Soltani, M. 469, 471–472, 473
Solution stirring 6f
Solvent induced interfacial precipitation 301–304
Solvent-based polymer pilot plant 348f
Solvent-based polymeric binders 343–347
Solvent-based resin pilot plants 346–347
Solvents 
applications of 337
definition of 337
overview of 337
Song, L. 467
South Florida 644–647, 650 See also Culturally significant works
equipment for 677–679
ATR 679
IR spectroscopy 678–679
Raman spectroscopy 677–678
GCC 
FTIR analysis as 369
NMR analysis as 371
overview of 368–374
Raman analysis as 369–370
XPS analysis as 371–374
methods as 677–679
ATR 679
IR spectroscopy 678–679
Raman spectroscopy 677–678
overview of 673–674, 694
principles as 674–677
IR spectroscopy 676–677
Raman spectroscopy 674–676
Spherical hollow silica (SHS) containers 320f
Spherical hollow silica (SHS) nanoparticles 293f
Spherical mesoporous silica (SMS) nanoparticles 293f
Spin-coating 
overview of 589
schematics of 589f
spiro[1H-isoindole-1,9-[9H]xanthen]-3(2H)-one, 3,6-bis(diethylamino)-2-[(1-methylethylidene)amino](FDI) 27–28
Stabilization 338
Standard anodization process 66–67
Stannate conversion coatings 
mitigation of corrosion using 
acidic pickling surface modification in 549f, 551f
alkaline etching surface modification in 550f, 551f
compact protective coatings formation in 550f, 551f
corrosion rates in 552t
hydrogen evolution in 551t
localized corrosion in 549f
NaCl solution in 552f
overview of 547–553
performance in 548–553
porous nonprotective coatings formation in 549f
potentiodynamic in 552f
self-healing coatings formation in 550f, 551f
self-healing functionality in 553
synthesis in 547–548
testing in 547–548
overview of 553–554
remarks on 553–554
Steckl, A. J. 116, 119
Steel corrosion sensors 615f
Steel panel 511f
Steel structures 24, 28–29 See also Cathodic protection
Steel substrates, in ZRPs 
EIS monitoring 216–229
experiment 216–239
GD OES 230–231
immersion test 216–229
investigation 216–239
salt-spray chamber test 237–239
Stephenson, L. D. 24
Stern-Volmer equation 620
Stimuli-responsive 291, 298–300
Strain measurements 605f
Stress corrosion cracking (SCC) 
corrosion fatigue 546
intergranular 546
magnesium alloy mechanisms 545–546
overview of 545–546
transgranular 546
types of 546
Stressed aluminum-coated optical fiber corrosion sensor 611, 612f
Structural health monitoring (SHM) 603–604
Styrene butylacrylate latex 358t
Submicroparticles 
aluminum modified 293f
silica 293f
Substance of very high concern (SVHC) 68–69
Substrates 23–24 See also Steel substrates
characterizing 650–652
culturally significant works 649–650
experimental details for 649–651
high performance protective coating 649–650
weathered coated 651–652
in ZRPs 
EIS monitoring 216–229
experiment 216–239
GD OES 230–231
immersion test 216–229
investigation 216–239
salt-spray chamber test 237–239
Sukhorukov, G. B. 307
Sulfate transport mechanism 68–69
Super D-Gun  See Detonation gun spraying
Superalloys 32–33, 32f
chemical composition of 39t
Cr content influencing 41
hot corrosion of 37
nickel-based 32–33, 32f, 48
under type-I corrosion conditions 37, 38f, 39f
under type-II corrosion conditions 38f
Superhydrophobic coatings 
as anticorrosion coating 
fabrication procedures 421–424
overview 419–424
theoretical background 419–420
EAP-based 575–580
zinc coated with 422f
Superhydrophobic conducting polymers, as anticorrosion coatings 424–427
Surface coating technologies 
diffusion coatings as 42
engineering techniques 44–45
overlay coatings as 42–44
overview of 41–45
Surface engineering techniques 
EB-PVD processes as 45
overview of 44–45
preparation of 49–50
selection of 49–50
thermal spraying processes as 44–45
Surface modification 
anodic oxidation for 590–591
combined methods 592
electrolytic deposition for 591–592
laser oxidation for 590
plasma electrolytic oxidation for 591
pretreatment coating 65–66
sol-gel method for 
dip-coating 588–589
overview of 587–589
spin-coating 589
titanium 
anodic oxidation 590–591
combined methods for 592
electrolytic deposition 591–592
laser oxidation 590
overview of 587
plasma electrolytic oxidation 591
sol-gel method for 587–589
Surface morphology 
with AFM 382
with FESEM 380–382
overview of 380–382
with TEM 382
Surface plasmon resonances (SPRs) 
basic structure of optical fiber sensor for 609f
metal corrosion detected by 616, 616f
overview of 608–609
Surface-enhanced Raman spectroscopy (SERS) 678
Survey 645f
Suryanarayana, C. 493, 497
Swain, G. M. 71–72
Sweat 598t
Switches 
all-optical 471–473
electrical 473
microwave 482f
Switching 
absorption 478f
time 464–465
transmission 482f
transmittance 472f
Synthetic nanoclays 654–658, 661–664

T

Takahashi, K. 120
Tetrakis(diethyl)-aminometal 115, 115t
Thermal analysis 
overview of 374–375
of solid GCC 375
Thermal spraying processes 
APS as 45
arc spraying as 44–45
detonation gun spraying as 45
EB-PVD processes compared with 46t
flame spraying as 44
HVOF as 45
overview of 44–45
techniques 44
VPS as 45
warm spray process as 45
Thermochromic 461, 466, 483
Thermodynamics 2–3
Thermogravimetric test 51
Thinning 339–340
Threads length 324f
304L stainless steel 139–160
TiCN precursors 114–115, 114f
Tinting 339–340
TiO2  See Titanium dioxide
Titania precursors 
overview of 107–112
sol-gel as 108–109
Titanium 115, 115t
anodic oxidation 590–591
electrolytic deposition 591–592
laser oxidation 590
overview of 585–587, 599
protective films 
ceramic coatings 595–596
composites 594
HA 594
hybrid coatings 594–595
overview 592–596
oxides 592–593
sol-gel method 
dip-coating 588–589
overview of 587–589
spin-coating 589
surface modification 
anodic oxidation 590–591
electrolytic deposition 591–592
laser oxidation 590
methods 587, 592
overview 587
sol-gel method 587–589
Titanium alloys 585–587, 598f
Titanium dioxide (TiO2
crystallographic forms of 593f
nanocomposites 571–573
Tjipto, E. 305
Toohey, K. 501, 502
Traditional coatings 20
Transgranular stress corrosion cracking (transgranular SCC) 546
Transition temperature 466
Transmission Electron Microscopy (TEM) 382
Transmission spectra 626f
Transmission switching 482f
Transmittance switching 472f
Transparent, Reversible, Applied, Commercially available, Environment (TRACE) criteria 642
Trivalent chromium pretreatment (TCP) coatings 71–72
Tuneable metamaterial devices 474–476
Tungsten (W) 
precursors 112–114
VO2 co-doping with 466–467, 468f, 469–471, 472t
Turbine propellers 349f
Turn-on corrosion detector 27–28
Twin Shaft Disperser (TSD) 352–353
Type-I hot corrosion 34, 37, 38f, 39f
Type-II hot corrosion 34, 38f

U

Ultraviolet (UV) light exposure test 402
Ultraviolet-induced chemical vapor deposition (UVCVD) 99, 99f
Under deposit corrosion  See Crevice corrosion
Uniform corrosion  See General corrosion
Union Carbide 45
United States (U.S.) 63, 283–284
University of Illinois 24
UV light exposure test  See Ultraviolet light exposure test

V

Vacuum plasma spraying (VPS) 45
Vanadate coating 26f
Vanadium dioxide (VO2
applications 
all-optical switches 471–473
electrical switches 473
hybrid metamaterial devices 473–476
overview 471–483
plasmonic devices 476–481
RF-microwave switches 481–483
smart windows 483
Au and 476–477
Au-nanoparticles and 478
crystalline structure of 462f
electrical resistivity of 470f
infrared transmittance during 462f
microwave switch design based on 482f
nanoparticle composite 476–477
properties of 461–471
atomic oxygen irradiation's effects on 466
doping effects on 466–471
phase transition 464–465, 466–471
switching time 464–465
synthesis methods 463–464
pump-probe result summary 472t
RF-microwave switches based on 481–483
sol-gel 466
thin films 478
valence band diagrams 463f
Vibrational spectroscopic techniques  See Spectroscopic techniques
VisiMix 348
Vitreous enamel 
cross-section of 253f
experiment 
citric acid 264f, 266f
coating resistance 275f
color changes 264f, 273f
conclusion 280–281
cross-section 270f, 274f
discussion 259–280
emission spectra 263f, 276f, 278f, 279f, 280f
excitation spectra 263f
gloss change 264f, 267f, 272f
immersion 264f, 266f, 267f
main peak 276f, 278f, 279f, 280f
materials 256–259
overview 280–281
potassium pyrophosphate immersion 267f, 268f, 269f, 270f
procedures 256–259
results 259–280
roughness values 265f, 268f
salt spray exposure 271f
surface 262f, 269f, 271f, 273f
trend of intensity 276f
trend of luminescent properties 275–280
trend of protective properties 261–275
properties of 252–255, 261–280
protection 261–275
VO2 plasmonic devices 476–481
VO2-based hybrid metamaterial devices 473–476
VO2-based RF-microwave switches 481–483
Volume fractions 667–668

W

See Tungsten
Wackerbarth, H. 307
Walt, D. R. 631–632
Walther, M. 503–504
Wang, P. 421–422
Warm spray process, as thermal spraying process 45
Waterborne nanocomposites coatings 654–657
Waterborne PVDF-clay nanocomposites 666–667
Wear analysis 379
Weathered coated substrates 651–654
Weathering 389–396
Weathering studies 644–647, 650, 651
Wei, Y. 562–563
Weight fraction of microcapsules 516f
Weng, C. 423–424, 426–427
Wenzel equation 420, 421f
Wet corrosion 60
Wettability conversion 427f
Wetting 338
White, S. R. 493
Wide angle X-ray diffraction (WAXD) 660–661
Wilson, L. 70
W-Ti co-doped VO2 469–471

X

Xanthosoma sagittifolium leaves 575–580
X-ray photoelectron spectroscopy (XPS) 205, 232–237, 371–374
X-ray scattering (SAXS) 660–661
Xu, G. 478
Xu, Q. 424, 426

Y

Yang, H. 503–504
Yang, J. 495
Yasui, K. 117
Yeh, J. M. 563, 564, 567, 569–573, 575
Young, W. 106
Young's equation 419–420
Yttria precursors, CVD precursors as 110–112
Yuan, L. 496
Yuan, S. 424

Z

Zhang, F. 422–423
Zhu, Y. 426
Zinc 422f
Zinc-rich paints (ZRPs) 
experiment 
low carbon steel substrates 203–205
materials 199–200
methods 201–205
nano-size particles 199, 201–203, 205–216
nanotubes 201–203
overview 199–205, 239–243
paint coatings 200, 203–205, 216–239
preparation 199, 200
results 205–243
steel substrates 216–239
synthesis 199–200
overview of 196–198
Zirconia precursors 
CVD precursors as 110–112
overview of 107–112
sol-gel as 109–110
Zirconium 115, 115t
ZrCN precursors 114–115, 114f
ZRPs  See Zinc-rich paints
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset