atmospheric corrosion 680–689, 690–691
Atomic Force Microscopy (AFM) 382, 423f, 661–664
Atomic layer deposition (ALD) 102–104, 103f
Atomic oxygen irradiation 466
Attenuated total reflectance (ATR) 679
Attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) 692–693
Attritor 355
Au  See Gold
Au::VO2 nano-arrays 479–481
Avigal, Y. 117
Axial flow propellers 349f, 350–351

B

Ball mills 353–354, 354t, 355
Barrier 
coatings 7–10
properties 648–649
protection 414
Bell, M. S. 99–100
Benzotriazole (BTA) 323f
Bilayer structure 478
Biofilms, as pretreatment coatings 78–79
Biomaterials 586–587, 594–595, 596–598
Bisphenol A (BPA) 139–152
Bis(β-diketonate) silicon(IV) complexes 111–112, 112f
Bones 24
Boo, J.-H. 119
BPA  See Bisphenol A
Bragg wavelength shift 617f
Braun, P. V. 519–520
Bridges, corrosion in 609–610, 619
Brillouin corrosion expansion sensor 611f
Brillouin optical time domain reflectometry (BOTDR) 607, 607f, 611
Brown, E. 496–497
BTA  See Benzotriazole
Buffers 344
Burkhardt, W. 466–467
Burner rig test 50
Buttry, D. A. 285–286

C

Capacitances 667–668
Carbon nanotubes (CNTs) 197–198 See also Multiwalled carbon nanotube coatings
Carmona, N. 630
Caruso, M. M. 498
Cassie-Baxter equation 420, 421f
Casting-based methods 412
Cathodic inhibitor 10, 11f
Cathodic protection 28–29
ICCP for 
advantages of 30
overview of 30
overview of 29–30, 559
sacrificial anodes for 
advantages of 29
disadvantages of 30
overview of 29–30
Cathodic-protection coatings 12–14
CC Technologies Laboratories, Inc. 283–284
(cod)Pt(Me)2 113f
Ce-doped VO2 467
Cells 678–679
CeO2 nanoparticles 136, 152–160, 153f, 174–191
Ceramic coatings 
overview of 94
titanium, protective films as 595–596
Ceramic cores 292–297, 297f, 298–300
Ceramic matrix composites (CMCs) 94
Ceramic particles 298f
Ceramics 
nonoxide 
overview of 112–121
oxide 
alumina 106–107
overview of 106–112
silica 107–112
titania 107–112
zirconia 107–112
Cerium (Ce), VO2 doped with 467
Cerium ions 139–152
Cerium nitrate 152–160, 297f
Cerium oxide 152–160
Cerium salt 174–191
Cerium-based conversion coatings 70–71
Cerium-doped silane hybrid coatings  See Silane hybrid coatings
Chaddha, A. K. 119–120
Challener, C. 431–432
Chemical analysis 618f
Chemical deposition 421–423
Chemical intelligence 643
Chemical vapor deposition (CVD) 
ALE mode of 102–104, 103f
electron beam 101, 101f
fluidized bed 99f, 102
focused ion-assisted 104–105, 104f
laser-induced 98–99
metalorganic 
EBCVD 101, 101f
FBCVD 99f, 102
IACVD 104–105, 104f
LCVD 98–99, 98f
overview of 96–105, 97f
PECVD 99–100, 99f, 100f
techniques of 96–105
UVCVD 99, 99f
organometallic 96–97, 99
overview of 94–95
plasma-enhanced 99–100, 100f
precursors 
as silica precursors 110–112
as yttria precursors 110–112
as zirconia precursors 110–112
PVD compared with 94–95
UV-induced 99, 99f
variants 96–105
Chemically intelligent coatings 
characterizing 651–654
FTIR 652–654
for outdoor metalwork 651
performance of 651–654
testing of 651–654
weathered coated substrates 651–654
weathering studies of 651
China Lake, California 75
Chloride ions 619–621
Chlorophenol Red dye 630, 631f
Chromate coatings 135
Chromate conversion coatings (CCCs) 67–69
Chromia scale 41, 53–55, 54f
Chromium (Cr), superalloys influenced by content of 41
Chung, C. M. 493
Citric acid 264f, 266f, 267f
Civil engineering 609–610, 628–629, 630–631, 633
Clay 569–571
CM 247 LC superalloy 37, 38f, 39f, 53–55
CNTs  See Carbon nanotubes
Co  See Cobalt
Coated bronze substrates 644–647
Coating procedure 
casting-based methods as 412
electrodeposition 412–413
electropolymerization 
galvanostatic 413
overview of 412–413
potentiodynamic 413
potentiostatic 413
paint/resin-blended coatings 412
Coating substrates 649–650
Coating systems 14
ATR-FTIR 692
combinations of 21
for cultural heritage conservation 643–647
damage mechanisms 126–128, 127f
definition of 336
FTIR-reflection spectroscopy 692
functionality of 20
general process for 
overview of 338–340
sand mill route 338–340
thinning in 339–340
in situ FTIR 692–693
in situ Raman spectroscopy 685–689
inorganic 560–561
Laponite incorporated into 665–666
life of 41
metallic 560–561
microstructures of 50
outlook 128–129
precursor 369–370, 371
resistance 275f
survey 645f
thickness 516f
traditional 20
weathering studies of 644–647
Cobalt (Co), nanocrystalline 27, 27f, 28f
Cobalt/multiwalled carbon nanotube (Co/MWCNT) coatings 27
Coefficient of thermal expansion (CTE) 94
Colloidal assemblies 423–424
Composites 594
Concrete, compression resistance of 437, 437f See also Rebar concrete
Conducting polymer 21
anticorrosion coating 
coating procedure 412–413
examples 415–419
mechanism of protection 414–415
overview 411–419
Conductive polymer coatings 74–75
Container-based organic self-protecting coatings 322–325
Containers  See Microcontainers See also Nanocontainers
Continuous crack propagation 546
Controlled release coatings 
with inhibitor-loaded nanocontainers 78
as organic pretreatment coating 78
Convection 6f
Conversion coatings 
cerium-based 70–71
chromate 67–69
corrosion protection 410
in situ Raman spectroscopy 685–686
lanthanide-based 69–71
miscellaneous-based 71–72
overview of 67–72
phosphate 69
Copper 444–447, 445f, 446f
Core fraction 508–509, 524–525
Core microcontainers 311f
Corrosion 
of alloys 
costs 62–63
definition 60–62
overview 59–64, 79
prevention 62–63
in bridges 609–610, 619
as challenge 17
combating 284–287
cost of 18, 18f, 63–64, 63t, 283–284
current density 7f
definition of 538–539, 558
under different environments 61f
as economic problem 283–284
effects of 558
in Europe 283–284
flow diagram 62f
forms of 17, 61
globe influenced by 283–284
kinetics 3–7
loss percentage 18f
macroscopic forms of 62f
of metals 
costs 62–63
definition 60–62
overview 59–64, 79
prevention 62–63
methods for 284–287
microscopic forms of 62f
mitigation, with stannate conversion coatings 547–553
in other fluids 60
potential 7f, 217f
preventing 409
sectors influenced by 62
strategies 63–64
tests 205
thermodynamics 2–3
in U.S. 283–284
Corrosion by-products 622–624
Corrosion control 
corrosion measurements and 624–632
optical pH sensors for 626–632
relative humidity monitoring for 624–626, 627t
sol-gel coatings for 
corrosion applications of 450–453
overview of 447–453
Corrosion damages 397–402
Corrosion detector, turn-on 27–28
Corrosion fatigue 546
Corrosion inhibitors 10–11
in situ FTIR 691–692
in situ Raman spectroscopy 682–685
microcontainers with 315f, 316f
nanocontainers with 313f, 315f, 316f
natural passibity synthesizing 25–26
release of 25
Corrosion measurements 
corrosion control and 624–632
of corrosion precursors 617–624
of corrosion products 617–624
direct 
metallic sacrificial layers 612–617
overview of 609–612
indirect 618t
optical pH sensors 626–632
overview of 609–632
relative humidity monitoring 624–626, 627t
equipment 677–679
ATR 679
IR spectroscopy 678–679
Raman spectroscopy 677–678
methods 677–679
ATR 679
IR spectroscopy 678–679
Raman spectroscopy 677–678
overview of 673–674, 694
principles 
IR spectroscopy 676–677
Raman spectroscopy 674–676
Corrosion precursors 617–624
detection of 619–621
optical fiber technology for 618f, 625t
Corrosion prevention, measures of 
anodic protection as 560
cathodic protection as 559
coatings as 560–562
inhibitors as 559
overview of 559–562
Corrosion products 617–624
detection of 622–624
optical fiber technology for 618f
Corrosion protection 
conversion coatings 410
organic coatings 410–411
overview of 409, 410–411
Corrosion sensing 613t See also Corrosion measurements
Corrosion studies 596–598
Corrosion-control coatings  See also Corrosion inhibitors
barrier 7–10
cathodic-protection 12–14
electrochemical aspects of 
corrosion 2–7
overview of 1, 7–14, 15
systems 14
Coupons 383–396
Cr  See Chromium
Creamers 21
Creep strength 32–33
Crevice corrosion 
example of 542f
overview of 541–543
schematic representation of 542f
“Criteria for a Recommended Standard: Occupational Exposure to Hexavalent Chromium” (NIOSH) 68–69
Cross-linking agent 137
Crucible test 51
Crunteanu, A. 462, 474
Cr(VI) 67–69
Culturally significant works 
chemically intelligent coatings 
characterization 651–654
FTIR 652–654
for outdoor metalwork 651
overview 651–654
performance 651–654
weathered coated substrates characterization 651–654
weathering studies 651
experimental details 
for characterizing substrates 650–651
of coated panels 650
for coating substrates 649–650
overview 649–651
for weathering studies 650
overview of 641–649, 669
barrier properties 648–649
chemical intelligence 643
commonly used coatings 643–647
intelligence 643
material cultural heritage 641–642, 647–648
physical intelligence 643
protective coatings 641–642
protective films 648–649
weathering studies 644–647
physically intelligent coatings 
annealing 666–667
assessment 668–669
barrier properties 666–667
capacitances 667–668
characterization 654–666
electrolyte swollen films 667–668
modified Laponite 658–660, 661–664, 665–666
performance testing 666–669
SAXS data 661
synthetic nanoclay 654–658
volume fractions 667–668
water 667–668
waterborne nanocomposites coatings 654–657
waterborne PVDF-clay nanocomposites 666–667
x-ray methods 660–661
Cured coatings 369–370, 371–374
Cyclic voltammetry 201, 205–216

D

Damage mechanisms 126–128, 127f
Davy, Humphrey 559
Dean Test 51
DeBerry, D. W. 74, 558
Dermer, O. 114–115
Detonation gun spraying 45
Dexter, S. C. 543–544
4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) 320f, 323f
Dicyclopentadiene (DCPD) 24
Diffusion coatings 42
Diisocyanate-based one-part self-healing anticorrosive coating 
HDI-based 
accelerated salt immersion corrosion test of 509–512
anticorrosive performance of 517–519
capsules diameter influencing 515f
coating thickness influencing 516f
exposure time influencing 515f
healing reaction of 512f
parameters influencing 517–519
preparation of 509
salt spray test 512–517
scribed regions 511f
water's reaction with 512f
weight fraction of microcapsules influencing 516f
microcapsules 
chemical constituent 506–507
diameter 507–508
fill content 506t
morphology 507–508
MRT 506t
thermal property 508–509
microencapsulation of 503–506
Dip-coating 
overview of 588–589
schematics of 588f
of titanium 588–589
Direct emulsion 300–301
Direct measurements, corrosion 
with metallic sacrificial layers 612–617
OFS for 613t
overview of 609–612
Discontinuous crack propagation 546
Dispersion 
definition of 337–338
factors influencing 338
process 
grinding 338
liquid/solid 338
overview 337–338
separation 338
stabilization 338
stages 338
wetting 338
Distributed sensing 607
DMS-4 superalloy, oxidation characteristics of 40–41, 40f
Dopant concentration 161
Doping effects 466–471
Driscoll, T. 475
Drug release concept 20
Dry corrosion 61
Dufek, E. J. 285–286
Dumas-Bouchiat, F. 481–483

E

EAP-based anticorrosive coatings  See Electroactive polymer-based anticorrosive coatings
Electrical circuits 221f
Electrical switches 473
Electrical-potential-induced wettability conversion 427f
Electroactive polymer (EAP)-based anticorrosive coatings 
nanocomposite 
clay 569–571
graphene 573–574
hydrophobic 575–580
nanoparticle 571–573
overview of 567–580
silicate nanolayer 569–571
SiO2 571–573
superhydrophobic 575–580
TiO2 571–573
Electro-active polymers  See Conducting polymer
Electrochemical corrosion measurements 581t
Electrochemical impedance spectroscopy (EIS) 203–204, 216–229, 648–649, 651–652, 666–667
Electrochemical methods 51, 52
Electrode 60
Electrodeposition 412–413
Electrokinetic potential 201
Electrolyte 60
Electrolyte swollen films 667–668
Electrolytic cell 541f
Electrolytic deposition 591–592
Electron beam chemical vapor deposition (EBCVD) 101, 101f
Electron beam physical vapor deposition (EB-PVD) processes 
overview of 45
thermal spraying processes compared with 46t
Electronically conducting polymer coating 687–689
Electropolymerization 
galvanostatic 413
overview of 412–413
potentiodynamic 413
potentiostatic 413
Electrospun smart coating 442–447
Elemental analysis 201
Emission spectra 263f, 276f, 278f, 279f, 280f
Emulsifiers 344
Emulsion droplets 311–317
interfacial polyaddition and 311–315
interfacial polycondensation and 311–315
Emulsion feed process 344–345
Emulsion polymerization 315–317
Emulsion stabilizers 343
coatings 255–256
definition of 251
experiment 
citric acid 264f, 266f
coating resistance 275f
color changes 264f, 273f
conclusion 280–281
cross-section 270f, 274f
discussion 259–280
emission spectra 263f, 276f, 278f, 279f, 280f
excitation spectra 263f
gloss change 264f, 267f, 272f
immersion 264f, 266f, 267f
main peak 276f, 278f, 279f, 280f
materials 256–259
overview 280–281
potassium pyrophosphate immersion 267f, 268f, 269f, 270f
procedures 256–259
results 259–280
roughness values 265f, 268f
salt spray exposure 271f
surface 262f, 269f, 271f, 273f
trend of intensity 276f
trend of luminescent properties 275–280
trend of protective properties 261–275
layers 254f, 257t, 259–261, 263f
overview of 251–252, 255–256
porosity 254f
properties 261–280
protection 261–275
Energy-dispersive X-ray spectroscopy (EDX) analysis 529f
Ennobling mechanism 414
Environmental Protection Agency (EPA) 363–364
Epoxy coating 686
Equipment 
corrosion monitoring 677–679
ATR 679
IR spectroscopy 678–679
Raman spectroscopy 677–678
paints and coating industry 
filters as 356–357
mills as 353–355
mixers as 347–353
overview of 347–357
propellers as 349f
pilot plant 
overview of 342–343
polymer emulsion 345
support units 342–343
spectroscopic techniques 677–679
ATR 679
IR spectroscopy 678–679
Raman spectroscopy 677–678
Europe 283–284
European Union (EU) 68–69
Evanescent field optical fiber pH sensor 608f
Evans, U. R. 219–223, 228–229
Excitation spectra 263f
Experiments 
culturally significant works 
characterizing substrates 650–651
coated panels 650
coating substrates 649–650
overview of 649–651
weathering studies 650
high performance protective coatings 
characterizing substrates 650–651
coated panels 650
coating substrates 649–650
overview 649–651
weathering studies 650
hydrogen evolution rates 547f
laboratory 
immersion tests 383–385
overview of 383–396
surface appearance investigations 385–396
luminescent enamel 
coating resistance 275f
color changes 264f, 273f
cross-section 270f, 274f
emission spectra 263f, 276f, 278f, 279f, 280f
excitation spectra 263f
gloss change 264f, 267f, 272f
immersion 264f, 266f, 267f
main peak 276f, 278f, 279f, 280f
materials 256–259
overview 280–281
potassium pyrophosphate immersion 267f, 268f, 269f, 270f
procedures of 256–259
results of 259–280
roughness values of 265f, 268f
salt spray exposure 271f
surface in 262f, 269f, 271f, 273f
trend of intensity in 276f
trend of luminescent properties in 275–280
trend of protective properties in 261–275
nanotube 201–203
outdoor 396–402
SHCs 
analytical methods in 138–139
composition of 138t
overview of 137–139
sample preparation in 137–138
steel substrates 216–239
substrates 649–651
vitreous enamel 
citric acid in 264f, 266f
coating resistance in 275f
color changes in 264f, 273f
conclusion of 280–281
cross-section of 270f, 274f
discussion of 259–280
emission spectra of 263f, 276f, 278f, 279f, 280f
excitation spectra in 263f
gloss change in 264f, 267f, 272f
immersion in 264f, 266f, 267f
main peak in 276f, 278f, 279f, 280f
materials in 256–259
overview of 280–281
potassium pyrophosphate immersion in 267f, 268f, 269f, 270f
procedures of 256–259
results of 259–280
roughness values of 265f, 268f
salt spray exposure in 271f
surface in 262f, 269f, 271f, 273f
trend of intensity in 276f
trend of luminescent properties in 275–280
trend of protective properties in 261–275
ZRPs 
low carbon steel substrates in 203–205
materials in 199–200
methods in 201–205
nano-size particles in 199, 201–203, 205–216
nanotubes in 201–203
overview of 199–205, 239–243
paint coatings in 200, 203–205, 216–239
preparation of 199, 200
results of 205–243
steel substrates in 216–239
synthesis in 199–200

F

See Fluorine
Fabrication procedures 
chemical deposition as 421–423
colloidal assemblies 423–424
other methods 424
Federal Register 68–69
Feed processes 344–345
Fernelius, W. 114–115
Ferrara, D. W. 479–480
Fiber Bragg gratings (FBGs) 605–606, 616–617
Fiber glass-reinforced polymer-optical fiber Bragg gratings (FGRP-OFBG) bar 609–610, 610f
Field Emission Scanning Electron Microscopy (FESEM) 380–382
Filiform corrosion 
example of 543f
overview of 543–544
Filiform corrosion test 324f
Fill content 506t
Film formation 680–681
Filters, in paints and coating industry 
overview of 356–357
purification methods 356
Flame spraying 44
Fluidized bed chemical vapor deposition (FBCVD) 102, 102f
Fluorescence, scheme of 621f
Fluorine (F) 466–467, 468f
Focused ion-assisted chemical vapor deposition (IACVD) 104–105, 104f
Fourier-transform infrared (FTIR) spectroscopy 201–202, 207–208, 369, 652–654, 658–660
Fourier-transform infrared-reflection (FTIR-reflection) spectroscopy 692
Frit 251–252
FTIR-reflection spectroscopy  See Fourier-transform infrared-reflection spectroscopy
Furnace test 51

G

Galvanic corrosion 
example of 545f
overview of 544–545
schematic representation of 544f
seawater 545f
Galvanized steel 136 See also Hot-dip galvanized substrates
Galvanostatic electropolymerization 413
García, S. J. 493, 497
Gas turbine engines 
air 33, 33t
alloys used in 32–33, 32f
blades 30–31, 31f, 32–33, 48
component lifetime 30–31
contaminants 33t
fuel 33, 33t
hot corrosion of 30–33
General aqueous corrosion 679
General corrosion 
example of 540f
overview of 539
schematic representation of 539f
Glass fibers 499
Glow discharge chemical vapor deposition  See Plasma-enhanced chemical vapor deposition
Glow-discharge optical-emission spectroscopy (GD OES) 204, 230–231
Gold (Au) 476–477, 478
Golecki, I. 116
Gonzalez, M. 417
Graphene nanocomposites 573–574
Green chemistry 363–364
Green coating compositions (GCC) 363–364 See also Smart chemistry, development of
characterization methodology 
nanoindentation analysis 376–379
overview 368–382
spectroscopic analysis 368–374
surface morphology 380–382
thermal analysis 374–375
evaluation of 
laboratory experiments 383–396
overview of 382–402
overview of 404–405
Grignard process 118
Grinding 338
Group IV metal coatings 71
Growth mechanisms, nucleation and 125–126, 125f
Grundmeier, G. 77
G2MT Laboratories 63

H

[H]1H,1H′,2H,2H′-perfluorooctyl triethoxysilane (POTS)  See Perfluorooctyl triethoxysilane
Haase, M. F. 308–309
Habel, W. R. 629–630
Hafnium 47–48
Haglund, R., Jr. 463–464
Halloysite nanotubes 293f, 298f
Halloysite-based containers 320f, 323f
Halloysites 297f
Hamdy, A. 25
Hanlon, T. 466
Hard anodization process 66–67
HDG substrates  See Hot-dip galvanized substrates
HDI-based self-healing anticorrosive coating  See Hexamethylene diisocyanate-based self-healing anticorrosive coating
Heller, D. K. 70–71
Herrasti, P. 417–418
Hexamethylene diisocyanate (HDI)-based self-healing anticorrosive coating 
accelerated salt immersion corrosion test 509–512
anticorrosive performance 517–519
capsules diameter influencing 515f
coating thickness influencing 516f
exposure time influencing 515f
formulations of 513t
healing reaction of 512f
parameters influencing 517–519
preparation of 509
salt spray test 512–517
scribed regions 511f
water's reaction with 512f
weight fraction of microcapsules influencing 516f
Hexavalent chromium 11
Hideki Shirakawa 557
High performance protective coatings 
chemically intelligent 
EIS and 651–652
FTIR and 652–654
outdoor metalwork 651
overview of 651–654
performance of 651–654
testing of 651–654
weathered coated substrates characterization and 651–652
weathering studies of 651
experimental details 
for characterizing substrates 650–651
of coated panels 650
for coating substrates 649–650
overview 649–651
for weathering studies 650
overview of 641–649, 669
barrier properties 648–649
chemical intelligence 643
commonly used coatings 643–647
intelligence 643
material cultural heritage 641–642, 647–648
physical intelligence 643
protective films 648–649
weathering studies 644–647
physically intelligent 
AFM and 661–664
annealing of 666–667
assessment of 668–669
barrier properties of 666–667
capacitances of 667–668
characterizing 654–666
electrolyte swollen films 667–668
modified Laponite 658–660, 661–664, 665–666
performance testing of 666–669
SAXS data and 661
synthetic nanoclay and 654–658
volume fractions and 667–668
water and 667–668
waterborne nanocomposites coatings and 654–657
waterborne PVDF-clay nanocomposites and 666–667
x-ray methods for 660–661
High temperature intelligent coatings 30–33
High velocity oxy-fuel spraying (HVOF) 45
High-Speed Disperser (HSM) 353
High-speed mixer 349f
Hinton, BRW 70
Hollow tubes 498, 499–500, 500f
Horizontal kneader 349f, 352
Hot corrosion 
comparison of techniques 52t
definition of 33
of gas turbine engines 30–33
incubation period 34–35
initiation stage 35
mechanism of 34–36
overview of 33–41
oxides for resistance to 36
propagation stage 35–36
of superalloys 37
types of 34
Hot-dip galvanized (HDG) substrates 161–173, 174–191
Hu, W. 616
Humidity monitoring 624–626, 627t
Hybrid coatings 21
sol-gel 
overview of 72–74
stages of 73
titanium, protective films as 594–595
Hybrid metamaterial devices 473–476
Hydrochloric acid (HCl) 526–530
Hydrogen evolution 551t
Hydrogen evolution rates experimental setup 547f
Hydrophobic coatings 575–580
Hydroxyapatite (HA) 594
8-hydroxyquinoline (8-HQ) 309f, 320f, 323f
Hysteresis loops 468f, 469f

I

Immersion tests 205, 216–229
ASTM seawater 384–387
of coupons 383–396
overview of 383–385
sodium sulfate solution 384–385, 387–389
Impellers 349f, 360t
Implants  See Titanium
Impressed current cathodic protection (ICCP) system 29
advantages of 30
overview of 30
In situ emulsion polymerization 315–317
In situ Fourier-transform infrared spectroscopy (In situ FTIR), applications of 690–693
aqueous corrosion 690
atmospheric corrosion 690–691
coatings 692–693
corrosion inhibitors 691–692
In situ polymerization 498, 519–522
In situ Raman spectroscopy, applications of 680–689
aqueous corrosion 680–682
atmospheric corrosion 680–689
coatings 685–689
corrosion inhibitors 682–685
Inclined propeller 349f
Incralac 643–647
Indirect measurements 618t
Industrial sectors 19t
Inert atmosphere 375
Infrared (IR) path 678–679
Infrared (IR) spectroscopy 
cells 678–679
IR path 678–679
optical windows 678–679
overview of 676–677, 678–679
Inhibitor-loaded nanocontainers 78
Inhibitors 20, 297f, 559
Initiators 344
Inorganic coatings 560–561
IN 738 LC superalloy 46f, 47f
In-situ polymerization 24–25
Intelligence 
chemical 643
physical 643
benefits offered by 20
burner rig test 50
as commercially viable 20
concept of 48–55
crucible test 51
definition of 18–19
developed 52–55
development of 49, 647–648
electrochemical methods 51, 52
furnace test 51
for material cultural heritage 647–648
microstructure of 49f
outlook 55–56
overview of 18–19, 19t, 55–56
performance of 52–55, 53f, 54t
techniques for assessment of 50–52
thermogravimetric test 51
zones 50
Intensity 276f, 278f, 279f, 280f
Interfacial physical phenomena 301–310
irreversible interfacial attachment and 307–310
L-b-L polyelectrolyte interfacial adsorption and 305–307
Pickering emulsions and 307–310
solvent induced interfacial precipitation and 301–304
Interfacial polyaddition 311–315
Interfacial polycondensation 311–315
Interfacial polymerization 498, 503–506
Interferometers 606
Interferometric cavity 606f
Intergranular corrosion 546
Intergranular stress corrosion cracking (intergranular SCC) 546
International Copper Research Association (INCRA) 643–644
Interrogation principles 604–609
Inverse emulsion 300–301
Ion chloride 622f
IR path  See Infrared path
IR spectroscopy  See Infrared spectroscopy
Iron corrosion 491–492, 492f
Isocyanate monomer 502, 503f

J

Jeong, S. H. 117–118
Jiang, X. 466
Jud, K. 493
Jung, I. N. 119

K

Kalck, P. 113–114
Kamalisarvestani, M. 483
Kaplan, M. 117
Katon, J. E. 557
Kawagishi, K. 48
Kendig, M. 203–204
Kilo lab 341, 342t
Kim, Y. 118
Kinetics 3–7
Kneaders 349f, 352
Kumar, A. 24
Kuroda, S. 45

L

Laboratory experiments 
immersion tests 383–385
overview of 383–396
surface appearance investigations 385–396
Lanthanide-based conversion coatings 
overview of 69–71
properties of 69
Larkin, D. J. 119–120
Laser oxidation 590
Laser-induced chemical vapor deposition (LCVD) 98–99
Latex, properties of 359t
Layer-by-layer (LbL) approach 77–78
microcontainers prepared by 305–307
nanocontainers prepared by 305–307
polyelectrolyte interfacial adsorption 305–307
Layered double hydroxides (LDHs) 
microcontainers on basis of 291–292
nanocontainers on basis of 291–292
LbL approach  See Layer-by-layer approach
Leaves 575–580
Lee, J. Y. 562–563
Leon-Silva, U. 419
Li, Y. 483
Liquid core 309f
Liquid delivery systems, effect of solvent 122–124
Liu, H. 422–423
Lomova, M. V. 307
Long period grating pair (LPGP) 621
Long-afterglow phosphors 255
Long-distance embedded optical fiber sensor (LEOFS) 611
Low carbon steel substrates 203–205
Low temperature intelligent coatings 
categorizing 20–21
overview of 20–22
Luminescent effect 257t, 270–271
Luminescent materials, properties of 255
Luna Innovations 24

M

MacDiarmid, A. G. 74, 563
Magnesium alloys 
overview 537
SCC mechanisms 545–546
types 538
Magnesium corrosion, common forms of 
corrosion fatigue as 546
crevice corrosion as 541–543
filiform corrosion as 543–544
galvanic corrosion as 544–545
general corrosion as 539
intergranular corrosion as 546
overview of 538–546
pitting corrosion as 540–541
SCC as 545–546
Main peak 276f, 278f, 279f, 280f
Material cultural heritage 641–642, 647–648 See also Culturally significant works
Maximum contrast 481f
MCrAlY coatings  See Overlay coatings
Mengoli, G. 74
Mercaptobenzothiazole (MBT) 297f, 313f
Mesoporous microparticles 293f, 298f
Mesoporous nanoparticles 293f
Metallic coatings 12–13, 560–561
Metallic sacrificial layers 612–617
Metalorganic chemical vapor deposition (MOCVD) 
EBCVD 101, 101f
FBCVD 99f, 102
IACVD 104–105, 104f
LCVD 98–99, 98f
overview of 96–105, 97f
PECVD 99–100, 99f, 100f
techniques 96–105
UVCVD 99, 99f
Metal-organic precursors 94–95
Metalorganics 96–97
Metals 
active dissolution of 4f
corrosion of 
costs of 62–63
definition of 60–62
overview of 59–64, 79
preventing 62–63
passive dissolution of 5f
Metalwork 651
Metamaterial devices 473–476
Methylbenzothiazole (MeBT) 316f
Microbial growths 20
Microcapsules  See also Microencapsulation
average diameter of 509f
diisocyanate-based one-part self-healing anticorrosive coating 
chemical constituent of 506–507
core fraction of 508–509
diameter of 507–508
fill content of 506t
morphology of 507–508
MRT of 506t
thermal property of 508–509
organic silane-based one-part self-healing anticorrosive coating 
accelerated salt immersion corrosion test of 525–526
chemical constituent of 522
core fraction of 524–525
corrosion protection performance of 526–530
corrosion retardant effect schematic diagram of 530f
diameter of 522–524
HCl solution and 526–530
morphology of 522–524
POTS-based self-healing anticorrosive coating with 525
thermal property of 524–525
polymers incorporated in 23f
scratched coating of 517–519, 518f
shell structure of 508f
shell thickness of 509f
spherical shaped 508f
TGA curve 510f
weight fraction of 516f
Microcontainers 
active agents released from 318–321
assembly steps 298f
with ceramic core 292–297, 297f, 298–300
core 311f
with corrosion inhibitor 315f, 316f
with DCOIT 323f
on direct emulsion basis 300–301
distribution of 321–322
with 8-HQ 309f
emulsion polymerization and 315–317
interfacial physical phenomena, based on 301–310
on irreversible interfacial attachment basis 307–310
L-b-L polyelectrolyte interfacial adsorption 305–307
solvent induced interfacial precipitation 301–304
on inverse emulsion basis 300–301
on LDHs basis 291–292
with liquid core 309f
multilayered nanoparticulate shells of 309f
with nanoparticle shells 311f
in novel protective coating matrices 321–322
organic self-protecting coatings based on 322–325
overview of 325–327
Pickering emulsion formation 307–310
with polyelectrolyte shell 292–297
polyepoxy 316f
with polymeric shell 292–297
with polystyrene shells 304f
pores endings 298–300
preparation 
by bulk reactions 311–317
by chemical reactions 311–317
emulsion, based on 302f
emulsion droplets 311–317
via interfacial polyaddition 311–315
via interfacial polycondensation 311–315
by interfacial reactions 311–317
methods 291–317, 302f
through in situ emulsion polymerization 315–317
steps 298f
protective organic coatings approach 287–291, 326f
PU 323f
release kinetics 320f
SEM images of 312f, 318f
shell 311f
with stimuli-responsive stoppers 298–300
types of 291–317
Microparticles 
mesoporous 293f, 298f
silica 293f
cerium nitrate with 297f
sodium hexafluorotitanate with 297f
Microscopy 
Atomic Force 382, 423f, 661–664
Field Emission Scanning Electron 380–382
Transmission Electron 382
Microvascular-based self-healing system 500, 501, 501f
Microwave switch design 482f
Mills 353–355
Minimum reaction time (MRT) 506t
Miscellaneous-based conversion coatings 71–72
Mixers 
high-speed 349f
types of 348
overview of 338
uses of 347
Mixing engineering parameters 360t
Mo  See Molybdenum
Mo dopant 466, 468f
Modified alkyd coatings 318f
Modified Laponite 658–660, 661–664, 665–666
Molybdates 71
Molybdenum (Mo) 
dopant 466, 468f
precursors 112–114
sol-gel VO2 and 466
Monomers 343, 344
Montemor, M. E. 187, 190
Montemor, M. F. 70, 179–180
Mookhoek, S. D. 517
Morin, F. 461
Mott-Hubbard model 464
Mrad, M. 417–418
Multifiber optode 631–632, 632f
Multilayered nanoparticulate shells 309f
Multiple fiber optode 628–630, 629f
Multiple vane stirrer 349f
Multiwalled carbon nanotube (MWCNT) coatings 27, 28f

N

NaCl  See Sodium chloride
Nag, J. 463–464
Nametkin, N. S. 119–120
Nanoclays 654–664
Nanocomposite coatings 
EAP-based 567–580
clay 569–571
graphene 573–574
silicate nanolayer 569–571
SiO2 571–573
TiO2 571–573
nanoparticle 571–573
synthetic nanoclay in 654–657
waterborne 654–657
Nanocontainers 78
active agents released from 318–321
assembly steps 298f
with ceramic core 292–297, 297f, 298–300
with corrosion inhibitor 313f, 315f, 316f
on direct emulsion basis 300–301
distribution of 321–322
with 8-HQ 309f
emulsion polymerization and 315–317
halloysite-based 323f
interfacial physical phenomena, based on 301–310
on irreversible interfacial attachment basis 307–310
L-b-L polyelectrolyte interfacial adsorption 305–307
solvent induced interfacial precipitation 301–304
on inverse emulsion basis 300–301
on LDHs basis 291–292
with liquid core 309f
with MBT 313f
multilayered nanoparticulate shells of 309f
in novel protective coating matrices 321–322
organic self-protecting coatings based on 322–325
overview of 325–327
Pickering emulsion formation 307–310
with polyelectrolyte shell 292–297
polyepoxy 316f
with polymeric shell 292–297
with polystyrene shells 304f
pores endings 298–300
preparation 
by bulk reactions 311–317
by chemical reactions 311–317
emulsion, based on 302f
emulsion droplets 311–317
via interfacial polyaddition 311–315
via interfacial polycondensation 311–315
by interfacial reactions 311–317
methods 291–317, 302f
through in situ emulsion polymerization 315–317
steps 298f
protective organic coatings approach 287–291, 326f
release kinetics 320f
SEM micrographs of 318f
with silica shell 313f
with stimuli-responsive stoppers 298–300
types of 291–317
Nanocrystalline cobalt 27, 27f, 28f
Nanoindentation analysis 
adhesion estimation 378–379
hardness estimation 376–378
modulus estimation 376–378
nanoscratch 378–379
wear analysis 379
Nanoparticles 152–160, 174–191
Au- 478
mesoporous 293f
nanocomposites 571–573
shells 311f
SHS 293f
SMS 293f
VO2-Au composite 476–477
in ZRPs 
composition 199t
cyclic voltammetry 201, 205–207
elemental analysis 201
FTIR spectroscopy 201–202, 207–208
investigation 205–216
preparation 199
Nanoparticulate shells 309f
Nanoscratch 378–379
Nano-size additives  See Nanoparticles
Nanostructured materials engineering 25–26
Nanotubes 
halloysite 293f
in ZRPs 
electrokinetic potential 201
experiment 201–203
Natesan, K. 35–36
National Association of Corrosion Engineers (NACE) 63, 538–539
National economies 63–64, 63t
National Institute for Occupational Safety and Health (NIOSH) 68–69
Natural passivity 25–26
Naval Air Warfare Center Weapons Division 75
Nickel-based superalloys 32–33, 32f, 48
NiCoCrAlY coating 52–55
Nonmetallic-inorganic pretreatment coatings 
conversion coatings 
cerium-based 70–71
chromate 67–69
lanthanide-based 69–71
miscellaneous-based 71–72
overview of 67–72
phosphate 69
overview of 66–72
Nonoxide ceramics 
overview of 112–121
Normal Raman spectroscopy 677
Novel protective coatings 321–322, 326f
N-type semiconductor coatings 13–14
Nuclear magnetic resonance (NMR) spectroscopy 371
Nucleation, growth mechanisms and 125–126, 125f

O

Occupational Safety and Health Administration (OSHA) 68–69
One-part self-healing anticorrosive coatings 
design strategies of 
conventional self-healing materials 494–501
overview of 494–502
preparation 494–501
examples of 
diisocyanate-based 503–519
organic silane-based 519–530
overview of 491–494, 530–532
perspectives 530–532
remarks 530–532
Online survey 645f
Optical fiber sensors (OFSs) 
characteristics of 613t, 618t, 627t
for corrosion by-product detection 618f, 625t
for corrosion precursor detection 618f, 625t
for corrosion sensing 613t, 618t
direct measurements and 613t
evanescent field pH 608f
humidity detection, based on 627t
indirect measurements and 618t
interrogation principles 
distributed sensing 607
FBGs 605–606
interferometers 606
optical intensity modulations 607–608
overview 604–609
SPRs 608–609
overview 604, 632–633
sample chamber location 628f
steel corrosion 615f
summary 613t, 618t, 627t
Optical hysteresis loops 469f
Optical intensity modulations 607–608
Optical pH sensors 626–632
Optical time domain reflectometry (OTDR) 607, 611, 615f
Optical windows 678–679
Oregon 644–647
Organic coatings 410–411, 561–562
Organic pretreatment coatings 
biofilms as 78–79
conductive polymer 74–75
controlled release coatings as 78
hybrid sol-gel 
overview of 72–74
stages of 73
inhibitor-loaded nanocontainers and 78
overview of 72–79
polyelectrolyte multilayer films as 77–78, 77f
self-assembling 76–77, 76f
Organic silane 502, 503f
Organic silane-based one-part self-healing anticorrosive coating 
microcapsules 
accelerated salt immersion corrosion test 525–526
chemical constituent 522
core fraction 524–525
corrosion protection performance 526–530
corrosion retardant effect schematic diagram 530f
diameter 522–524
in HCl solution 526–530
morphology 522–524
in POTS-based self-healing anticorrosive coating 525
thermal property 524–525
microencapsulation and 519–522
perfluorooctyl triethoxysilane and 519–522
in situ polymerization and 519–522
Organometallic chemical vapor deposition (OMCVD) 96–97, 99
Organometallic precursors 
bulk synthesis 105–121, 105f
chemistry 124–125
nonoxide ceramics 
overview of 112–121
oxide ceramics 
alumina 106–107
overview of 106–112
silica 107–112
titania 107–112
zirconia 107–112
Organometallics 96–97
Orlianges, J. C. 476–477
Outdoor experiments 396–402
Outdoor metalwork 651
Overhead Mixture (OHM) 353
Overlay coatings 
aluminum influencing 42–43, 43f
major elements influencing 47–48
overview of 42–44
trace elements influencing 47–48
Oxidation 414
Oxide ceramics 
alumina 106–107
overview of 106–112
silica 107–112
titania 107–112
zirconia 107–112
Oxide film 25–26
Oxides 36, 592–593

P

Paddle propeller 349f
Paddle stirrers 349f, 352
Paint and coating pilot plant 
general checkpoints for 357, 357t
general safety precautions in 357, 357t
Paint coatings 
steel structures protected by 28–29
in ZRPs 
characterization 203–205
composition 200t
electrochemical impedance spectroscopy 203–204
GD OES 230–231
glow-discharge optical-emission spectroscopy 204, 230–231
immersion test 216–229
preparation 200
salt-spray chamber test 237–239
x-ray photoelectron spectroscopy 205
Paint/resin-blended coatings 412
Paints 
definition of 336
general process for 
overview of 338–340
sand mill route 338–340
thinning in 339–340
Paints and coating industry, major equipment used in 
filters as 356–357
mills as 353–355
mixers as 347–353
overview of 347–357
propellers as 349f
PANI  See Polyaniline
Passive films 25
PE multilayer films  See Polyelectrolyte multilayer films
Peierls model 464
Perfluorooctyl triethoxysilane 519–522 See also POTS-based self-healing anticorrosive coating
pH multiple fiber optode 629–630, 629f
pH sensing 607–608, 608f, 626–632
Phase transition, of vanadium dioxide 
doping effects 466–471
switching time 464–465
Phosphate conversion coatings 
overview of 69
types of 69
Phosphate-permanganate conversion coatings 71
Phosphorylcholine chloride tetrahydrate (PC), FTIR spectra of 659f
Physical intelligence 643
Physical vapor deposition (PVD) 94–95
Physically intelligent coatings 
annealing 666–667
assessment 668–669
barrier properties 666–667
capacitances 667–668
characterizing 654–666
electrolyte swollen films 667–668
modified Laponite 658–660, 661–664, 665–666
performance testing of 666–669
SAXS data 661
synthetic nanoclay 654–658
volume fractions 667–668
water 667–668
waterborne nanocomposites coatings 654–657
waterborne PVDF-clay nanocomposites 666–667
x-ray methods 660–661
Physiological solutions 597t
Pickering emulsions 307–310
Pigments 
definition of 336
overview of 336
properties of 336
Pilot plants 
acrylic latex 
agitation system in 359t
charging process in 358
impeller selection for 360t
mixing engineering parameters in 360t
setup of 359
aqueous emulsion based 
buffers in 344
components involved in 343–346
emulsifiers in 344
emulsion feed process in 344
emulsion stabilizers in 343
initiators in 344
monomers in 343, 344
water in 344
for aqueous lattices 346f
definition of 340
kilo lab as different from 341, 342t
layouts 342, 342f
major issues 342, 342f
overview of 335–336, 340–347, 360
paint and coating 
general checkpoints for 357, 357t
general safety precautions in 357
pilot reactor in 357t
polymer emulsion, equipment in 345
process equipment 
overview 342–343
support units 342–343
for solvent-based polymers 348f
solvent-based resin 346–347
step by step scaling up 
general steps involved in 341
overview of 340–341
reactors in 340–341
types of 343–347
uses of 340
Pilot reactor 357t
Pilot scale production 335–336
Pipelines 28–29
Pitting corrosion 6f
example of 541f
overview of 540–541
schematic representation of 540f
Plant technology 21, 22f
Plasma electrolytic oxidation 591
Plasma-enhanced chemical vapor deposition (PECVD) 99–100, 100f
Plasmonic devices 476–481
Platinum (Pt) 
in aluminide coatings 42
precursors 112–114
Pliny the Elder 643–644
Pohl, H. A. 557
Poly(2,5-bis(N-methyl-N-hexylamino)phenylene vinylene) (BAM-PPV) 75, 75f
Polyamides 435, 438–442
Polyaniline (PANI) 415–417
Polyelectrolyte interfacial adsorption 305–307
Polyelectrolyte (PE) multilayer films 77–78, 77f
Polyelectrolyte shell 292–297, 320f
Polyepoxy microcontainers 316f
Polyepoxy nanocontainers 316f
Poly(melamine-formaldehyde) (PMF) microcapsules 497
Polymer coatings 
EAP-based 
nanocomposite 567–580
overview of 563–580
in situ Raman spectroscopy 686–689
electronically conducting 687–689
epoxy coating 686
overview of 562–580
Polymer emulsion pilot plants, equipment in 345
Polymeric shell 292–297
Polymers 
microcapsules incorporated in 23f
self-healing coatings and 23f
Polypyrrole 417–418
Polystyrene shells 304f
Polythiophene 419
Poly(urea-formaldehyde) (PUF) microcapsules 495–498, 497f See also Perfluorooctyl triethoxysilane
Polyurethane (PU) microcapsules 494, 495, 497–498, 504f, 505f, 508f
Polyurethane shells 320f
Polyurethane-poly(urea formaldehyde) (PU-PUF) microcapsules 498
Polyvinylidene fluoride (PVDF) 643
Porcelain enamel 251–252 See also Vitreous enamel
Pores endings 298–300
Porous nonprotective coatings 549f
Portland, Oregon 644–647
Potassium pyrophosphate 267f, 268f, 269f, 270f
Potassium-permanganate conversion coatings 71
Potentiodynamic electropolymerization 413
Potentiostatic electropolymerization 413
POTS-based self-healing anticorrosive coating 
accelerated salt immersion corrosion test 525–526
corrosion protection performance 526–530
EDX analysis of 529f
in HCl solution 526–530
preparation of 525
scribed regions of 527f
PRC electrodeposition  See Pulse reverse current electrodeposition
Precursors 
alumina 
Al-acetylacetonate 107
aluminum isopropoxide 106
overview of 106–107
aluminum 112–114
coating 369
Raman spectroscopy of 369–370
corrosion 617–624
detection of 619–621
measurements of 617–624
OFSs for detection of 618f
optical fiber technology for 618f, 625t
CVD 
silica precursors 110–112
yttria precursors 110–112
zirconia precursors 110–112
metal-organic 94–95
molybdenum 112–114
organometallic 
Al nonoxide ceramics 112–114
alumina oxide ceramics 106–107
bulk synthesis 105–121, 105f
chemistry 124–125
Mo nonoxide ceramics 112–114
overview of nonoxide ceramics 112–121
overview of oxide ceramics 106–112
Pt nonoxide ceramics 112–114
SiC nonoxide ceramics 116–121
silica oxide ceramics 107–112
TiCN nonoxide ceramics 114–115, 114f
titania oxide ceramics 107–112
W nonoxide ceramics 112–114
zirconia oxide ceramics 107–112
ZrCN nonoxide ceramics 114–115, 114f
platinum 112–114
SiC 122f
applications of 117t
comparison of 123t
conventional 117t
overview of 116–121
silica 
CVD precursors as 110–112
overview of 107–112
sol-gel as 109
titania 
overview of 107–112
sol-gel as 108–109
tungsten 112–114
yttria 110–112
zirconia 
CVD precursors as 110–112
overview of 107–112
sol-gel as 109–110
Preferential oxidation 414
Pretreatment coatings  See also Nonmetallic-inorganic pretreatment coatings
alloy selected for 64–65, 65f
biofilms as 78–79
organic 
biofilms as 78–79
conductive polymer 74–75
controlled release coatings as 78
hybrid sol-gel 72–74
inhibitor-loaded nanocontainers and 78
overview of 72–79
polyelectrolyte multilayer films as 77–78, 77f
self-assembling 76–77, 76f
overview of 64–66
surface modification 65–66
TCP 71–72
Propellers 
axial flow 349f, 350–351
inclined 349f
paddle 349f
radial flow 349f, 352
turbine 349f
Protective biofilms  See Protective films
Protective coatings  See also High performance protective coatings
culturally significant works 641–642
for material cultural heritage conservation 641–642
Protective films 
barrier properties of 648–649
titanium 
ceramic coatings 595–596
composites as 594
HA as 594
hybrid coatings 594–595
overview of 592–596
oxides as 592–593
Protective organic coatings  See also Novel protective coatings
microcontainers-based approach to 287–291, 326f
nanocontainers-based approach to 287–291, 326f
self-healing and 287–291
self-protecting and 287–291
Pt  See Platinum
PU microcapsules  See Polyurethane microcapsules
Pulse reverse current (PRC) electrodeposition 27

Q

Qiu, R. 422–423
Qu, M. 426
Quasiceramic coatings 21

R

Radhakrishnan, S. 417
Radial flow propellers 349f, 352
Raman, V. C. 674
Raman optical time domain reflectometry (ROTDR) 607
Raman spectroscopy  See also In situ Raman spectroscopy
of coatings precursor 369–370
of cured coatings 369–370
normal 677
overview of 674–676, 677–678
surface-enhanced 678
Rao, A. 424
Rapp, R. A. 35–36
Ratio of elements 234t, 236t
Rawlins, J. 503–504
Raytheon 470–471
Reactors 340–341
Rebar concrete 435–442
Reflection 615f
Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulations 68–69, 363–364
Reinforced concrete damage prevention 609–612, 629–630, 630f
Relative humidity monitoring 624–626, 627t
Relative intensities 230f
Release kinetics 320f
Rene 80 superalloy 37, 38f
Resins 
definition of 336
overview of 336
Ritter, J. J. 561–562
Rodriguez, M. J. 561–562
Roller mills 353f
Roughness values 265f, 268f
Rule, J. 517
Rust 60

S

SA pretreatment coatings  See Self-assembling pretreatment coatings
Sacrificial anodes 
advantages of 29–30
disadvantages of 30
overview of 29–30
Sacrificial metallic coatings 12–13
Sakhri, A. 415
Saliva 597t
Salt coated test 51
Salt spray exposure 271f
Salt spray test 512–517
Salt-spray chamber tests 205, 237–239
Samadzadeh, M. 493, 494–495
Sand Mill (SM) 354–355
Sand mill route 338–340
Sauvant-Moynot, V. 493
Savings 18
SAXS  See X-ray scattering
Scanning vibrating electrode technique (SVET) 318f
Schem, M. 187
Scratched blank 318f
Scully, J. R. 70–71
Seawater 384–387
Self-assembling (SA) pretreatment coatings 76–77, 76f
Self-healing 287–291, 414–415
microvascular-based 500, 501, 501f
properties 152–160
stannate coatings' functionality of 553
compact protective 550f, 551f
encapsulation for 22–29
formation of 550f, 551f
HDI-based 
accelerated salt immersion corrosion test of 509–512
anticorrosive performance of 517–519
capsules diameter influencing 515f
coating thickness influencing 516f
exposure time influencing 515f
formulations of 513t
healing reaction of 512f
parameters influencing 517–519
preparation of 509
salt spray test of 512–517
scribed regions of 511f
water's reaction with 512f
weight fraction of microcapsules influencing 516f
one-part 
design strategies of 494–502
examples of 503–530
overview of 491–494, 530–532
perspectives on 530–532
remarks on 530–532
polymer and 23f
polymers and 23f
POTS-based 
accelerated salt immersion corrosion test of 525–526
corrosion protection performance of 526–530
EDX analysis of 529f
HCl solution and 526–530
preparation of 525
scribed regions of 527f
vanadate 26f
Self-protecting 287–291
Self-protecting coatings 
container-based 322–325
organic 322–325
protective performance of 322–325
Semiconductor-to-metallic phase transition (SMT) 461, 462, 464–465, 469–470, 471–472, 473–474, 475, 477, 479–480, 481
Separation 338
Shell microcontainers 311f
Shen, Q. 120–121
Ship hulls 28–29
SiC precursors 122f
applications of 117t
comparison of 123t
conventional 117t
overview of 116–121
Silane coatings 
cerium salt and 174–191
corrosion inhibition by 174–191
evaluation of 174–191
on HDG substrates 174–191
with nanoparticles 174–191
outlook 192
overview of 135–137, 192
Silane hybrid coatings (SHCs) 136–137
BPA influencing 139–152
cerium concentration influencing 161–173
cerium ions influencing 139–152
cerium nitrate 152–160
cerium oxide 152–160
corrosion protection of 139–152, 161–173
electrochemical assessment 152–160
experimental procedure 
analytical methods 138–139
composition of 138t
overview of 137–139
sample preparation 137–138
on HDG substrates 161–173
microstructural features of 161–173
nanoparticles 152–160
outlook 192
overview of 192
self-healing properties of 152–160
on 304L stainless steel 139–160
Silica microparticles 293f, 297f
Silica (SiO2) nanocomposites 571–573
Silica precursors 
CVD precursors as 110–112
overview of 107–112
sol-gel as 109
Silica shell 313f
Silica submicroparticles 293f
Silicate nanolayer nanocomposites 569–571
Silicon 47–48
Simulated physiological solutions 597t
Single crystal airfoils 37
SiO2  See Silica
Skin 23–24, 501f
SM  See Sand Mill
Smart chemistry, development of 364–367
Smart coatings 
designing 64
electrospun 442–447
overview of 431–434, 454, 484
rebar concrete application 
overview of 435–442
polymer selection 438–442
vanadium dioxide 
atomic oxygen irradiation influencing 466
crystalline structure of 462f
doping effects on 466–471
infrared transmittance during 462f
overview of 461–471
phase transition of 464–465, 466–471
properties of 461–471
switching time of 464–465
synthesis methods 463–464
valence band diagrams 463f
Smart green conversion coatings, sol-gel route for development of 363–364 See also Green coating compositions (GCC); Smart chemistry, development of
Smart windows 483
Sodium chloride (NaCl) 552f
Sodium hexafluorotitanate 297f
Sodium sulfate 36f, 384–385, 387–389
Sol-gel 72–74 See also Smart chemistry
for corrosion control 
corrosion applications 450–453
overview 447–453
PANI and 416f
scribed aluminum substrate coated with 416f
as silica precursor 109
for smart green conversion coatings 363–364, 404–405
as titania precursor 108–109
VO2 466
as zirconia precursor 109–110
Sol-gel method, titanium 
dip-coating 588–589
overview of 587–589
spin-coating 589
Solid green coating composition (solid GCC) 375
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset