6
Unbiased FIR State Estimation

The arithmetic mean is the most probable value.

Carl F. Gauss [53], p. 244

It is usually taken for granted that the right method for determining the constants is the method of least squares.

Karl Pearson [146], p. 266

6.1 Introduction

Optimal state estimation requires information about noise and initial values, which is not always available. The requirement of initial values is canceled in the optimal unbiased or ML estimators, which still require accurate noise information. Obviously, these estimators can produce large errors if the noise statistics are inaccurate or the noise is far from Gaussian. In another extreme method of state estimation that gives UFIR estimates corresponding to the LS, the observation mean is tracked only under the zero mean noise assumption. Designed to satisfy only the unbiasedness constraint, such an estimator discards all other requirements and in many cases justifies suboptimality by being more robust. The great thing about the UFIR estimator is that, unlike OFIR, OUFIR, and ML FIR, it only needs an optimal horizon of upper N Subscript opt points to minimize MSE. It is worth noting that determining upper N Subscript opt requires much less effort than noise statistics. Given upper N Subscript opt, the UFIR state estimator, which has no other tuning factors, appears to be the most robust in the family of linear state estimators.

In this chapter, we discuss different kinds of UFIR state estimators, mainly filters and smoothers and, to a lesser extent, predictors.

6.2 The a posteriori UFIR Filter

Let us consider an LTV system represented in discrete‐time state space with the following state and observation equations, respectively,

(6.1)x Subscript k Baseline equals upper F Subscript k Baseline x Subscript k minus 1 Baseline plus upper E Subscript k Baseline u Subscript k Baseline plus upper B Subscript k Baseline w Subscript k Baseline comma
(6.2)y Subscript k Baseline equals upper H Subscript k Baseline x Subscript k Baseline plus v Subscript k Baseline period

These equations can be extended on left-bracket m comma k right-bracket as

(6.4)upper Y Subscript m comma k Baseline equals upper H Subscript m comma k Baseline x Subscript m Baseline plus upper L Subscript m comma k Baseline upper U Subscript m comma k Baseline plus upper G Subscript m comma k Baseline upper W Subscript m comma k Baseline plus upper V Subscript m comma k Baseline comma

using the definitions of vectors and matrices given for (4.7) and (4.14).

6.2.1 Batch Form

The unbiased filtering problem can be solved if our goal is to satisfy only the unbiasedness condition

and then minimize errors by choosing the optimal horizon of upper N Subscript opt points.

For the FIR estimate defined as

(6.6)ModifyingAbove x With caret Subscript k Baseline delta-equals ModifyingAbove x With caret Subscript k vertical-bar k Baseline equals script upper H Subscript m comma k Baseline upper Y Subscript m comma k Baseline plus script upper H Subscript m comma k Superscript normal f Baseline upper U Subscript m comma k Baseline comma

and the state model represented with the upper Nth row vector in (6.3),

(6.7)x Subscript k Baseline equals script upper F Subscript k Superscript m plus 1 Baseline x Subscript m Baseline plus upper S overbar Subscript m comma k Baseline upper U Subscript m comma k Baseline plus upper D overbar Subscript m comma k Baseline upper W Subscript m comma k Baseline comma

the condition (6.5) gives two unbiasedness constraints,

By multiplying both sides of (6.8) from the right‐hand side by the matrix identity left-parenthesis upper H Subscript m comma k Superscript upper T Baseline upper H Subscript m comma k Baseline right-parenthesis Superscript negative 1 Baseline upper H Subscript m comma k Superscript upper T Baseline upper H Subscript m comma k and discarding the nonzero upper H Subscript m comma k on both sides, we find the fundamental gain ModifyingAbove upper H With caret Subscript m comma k of the UFIR filter

where upper C Subscript m comma k Baseline equals upper H Subscript m comma k Baseline left-parenthesis script upper F Subscript k Superscript m plus 1 Baseline right-parenthesis Superscript negative 1. Then, referring to the forced gain ModifyingAbove upper H With caret Subscript m comma k Superscript normal f given by (6.9), the a posteriori UFIR filtering estimate can be written as

As can be seen, the gain ModifyingAbove upper H With caret Subscript m comma k (6.10a) does not contain any information about noise and initial values, which means that the UFIR filter does not have the inherent disadvantages of the KF and OFIR filter.

The error covariance for the a posteriori UFIR filter (6.11) can be written similarly to the OFIR filter (4.31) as

where the error residual matrices are given by

It now follows that (6.12) has the same structure as (4.55) of the a posteriori OUFIR filter with, however, another gain ModifyingAbove script upper H With Ì‚ Subscript m comma k in (6.13) and (6.14).

Because ModifyingAbove script upper H With Ì‚ Subscript m comma k given by (6.10a) does not require noise covariances, the UFIR filter is not optimal and therefore generally gives larger errors than the OUFIR filter. In practice, however, this flaw can be ignored if a higher robustness is required, as in many applications, especially industrial.

Generalized Noise Power Gain

An important indicator of the effectiveness of FIR filtering is the NPG introduced by Trench in [198]. The NPG is the ratio of the output noise variance sigma Subscript out Superscript 2 to the input noise variance sigma Subscript in Superscript 2, which is akin to the noise figure in wireless communications. For white Gaussian noise, the NPG is equal to the sum of the squared coefficients of the FIR filter impulse response h Subscript k,

which is the squared norm of h Subscript k.

In state space, the homogeneous gain ModifyingAbove script upper H With Ì‚ Subscript m comma k represents the coefficients of the FIR filter impulse response. Therefore, the product script í’¢ Subscript k Baseline equals ModifyingAbove script upper H With Ì‚ Subscript m comma k Baseline ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript upper T plays the role of a generalized NPG (GNPG) [179]. Referring to (6.10a) and (6.10b), GNPG can be written in the following equivalent forms:

It follows that GNPG is a symmetric square matrix script í’¢ Subscript k Baseline equals script í’¢ Subscript k Superscript upper T Baseline element-of script upper R Superscript upper K times upper K, where the main diagonal components represent the NPGs for the system states, and the remaining components the cross NPGs. The main property of script í’¢ Subscript k is that its trace decreases with increasing horizon length, which provides effective noise reduction. On the other hand, an increase in upper N causes an increase in bias errors, and therefore script í’¢ Subscript k must be optimally set by choosing an optimal horizon length.

6.2.2 Iterative Algorithm Using Recursions

Recursions for the batch a posteriori UFIR filtering estimate (6.11) can be found by decomposing (6.11) as ModifyingAbove x With caret Subscript k Baseline equals ModifyingAbove x With caret Subscript k Superscript normal h Baseline plus ModifyingAbove x With caret Subscript k Superscript normal f, where

ModifyingAbove x With caret Subscript k Superscript normal h is the homogeneous estimate and ModifyingAbove x With caret Subscript k Superscript normal f is the forced estimate.

Using (6.16b), the estimate x Subscript k Superscript normal h can be transformed to

and, by applying the decomposition

the recursion for the GNPG (6.16b) can be obtained if we transform script í’¢ Subscript k Superscript negative 1 as

StartLayout 1st Row 1st Column script í’¢ Subscript k Superscript negative 1 2nd Column equals 3rd Column left-parenthesis script upper F Subscript k Superscript m plus 1 Baseline right-parenthesis Superscript negative upper T Baseline upper H Subscript m comma k Superscript upper T Baseline upper H Subscript m comma k Baseline left-parenthesis script upper F Subscript k Superscript m plus 1 Baseline right-parenthesis Superscript negative 1 2nd Row 1st Column Blank 2nd Column equals 3rd Column left-parenthesis script upper F Subscript k Superscript m plus 1 Baseline right-parenthesis Superscript negative upper T Baseline Start 1 By 2 Matrix 1st Row 1st Column upper H Subscript m comma k minus 1 Superscript upper T 2nd Column left-parenthesis script upper F Subscript k Superscript m plus 1 Baseline right-parenthesis Superscript upper T Baseline upper H Subscript k Superscript upper T EndMatrix StartBinomialOrMatrix upper H Subscript m comma k minus 1 Choose upper H Subscript k Baseline script upper F Subscript k Superscript m plus 1 EndBinomialOrMatrix left-parenthesis script upper F Subscript k Superscript m plus 1 Baseline right-parenthesis Superscript negative 1 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline plus left-parenthesis upper F Subscript k Baseline script í’¢ Subscript k minus 1 Baseline upper F Subscript k Superscript upper T Baseline right-parenthesis Superscript negative 1 Baseline period EndLayout

This gives the following forward and backward recursive forms:

Using (6.20) and (6.22) and extracting upper H Subscript m comma k minus 1 Superscript upper T Baseline equals left-parenthesis script upper F Subscript k minus 1 Superscript m plus 1 Baseline right-parenthesis Superscript upper T Baseline script í’¢ Subscript k minus 1 Superscript negative 1 Baseline ModifyingAbove script upper H With Ì‚ Subscript m comma k minus 1 Superscript normal h from (6.10a), we next transform the product upper H Subscript m comma k Superscript upper T Baseline upper Y Subscript m comma k as

By combining (6.21) and (6.23), we finally obtain the following recursion for the homogeneous estimate

where ModifyingAbove upper K With caret Subscript k Baseline equals script í’¢ Subscript k Baseline upper H Subscript k Superscript upper T is the bias correction gain of the UFIR filter.

To find the recursion for the forced estimate (6.18), we first show that

Then, by extracting ModifyingAbove script upper H With Ì‚ Subscript m comma k from (6.19), ModifyingAbove script upper H With Ì‚ Subscript m comma k Baseline upper L Subscript m comma k Baseline upper U Subscript m comma k can be transformed as

Now, by combining (6.25) and (6.26) and substituting (6.22), the forced estimate (6.18) can be represented with the recursion

(6.27)ModifyingAbove x With caret Subscript k Superscript normal f Baseline equals left-parenthesis upper I minus script í’¢ Subscript k Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline right-parenthesis left-parenthesis upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Superscript normal f Baseline plus upper E Subscript k Baseline u Subscript k Baseline right-parenthesis comma

which, together with (6.24), gives the recursions for the a priori and a posteriori UFIR filtering estimates, respectively,

(6.28)ModifyingAbove x With caret Subscript k Superscript minus Baseline equals upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline plus upper E Subscript k Baseline u Subscript k Baseline comma

The recursive computation of the a posteriori UFIR filtering estimate (6.11) can now be summarized with the following theorem.

Note that the need to compute the initial script í’¢ Subscript s and ModifyingAbove x With caret Subscript s in short batch forms arises from the fact that the inverse in (6.16c) does not exist on shorter horizons.

Modified GNPG

It was shown in [50,195] that the robustness of the UFIR filter can be improved by scaling the GNPG (6.21) with the weight gamma Subscript k as

script í’¢ Subscript k Baseline equals gamma Subscript k Baseline left-bracket upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline plus left-parenthesis upper F Subscript k Baseline script í’¢ Subscript k minus 1 Baseline upper F Subscript k Superscript upper T Baseline right-parenthesis Superscript negative 1 Baseline right-bracket Superscript negative 1 Baseline period

The weight gamma Subscript k is defined by

gamma Subscript k Baseline equals StartFraction 1 Over left floor upper N slash 2 right floor EndFraction sigma-summation Underscript i equals k 0 Overscript k Endscripts RootIndex upper K StartRoot eta Subscript i Baseline slash eta Subscript i minus 1 Baseline EndRoot comma

where k 0 equals k minus left floor upper N slash 2 right floor plus 1, left floor upper N slash 2 right floor is the integer part of upper N slash 2, and upper K is the number of the states. The RMS deviation eta Subscript k of the estimate is computed using the innovation residual as

eta Subscript k Baseline equals StartRoot StartFraction 1 Over kappa EndFraction left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline ModifyingAbove x With caret Subscript k Baseline right-parenthesis Superscript upper T Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline ModifyingAbove x With caret Subscript k Baseline right-parenthesis EndRoot comma

where kappa means the dimension of the target motion. With this adaptation of the GNPG to the operation conditions, the UFIR filter can be approximately twice as accurate as the KF when tracking maneuvering targets [50].

6.2.3 Recursive Error Covariance

Although the UFIR filter does not require error covariance upper P Subscript k to obtain an estimate, upper P Subscript k may be required to evaluate the quality of the estimate on a given horizon. Since the batch form (6.12) is not always suitable for fast estimation, next we present the recursive forms obtained in [226].

Consider upper P Subscript k given by (6.12) and represent with

where the components are defined as

StartLayout 1st Row 1st Column upper P Subscript k Superscript left-parenthesis 1 right-parenthesis 2nd Column equals 3rd Column upper D overbar Subscript m comma k Baseline script í’¬ Subscript m comma k Baseline upper D overbar Subscript m comma k Superscript upper T Baseline comma upper P Subscript k Superscript left-parenthesis 2 right-parenthesis Baseline equals upper D overbar Subscript m comma k Baseline script í’¬ Subscript m comma k Baseline upper G Subscript m comma k Superscript upper T Baseline ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript upper T Baseline comma 2nd Row 1st Column upper P Subscript k Superscript left-parenthesis 3 right-parenthesis 2nd Column equals 3rd Column ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript normal h Baseline upper G Subscript m comma k Baseline script í’¬ Subscript m comma k Baseline upper D overbar Subscript m comma k Superscript upper T Baseline comma upper P Subscript k Superscript left-parenthesis 4 right-parenthesis Baseline equals ModifyingAbove script upper H With Ì‚ Subscript m comma k Baseline upper G Subscript m comma k Baseline script í’¬ Subscript m comma k Baseline upper G Subscript m comma k Superscript upper T Baseline ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript upper T Baseline comma 3rd Row 1st Column upper P Subscript k Superscript left-parenthesis 5 right-parenthesis 2nd Column equals 3rd Column ModifyingAbove script upper H With Ì‚ Subscript m comma k Baseline script upper R Subscript m comma k Baseline ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript upper T Baseline period EndLayout

Using the decomposition upper D overbar Subscript m comma k Baseline equals left-bracket upper F Subscript k Baseline upper D overbar Subscript m comma k minus 1 Baseline upper B Subscript k Baseline right-bracket, we represent matrix upper P Subscript k Superscript left-parenthesis 1 right-parenthesis recursively as

Then, referring to (6.20), (6.22), (6.31), and

(6.32)StartLayout 1st Row 1st Column upper G Subscript m comma k 2nd Column equals 3rd Column Start 2 By 2 Matrix 1st Row 1st Column upper G Subscript m comma k minus 1 Baseline 2nd Column 0 2nd Row 1st Column upper H Subscript k Baseline upper F Subscript k Baseline upper D overbar Subscript m comma k minus 1 Baseline 2nd Column upper H Subscript k Baseline upper B Subscript k Baseline EndMatrix comma 2nd Row 1st Column script upper H Subscript m comma k 2nd Column equals 3rd Column script í’¢ Subscript k Baseline left-parenthesis script upper F Subscript k Superscript m plus 1 Baseline right-parenthesis Superscript negative upper T Baseline upper H Subscript m comma k Superscript upper T Baseline comma EndLayout

and substituting upper H Subscript m comma k minus 1 Baseline left-parenthesis script upper F Subscript k minus 1 Superscript m plus 1 Baseline right-parenthesis Superscript negative 1 with script upper H Subscript m comma k minus 1 Superscript upper T Baseline script í’¢ Subscript k minus 1 Superscript negative 1, we represent matrices upper P Subscript k Superscript left-parenthesis 2 right-parenthesis and upper P Subscript k Superscript left-parenthesis 3 right-parenthesis recursively with

(6.33)StartLayout 1st Row 1st Column upper P Subscript k Superscript left-parenthesis 2 right-parenthesis 2nd Column equals 3rd Column upper F Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 2 right-parenthesis Baseline upper F Subscript k Superscript upper T minus upper F Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 2 right-parenthesis Baseline upper F Subscript k Superscript upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline script í’¢ Subscript k 2nd Row 1st Column Blank 2nd Column Blank 3rd Column plus upper F Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 1 right-parenthesis Baseline upper F Subscript k Superscript upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline script í’¢ Subscript k Baseline plus upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline script í’¢ Subscript k Baseline period EndLayout

Similarly, the recursions for upper P Subscript k Superscript left-parenthesis 4 right-parenthesis and upper P Subscript k Superscript left-parenthesis 4 right-parenthesis can be obtained as

By combining (6.31), (6.34), (6.35), and (6.36) with (6.30), we finally arrive at the recursive form for the error covariance upper P Subscript k of the a posteriori UFIR filter

It is worth noting that (6.37) is equivalent to the error covariance of the a posteriori KF (3.77), in which the Kalman gain upper K Subscript k must be replaced with the bias correction gain script í’¢ Subscript k Baseline upper H Subscript k Superscript upper T of the UFIR filter. The notable difference is that the Kalman gain minimizes the MSE and is thus optimal, whereas the script í’¢ Subscript k Baseline upper H Subscript k Superscript upper T derived from the unbiased constraint (6.17) makes the UFIR estimate truly unbiased, but noisier, since no effort has been made so far to minimize error covariance. The minimum MSE can be reached in the UFIR filter output at an optimal horizon of upper N Subscript opt points, which will be discussed next.

6.2.4 Optimal Averaging Horizon

Unlike KF, which has IIR, the UFIR filter operates with data on the horizon left-bracket m comma k right-bracket of upper N points, which is sometimes called the FIR filter memory. To minimize MSE, upper N should be optimally chosen as upper N Subscript opt. Otherwise, if upper N less-than upper N Subscript opt, noise reduction will be ineffective, and, for upper N greater-than upper N Subscript opt, bias errors will prevail as shown in Fig. 6.1.

Schematic illustration of the RMSE produced by the UFIR filter as a function of N. An optimal balance is achieved when N=Nopt, where the UFIR estimate is still less accurate than the KF estimate.

Figure 6.1 The RMSE produced by the UFIR filter as a function of upper N. An optimal balance is achieved when upper N equals upper N Subscript opt, where the UFIR estimate is still less accurate than the KF estimate.

Since the UFIR filter is not selective, there is no exact relationship between filtering order and memory. Optimizing the memory of a UFIR filter in state space requires finding the derivative of the trace trace left-parenthesis upper P Subscript k Baseline right-parenthesis of the error covariance with respect to upper N, which is problematic, especially for LTV systems. In some cases, upper N can be found heuristically for real data. If a reference model or the ground truth is available at the test stage, then upper N Subscript opt can be found by minimizing trace left-parenthesis upper P Subscript k Baseline right-parenthesis. For polynomial models, upper N Subscript opt was found in [169] analytically through higher order states, which has explicit limitations. If the ground truth is not available, as in many applications, then upper N Subscript opt can be measured via the derivative of the trace of the measurement residual covariance, as shown in [153]. Next we will discuss several such cases based on the time‐invariant state‐space model

All methods will be separated into two classes depending on the operation conditions: with and without the ground truth.

Available Ground Truth

When state x Subscript k is available through the ground truth measurement, which means that upper P Subscript k is also available, upper N Subscript opt can be found by referring to Fig. 6.1 and solving on left-bracket 0 comma k right-bracket the following optimization problem

There are several approaches to finding upper N Subscript opt using (6.40).

  • When trace left-parenthesis upper P Subscript k Baseline right-parenthesis in (6.40) reaches a minimum with upper N Subscript opt Baseline equals k plus 1, we can assume that ModifyingAbove upper P With caret delta-equals ModifyingAbove upper P With caret left-parenthesis upper N Subscript opt Baseline right-parenthesis equals upper P Subscript k plus 1 Baseline equals upper P Subscript k and represent the error covariance (6.37) by the discrete Lyapunov equation (A.34) where Ï’ equals left-parenthesis upper I minus script í’¢ upper H Superscript upper T Baseline upper H right-parenthesis upper F is required to be stable and matrix upper Psi equals left-parenthesis upper I minus script í’¢ upper H Superscript upper T Baseline upper H right-parenthesis upper R left-parenthesis upper I minus script í’¢ upper H Superscript upper T Baseline upper H right-parenthesis Superscript upper T Baseline plus script í’¢ upper H Superscript upper T Baseline upper Q upper H script í’¢ is symmetric and positive definite. Note that the bias correction gain script í’¢ upper H Superscript upper T in (6.41) is related to GNPG script í’¢, which decreases as the reciprocal of upper N. The solution to (6.41) is given by the infinite sum [83] whose convergence depends on the model. The trace of (6.42) can be plotted, and then upper N Subscript opt can be determined at the point of minimum. For some models, upper N Subscript opt can be found analytically using (6.42) [169].
  • For upper P Subscript k given by (6.37), the optimization problem (6.40) can also be solved numerically with respect to upper N Subscript opt by increasing k until trace left-parenthesis upper P Subscript k Baseline right-parenthesis reaches a minimum. However, for some models, there may be ambiguities associated with multiple minima. Therefore, to make the batch estimator as fast as possible, upper N Subscript opt should be determined by the first minimum [153]. It is worth noting that the solution (6.42) agrees with the fact that when the model is deterministic, upper R equals 0 and upper Q equals 0, and the filter is a perfect match, then we have upper N Subscript opt Baseline equals infinity and upper P equals 0.
  • From Fig. 6.1 and many other investigations, it can be concluded that the difference between the KF and UFIR estimates vanishes on larger horizons, upper N Subscript opt Baseline much-greater-than 1 [179]. Furthermore, the UFIR filter is low sensitive to upper N; that is, this filter produces acceptable errors when upper N changes up to 30% around upper N Subscript opt [179]. Thus, we can roughly characterize errors in the UFIR estimate at k in terms of the error covariance of the KF. If the product upper H Subscript k Superscript upper T Baseline upper H Subscript k is invertible, then replacing the Kalman gain upper K Subscript k with the bias correction gain script í’¢ Subscript k Baseline upper H Subscript k Superscript upper T in the error covariance of the KF as upper P Subscript k Baseline equals left-parenthesis upper I minus script í’¢ Subscript k Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline right-parenthesis upper P Subscript k Superscript minus and then providing simple transformations give

    where upper P Subscript k Superscript minus is prior error covariance of the KF. For the given (6.43), the backward recursion (6.22) can be used to compute the GNPG back in time as

    (6.44)script í’¢ Subscript k minus 1 Superscript negative 1 Baseline equals upper F Subscript k Superscript upper T Baseline left-parenthesis script í’¢ Subscript k Superscript negative 1 Baseline minus upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline right-parenthesis upper F Subscript k Baseline period

    Because an increase in upper N always results in a decrease in the trace of script í’¢ Subscript k [179], then it follows that upper N Subscript opt can be estimated by calculating the number of steps backward until script í’¢ Subscript n minus 1 finally becomes singular. Since script í’¢ Subscript n is singular when upper N less-than upper K, where upper K is the number of the states, the optimal horizon can be measured as upper N Subscript opt Baseline approximately-equals k plus upper K. This approach can serve when k greater-than upper N Subscript opt or when there are enough data points to find upper N Subscript opt. Its advantage is that upper N Subscript opt can be found even for LTV systems.

The previously considered methods make it possible to obtain upper N Subscript opt by minimizing trace left-parenthesis upper P Subscript k Baseline right-parenthesis. However, if the ground truth is unavailable and the noise covariances are not well known, then upper N Subscript opt measured in this ways may be incorrect. If this is the case, then another approach based on the measurement residual rather than the error covariance may yield better results.

Unavailable Ground Truth

In cases when the ground truth is not available, upper N Subscript opt can be estimated using the available measurement residual covariance upper S Subscript k [153]. To justify the approach, we represent upper S Subscript k as

where the two last terms strongly depend on upper N. Now, three limiting cases can be considered:

  • When k equals upper N minus 1 equals upper K minus 1, the UFIR filter degree is equal to the number of the data points, noise reduction is not provided, and the error upper H epsilon Subscript k Superscript minus with the sign reversed becomes almost equal to the measurement noise v Subscript k. Replacing upper H epsilon Subscript k Superscript minus with minus v Subscript k makes (6.45) close to zero
  • At the optimal point k Subscript opt Baseline equals upper N Subscript opt Baseline minus 1, the last two terms in (6.45) vanish by the orthogonality condition, the measurement noise prevails over the estimation error, upper R much-greater-than upper H upper P Subscript upper K minus 1 Superscript minus Baseline upper H Superscript upper T, and the residual becomes
  • When k much-greater-than upper N Subscript opt, the estimation error is mainly associated with increasing bias errors. Accordingly, the first term in (6.45) becomes dominant, and upper S Subscript k approaches it,

The transition between the upper S Subscript k values can be learned if we take into account (6.46), (6.47), and (6.48). Indeed, when upper K less-than-or-slanted-equals upper N less-than-or-slanted-equals upper N Subscript opt, the bias errors are practically insignificant. They grow with increasing upper N and approach the standard deviation in the estimate at upper N Subscript opt when the filter becomes slightly inconsistent with the system due to process noise.

Since trace left-parenthesis upper P Subscript k Superscript minus Baseline right-parenthesis decreases monotonously with increasing upper N due to noise reduction, trace left-parenthesis upper S Subscript k Baseline right-parenthesis is also a monotonic function when upper N less-than upper N Subscript opt. It grows monotonously from trace left-parenthesis upper S Subscript upper K minus 1 Baseline right-parenthesis given by (6.46) to trace left-parenthesis upper S Subscript upper N Sub Subscript opt Subscript minus 1 Baseline right-parenthesis given by (6.47) and passes through upper N Subscript opt with a minimum rate when trace left-parenthesis upper P Subscript k Baseline right-parenthesis is minimum. It matters that the rate of trace left-parenthesis upper S Subscript k Baseline right-parenthesis around upper N Subscript opt cannot be zero due to increasing bias errors. And this is irrespective of the model, as the UFIR filter reduces white noise variance as the reciprocal of upper N, and the effect of bias is still small when upper N less-than-or-slanted-equals upper N Subscript opt.

Another behavior of trace left-parenthesis upper S Subscript k Baseline right-parenthesis can be observed for upper N greater-than upper N Subscript opt, when the bias errors grow not equally in different models. Although trace left-parenthesis upper P Subscript k Baseline right-parenthesis is always convex on upper N in stable filters, bias errors affecting its ascending right side can grow either monotonously in polynomial models or eventually oscillating in harmonic models. The latter means that trace left-parenthesis upper S Subscript k Baseline right-parenthesis can reach its value (6.48) with oscillations, even having a constant average rate.

It follows from the previous that the derivative of trace left-parenthesis upper S Subscript k Baseline right-parenthesis with respect to upper N can pass through multiple minima and that the first minimum gives the required value of upper N Subscript opt. The approach developed in [153] suggests that upper N Subscript opt can be determined in the absence of the ground truth by solving the following minimization problem

where minimization should be ensured by increasing k, starting from upper K minus 1, until the first minimum is reached. To avoid ambiguity when solving the problem (6.49), the number of points should be large enough. Moreover, trace left-parenthesis upper S Subscript k Baseline right-parenthesis may require smoothing before applying the derivative.

Let us now look at the upper S Subscript k properties in more detail and find a stronger justification for (6.49). Since the difference between the a priori and a posteriori UFIR estimates does not affect the dependence of trace left-parenthesis upper S Subscript k Baseline right-parenthesis on upper N, we can replace ModifyingAbove x With caret Subscript k Superscript minus with ModifyingAbove x With caret Subscript k, epsilon Subscript k Superscript minus with epsilon Subscript k, and upper P Subscript k Superscript minus with upper P Subscript k. We also observe that, since script upper E left-brace ModifyingAbove x With caret Subscript k minus 1 Baseline v Subscript k Superscript upper T Baseline right-brace equals 0, script upper E left-brace x Subscript k minus 1 Baseline v Subscript k Superscript upper T Baseline right-brace equals 0, script upper E left-brace w Subscript k Baseline v Subscript k Superscript upper T Baseline right-brace equals 0, and ModifyingAbove x With caret Subscript k can be replaced by the UFIR estimate (6.29), the last two terms in (6.45) can be represented as

StartLayout 1st Row 1st Column script upper E left-brace epsilon Subscript k Superscript minus Baseline v Subscript k Superscript upper T Baseline right-brace 2nd Column approximately-equals 3rd Column script upper E left-brace epsilon Subscript k Baseline v Subscript k Superscript upper T Baseline right-brace 2nd Row 1st Column equals 2nd Column script upper E left-brace left-parenthesis x Subscript k Baseline minus ModifyingAbove x With caret Subscript k Baseline right-parenthesis v Subscript k Superscript upper T Baseline right-brace equals minus script upper E left-brace ModifyingAbove x With caret Subscript k Baseline v Subscript k Superscript upper T Baseline right-brace 3rd Row 1st Column Blank 2nd Column equals 3rd Column negative script upper E left-brace left-bracket upper F ModifyingAbove x With caret Subscript k minus 1 Baseline plus script í’¢ Subscript k Baseline upper H Superscript upper T Baseline left-parenthesis y Subscript k Baseline minus upper H upper F ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis right-bracket v Subscript k Superscript upper T Baseline 4th Row 1st Column equals 2nd Column minus script í’¢ Subscript k Baseline upper H Superscript upper T Baseline script upper E left-brace y Subscript k Baseline v Subscript k Superscript upper T Baseline right-brace equals minus script í’¢ Subscript k Baseline upper H Superscript upper T Baseline script upper E left-brace left-parenthesis upper H x Subscript k Baseline plus v Subscript k Baseline right-parenthesis v Subscript k Superscript upper T Baseline right-brace 5th Row 1st Column Blank 2nd Column equals 3rd Column minus script í’¢ Subscript k Baseline upper H Superscript upper T Baseline script upper E left-brace upper H x Subscript k Baseline v Subscript k Superscript upper T Baseline right-brace minus script í’¢ Subscript k Baseline upper H Superscript upper T Baseline upper R 6th Row 1st Column equals 2nd Column minus script í’¢ Subscript k Baseline upper H Superscript upper T Baseline script upper E left-brace upper H left-parenthesis upper F x Subscript k minus 1 Baseline plus w Subscript k Baseline right-parenthesis v Subscript k Superscript upper T Baseline right-brace minus script í’¢ Subscript k Baseline upper H Superscript upper T Baseline upper R 7th Row 1st Column Blank 2nd Column equals 3rd Column minus script í’¢ Subscript k Baseline upper H Superscript upper T Baseline upper R comma 8th Row 1st Column script upper E left-brace v Subscript k Baseline epsilon Subscript k Superscript upper T Baseline right-brace 2nd Column equals 3rd Column minus upper R upper H script í’¢ Subscript k Baseline period EndLayout

This transforms (6.45) to

Again we see the same picture. By upper N equals upper K, the bias correction gain in the UFIR filter is close to unity, script í’¢ Subscript upper N minus 1 Baseline upper H Superscript upper T Baseline approximately-equals upper I, and (6.50) gives a value close to zero, as in (6.46). When upper N equals upper N Subscript opt, upper P Subscript k and script í’¢ Subscript k Baseline upper H Superscript upper T are small enough and (6.50) transforms into (6.47). Finally, for upper N much-greater-than upper N Subscript opt, upper P Subscript k becomes large and script í’¢ Subscript k Baseline upper H Superscript upper T small, which leads to (6.48).

Although we have already discussed many details, it is still necessary to prove that the slope of trace left-parenthesis upper S Subscript k Baseline right-parenthesis is always positive up to and around upper N Subscript opt and that this function is convex on upper N. To show this, represent the derivative of upper S Subscript k as upper S Subscript k Superscript prime Baseline equals upper S Subscript k Baseline minus upper S Subscript k minus 1, assuming a unit time‐step for simplicity. For (6.50) at the point k equals upper N Subscript opt Baseline minus 1 we have upper P Subscript k Baseline approximately-equals upper P Subscript k minus 1 and, therefore, upper S Subscript k Superscript prime can be written as

upper S prime Subscript k Baseline approximately-equals left-parenthesis script í’¢ Subscript k minus 1 Baseline minus script í’¢ Subscript k Baseline right-parenthesis upper H Superscript upper T Baseline upper R plus upper R upper H left-parenthesis script í’¢ Subscript k minus 1 Baseline minus script í’¢ Subscript k Baseline right-parenthesis period

Since the GNPG script í’¢ Subscript k decreases with increasing upper N, then we have script í’¢ Subscript k minus 1 Baseline minus script í’¢ Subscript k Baseline greater-than 0, and it follows that upper S Subscript k Superscript prime Baseline greater-than 0 and so is the derivative of trace left-parenthesis upper S Subscript k Baseline right-parenthesis,

StartFraction normal d Over normal d k EndFraction trace left-parenthesis upper S Subscript k Baseline right-parenthesis vertical-bar Subscript k equals upper N Sub Subscript opt Subscript minus 1 Baseline greater-than 0 period

Thus, trace left-parenthesis upper S Subscript k Baseline right-parenthesis passes through upper N Subscript opt Baseline minus 1 with minimum positive slope. Moreover, since bias errors force upper S Subscript k to approach upper P Subscript k as upper N increases, function StartFraction normal d Over normal d k EndFraction trace left-parenthesis upper S Subscript k Baseline right-parenthesis is reminiscent of upper P Subscript k. Finally, further minimizing StartFraction normal d Over normal d k EndFraction trace left-parenthesis upper S Subscript k Baseline right-parenthesis with upper N yields upper N Subscript opt, which can be called the key property of upper S Subscript k.

6.3 Backward a posteriori UFIR Filter

The backward UFIR filter can be derived similarly to the forward UFIR filter if we refer to (5.23) and (5.26) and write the extended model as

for which the definitions of all vectors and matrices can be found after (5.23) and (5.26). Batch and recursive forms for this filter can be obtained as shown next.

6.3.1 Batch Form

The batch backward UFIR estimate x overTilde Subscript m can be defined as

where ModifyingAbove upper Y With left-arrow Subscript k comma m is given by (6.53). The homogenous gain ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m Baseline delta-equals ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m Superscript normal h and the forced gain ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m Superscript normal f can be determined by satisfying the unbiasedness condition upper E left-brace ModifyingAbove x With caret Subscript m Baseline right-brace equals upper E left-brace x Subscript m Baseline right-brace applied to (6.54) and the model

(6.55)x Subscript m Baseline equals script í’³ Subscript k Superscript m plus 1 Baseline x Subscript k Baseline minus ModifyingAbove Above upper S overbar With left-arrow Subscript k comma m Baseline ModifyingAbove upper U With left-arrow Subscript k comma m Baseline minus ModifyingAbove Above upper D overbar With left-arrow Subscript k comma m Baseline ModifyingAbove upper W With left-arrow Subscript k comma m Baseline comma

which is the last upper Nth row vector in (6.52). This gives two unbiasedness constraints

and the first constraint (6.56) yields the fundamental gain

For ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m obtained by (6.58), the forced gain is defined by (6.57), and we notice that the same result appears when the noise is neglected in the backward OFIR estimate (5.28). The backward a posteriori UFIR filtering estimate is thus given in a batch form by (6.54) with the gains (6.58) and (6.57).

The error covariance upper P Subscript m for the backward UFIR filter can be written as

where the error residual matrices are specified by

Note that, as in the forward UFIR filter, matrices (6.60) and (6.61) provide an optimal balance between bias and random errors in the backward UFIR filtering estimate x overTilde Subscript m if we optimally set the averaging horizon of upper N Subscript opt points, as shown in Fig. 6.1 and Fig. 6.2.

6.3.2 Recursions and Iterative Algorithm

The batch estimate (6.54) can be computed iteratively on left-bracket m comma k right-bracket if we find recursions for x overTilde Subscript m Superscript normal h and x overTilde Subscript m Superscript normal f.

By introducing the backward GNPG

we write the homogeneous estimate as

and represent recursively the inverse of the GNPG (6.62) by

(6.64)StartLayout 1st Row 1st Column ModifyingAbove script í’¢ With left-arrow Subscript m Superscript negative 1 2nd Column equals 3rd Column left-parenthesis script í’³ Subscript k Superscript m plus 1 Baseline right-parenthesis Superscript negative upper T Baseline ModifyingAbove upper H With left-arrow Subscript k comma m Superscript upper T Baseline ModifyingAbove upper H With left-arrow Subscript k comma m Baseline script í’³ Subscript k Superscript m plus 1 Super Superscript upper T Baseline left-parenthesis script í’³ Subscript k Superscript m plus 1 Baseline right-parenthesis Superscript negative 1 2nd Row 1st Column Blank 2nd Column equals 3rd Column left-parenthesis script í’³ Subscript k Superscript m plus 1 Baseline right-parenthesis Superscript negative upper T Baseline Start 1 By 2 Matrix 1st Row 1st Column ModifyingAbove upper H With left-arrow Subscript k comma m plus 1 Superscript upper T 2nd Column script í’³ Subscript k Superscript m plus 1 Baseline Superscript upper T Baseline upper H Subscript m Superscript upper T EndMatrix StartBinomialOrMatrix ModifyingAbove upper H With left-arrow Subscript k comma m plus 1 Choose upper H Subscript m Baseline script í’³ Subscript k Superscript m plus 1 EndBinomialOrMatrix script í’³ Subscript k Superscript m plus 1 Super Superscript upper T Baseline left-parenthesis script í’³ Subscript k Superscript m plus 1 Baseline right-parenthesis Superscript negative 1 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper H Subscript m Superscript upper T Baseline upper H Subscript m Baseline plus left-parenthesis upper F Subscript m plus 1 Superscript negative 1 Baseline ModifyingAbove script í’¢ With left-arrow Subscript m plus 1 Baseline upper F Subscript m plus 1 Superscript negative upper T Baseline right-parenthesis Superscript negative 1 Baseline period EndLayout

This gives two recursive forms

Referring to ModifyingAbove upper H With left-arrow Subscript k comma m Superscript upper T Baseline equals script í’³ Subscript k Superscript m plus 1 Baseline Superscript upper T Baseline ModifyingAbove script í’¢ With left-arrow Subscript m Superscript negative 1 Baseline ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m taken from (6.63a) and (6.63b), we next represent the product ModifyingAbove upper H With left-arrow Subscript k comma m Superscript upper T Baseline ModifyingAbove upper Y With left-arrow Subscript k comma m as

By combining (6.65), (6.66), and (6.67), a recursion for x overTilde Subscript m Superscript normal h can now be written as

where ModifyingAbove script í’¢ With left-arrow Subscript m Baseline upper H Subscript m Superscript upper T is the bias correction gain of the UFIR filter.

To derive a recursion for the forced gain x overTilde Subscript m Superscript normal f, we use the decompositions

StartLayout 1st Row 1st Column ModifyingAbove Above upper S overbar With left-arrow Subscript k comma m 2nd Column equals 3rd Column upper F Subscript m plus 1 Superscript negative 1 Baseline left-bracket ModifyingAbove Above upper S overbar With left-arrow Subscript k comma m plus 1 Baseline plus ModifyingAbove upper E overbar With left-arrow Subscript k comma m plus 1 Baseline 0 right-bracket comma 2nd Row 1st Column ModifyingAbove upper G With left-arrow Subscript k comma m Superscript upper T 2nd Column equals 3rd Column Start 2 By 2 Matrix 1st Row 1st Column ModifyingAbove upper G With left-arrow Subscript k comma m plus 1 Superscript upper T Baseline 2nd Column left-parenthesis ModifyingAbove Above upper S overbar With left-arrow Subscript k comma m plus 1 Baseline plus ModifyingAbove upper E overbar With left-arrow Subscript k comma m plus 1 Baseline right-parenthesis Superscript upper T Baseline upper F Subscript m plus 1 Superscript negative upper T Baseline upper H Subscript m Superscript upper T Baseline 2nd Row 1st Column 0 2nd Column 0 EndMatrix comma 3rd Row 1st Column ModifyingAbove upper E overbar With left-arrow Subscript k comma m plus 1 2nd Column equals 3rd Column left-bracket 0 0 midline-horizontal-ellipsis 0 upper E Subscript m plus 1 Baseline right-bracket comma EndLayout

follow the derivation of the recursive forms for the backward OFIR filter, provide routine transformations, and arrive at

A simple combination of (6.68) and (6.69) finally gives

(6.70)StartLayout 1st Row 1st Column x overTilde Subscript m 2nd Column equals 3rd Column x overTilde Subscript m Superscript normal h Baseline plus x overTilde Subscript m Superscript normal f 2nd Row 1st Column Blank 2nd Column equals 3rd Column x overTilde Subscript m Superscript minus Baseline plus ModifyingAbove script í’¢ With left-arrow Subscript m Baseline upper H Subscript m Superscript upper T Baseline left-parenthesis y Subscript m Baseline minus upper H Subscript m Baseline x overTilde Subscript m Superscript minus Baseline right-parenthesis comma EndLayout

where the prior estimate is specified by

(6.71)x overTilde Subscript m Superscript minus Baseline equals upper F Subscript m plus 1 Superscript negative 1 Baseline left-parenthesis x overTilde Subscript m plus 1 Baseline plus upper E Subscript m plus 1 Baseline u Subscript m plus 1 Baseline right-parenthesis period

The backward iterative a posteriori UFIR filtering algorithm can now be generalized with the pseudocode listed as Algorithm 12. The algorithm starts with the initial ModifyingAbove script í’¢ With left-arrow Subscript s and x overTilde Subscript s computed at s in short batch forms (6.62) and (6.54). The iterative computation is performed back in time on the horizon of upper N points so that the filter gives estimates from zero to m equals k minus upper N plus 1.

It is worth noting that the typical differences between KFs and UFIR filters illustrated in Fig. 6.4 are recognized as fundamental [179]. Another thing to mention is that forward and backward filters act in opposite directions, so their responses appear antisymmetric.

6.3.3 Recursive Error Covariance

The recursive form for the error covariance (6.59) of the backward a posteriori UFIR filter can be found similarly to the forward UFIR filter. To this end, we first represent (6.59) using (6.60) and (6.61) as

StartLayout 1st Row 1st Column upper P Subscript m 2nd Column equals 3rd Column left-parenthesis ModifyingAbove Above upper D overbar With left-arrow Subscript k comma m Baseline minus ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m Baseline ModifyingAbove upper G With left-arrow Subscript k comma m Baseline right-parenthesis script í’¬ Subscript k comma m Baseline left-parenthesis ModifyingAbove Above upper D overbar With left-arrow Subscript k comma m Baseline minus ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m Baseline ModifyingAbove upper G With left-arrow Subscript k comma m Baseline right-parenthesis Superscript upper T 2nd Row 1st Column Blank 2nd Column Blank 3rd Column plus ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m Baseline script upper R Subscript k comma m Baseline ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m Superscript upper T 3rd Row 1st Column Blank 2nd Column equals 3rd Column ModifyingAbove Above upper D overbar With left-arrow Subscript k comma m Baseline script í’¬ Subscript k comma m Baseline ModifyingAbove Above upper D overbar With left-arrow Subscript k comma m Superscript upper T minus 2 ModifyingAbove Above upper D overbar With left-arrow Subscript k comma m Baseline script í’¬ Subscript k comma m Baseline ModifyingAbove upper G With left-arrow Subscript k comma m Superscript upper T Baseline ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m Superscript upper T 4th Row 1st Column Blank 2nd Column Blank 3rd Column plus ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m Baseline ModifyingAbove upper G With left-arrow Subscript k comma m Baseline script í’¬ Subscript k comma m Baseline ModifyingAbove upper G With left-arrow Subscript k comma m Superscript upper T Baseline ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m Superscript upper T Baseline plus ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m Baseline script upper R Subscript k comma m Baseline ModifyingAbove Above ModifyingAbove script upper H With Ì‚ With left-arrow Subscript k comma m Superscript upper T Baseline period EndLayout

We then find recursions for each of the matrix products in the previous relationship, combine the recursive forms obtained, and finally come up with

It can now be shown that there is no significant difference between the error covariances of the forward and backward UFIR filters. Since these filters process the same data, but in opposite directions, it follows that the errors on the given horizon left-bracket m comma k right-bracket are statistically equal.

6.4 The q‐lag UFIR Smoother

In postprocessing and when filtering stationary and quasi stationary signals, smoothing may be the best choice because it provides better noise reduction. Various types of smoothers can be designed using the UFIR approach, although many of them appear to be equivalent as opposed to OFIR smoothing. Here we will first derive the q‐lag FFFM UFIR smoother and then show that all other UFIR smoothing structures of this type are equivalent due to their ability to ignore noise.

Let us look again at the q‐lag FFFM FIR smoothing strategy illustrated in Fig. 5.2. The corresponding UFIR smoother can be designed to satisfy the unbiasedness condition

where the q‐lag estimate can be defined as

and the state model represented by the left-parenthesis upper N minus q right-parenthesisth row vector in (6.3) as

where upper S overbar Subscript m comma k Superscript left-parenthesis upper N minus q right-parenthesis is the left-parenthesis upper N minus q right-parenthesisth row vector in (4.9) and so is upper D overbar Subscript m comma k Superscript left-parenthesis upper N minus q right-parenthesis in upper D overbar Subscript m comma k.

6.4.1 Batch and Recursive Forms

Condition (6.73) applied to (6.74) and (6.75) gives two unbiasedness constraints,

and after simple manipulations the first one in (6.76) gives a fundamental UFIR smoother gain ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript left-parenthesis q right-parenthesis,

Referring to script upper F Subscript k minus q Superscript m plus 1 Baseline equals left-parenthesis script upper F Subscript k Superscript k minus q plus 1 Baseline right-parenthesis Superscript negative 1 Baseline script upper F Subscript k Superscript m plus 1, we next transform (6.78) to

(6.79)StartLayout 1st Row 1st Column ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript left-parenthesis q right-parenthesis 2nd Column equals 3rd Column left-parenthesis script upper F Subscript k Superscript k minus q plus 1 Baseline right-parenthesis Superscript negative 1 Baseline script upper F Subscript k Superscript m plus 1 Baseline left-parenthesis upper H Subscript m comma k Superscript upper T Baseline upper H Subscript m comma k Baseline right-parenthesis Superscript negative 1 Baseline upper H Subscript m comma k Superscript upper T 2nd Row 1st Column Blank 2nd Column equals 3rd Column left-parenthesis script upper F Subscript k Superscript k minus q plus 1 Baseline right-parenthesis Superscript negative 1 Baseline ModifyingAbove script upper H With Ì‚ Subscript m comma k Baseline comma EndLayout

where ModifyingAbove script upper H With Ì‚ Subscript m comma k is the homogeneous gain (6.10a) of the UFIR filter, and express the q‐lag homogeneous UFIR smoothing estimate in terms of the filtering estimate ModifyingAbove x With caret Subscript k as

that does not require recursion; that is, the recursively computed filtering estimate ModifyingAbove x With caret Subscript k is projected into k minus q in one step by the matrix left-parenthesis script upper F Subscript k Superscript k minus q plus 1 Baseline right-parenthesis Superscript negative 1.

For the forced estimate, the recursive form

appears if we first represent the last row vector upper S overbar Subscript m comma k of the matrix upper S Subscript m comma k given by (4.9) as

upper S overbar Subscript m comma k Baseline equals script upper F Subscript k Superscript k minus q plus 1 Baseline upper S overbar Subscript m comma k Superscript left-parenthesis upper N minus q right-parenthesis Baseline plus upper S overTilde Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline comma

where matrix upper S overTilde Subscript m comma k Superscript left-parenthesis q right-parenthesis becomes matrix upper D overTilde Subscript m comma k Superscript left-parenthesis q right-parenthesis if we replace upper B Subscript k by upper E Subscript k. Also upper S overbar Subscript m comma k Superscript left-parenthesis upper N minus q right-parenthesis can be written as

upper S overbar Subscript m comma k Superscript left-parenthesis upper N minus q right-parenthesis Baseline equals left-parenthesis script upper F Subscript k Superscript k minus q plus 1 Baseline right-parenthesis Superscript negative 1 Baseline left-parenthesis upper S overbar Subscript m comma k Baseline minus upper S overTilde Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline right-parenthesis comma

and then the subsequent modification of (6.81) gives

StartLayout 1st Row 1st Column x overTilde Subscript k minus q Superscript normal f 2nd Column equals 3rd Column left-parenthesis script upper F Subscript k Superscript k minus q plus 1 Baseline right-parenthesis Superscript negative 1 Baseline left-parenthesis upper S overbar Subscript m comma k Baseline minus ModifyingAbove script upper H With Ì‚ Subscript m comma k Baseline upper L Subscript m comma k Baseline minus upper S overTilde Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline right-parenthesis upper U Subscript m comma k 2nd Row 1st Column Blank 2nd Column equals 3rd Column left-parenthesis script upper F Subscript k Superscript k minus q plus 1 Baseline right-parenthesis Superscript negative 1 Baseline left-parenthesis ModifyingAbove x With caret Subscript k Superscript normal f Baseline minus upper S overTilde Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline upper U Subscript m comma k Baseline right-parenthesis period EndLayout

Next, using the decomposition upper S overTilde Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline equals left-bracket upper F Subscript k Baseline upper S overTilde Subscript m comma k minus 1 Superscript left-parenthesis q right-parenthesis Baseline upper E Subscript k Baseline right-bracket, we transform the forced estimate to the form

where the q‐varying product correction term ModifyingAbove x With ˇ Subscript k minus q Superscript normal f Baseline equals upper S overTilde Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline upper U Subscript m comma k is computed recursively as

By combining (6.80) and (6.82), we finally arrive at the recursion

using which, the recursive q‐lag FFFM a posteriori UFIR smoothing algorithm can be designed as follows. Reorganize (6.83) as

ModifyingAbove x With ˇ Subscript k minus q minus 1 Superscript normal f Baseline equals upper F Subscript k Superscript negative 1 Baseline left-parenthesis ModifyingAbove x With ˇ Subscript k minus q Superscript normal f Baseline minus upper E Subscript k Baseline u Subscript k Baseline right-parenthesis comma

set q equals 0, assign ModifyingAbove x With ˇ Subscript k Superscript normal f Baseline equals ModifyingAbove x With caret Subscript k Superscript normal f, and compute for q equals 1 comma 2 comma ellipsis until this recursion gives ModifyingAbove x With ˇ Subscript k minus q Superscript normal f. Given ModifyingAbove x With ˇ Subscript k Superscript normal f and ModifyingAbove x With ˇ Subscript k minus q Superscript normal f, the smoothing estimate is obtained by (6.84). It is worth noting that in the particular case of an autonomous system, u Subscript k Baseline equals 0, the q‐lag a posteriori UFIR smoothing estimate is computed using a simple projection (6.80).

6.4.2 Error Covariance

In batch form, the q‐varying error covariance upper P Subscript k minus q of the FFFM UFIR smoother is determined by (6.12), although with the renewed matrices,

where the error residual matrices are given by

(6.86)script í’² Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline equals upper D overbar Subscript m comma k Superscript left-parenthesis upper N minus q right-parenthesis Baseline minus ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline upper G Subscript m comma k Baseline comma
(6.87)script í’± Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline equals ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline period

To find a recursive form for (6.85), we write it in the form

(6.88)upper P Subscript k minus q Baseline equals left-parenthesis script upper F Subscript k Superscript k minus q plus 1 Baseline right-parenthesis Superscript negative 1 Baseline left-parenthesis upper P Subscript k Baseline plus upper P overTilde Subscript q Baseline right-parenthesis left-parenthesis script upper F Subscript k Superscript k minus q plus 1 Baseline right-parenthesis Superscript negative upper T Baseline comma

where upper P Subscript k is the error covariance (6.37) of the UFIR filter, and represent the q‐varying amendment upper P overTilde Subscript q as

It can be seen that upper P overTilde Subscript q naturally becomes zero at q equals 0 due to upper D overTilde Subscript m comma k Superscript left-parenthesis 0 right-parenthesis Baseline equals 0. Furthermore, the structure of the matrix upper D overTilde Subscript m comma k Superscript left-parenthesis q right-parenthesis suggests that script í’µ Subscript q Superscript left-parenthesis 1 right-parenthesis Baseline equals script í’µ Subscript q Superscript left-parenthesis 2 right-parenthesis Baseline equals script í’µ Subscript q Superscript left-parenthesis 5 right-parenthesis and also script í’µ Subscript q Superscript left-parenthesis 4 right-parenthesis Baseline equals script í’µ Subscript q Superscript left-parenthesis 3 right-parenthesis Super Superscript upper T.

By considering several cases of script í’µ Subscript q Superscript left-parenthesis 1 right-parenthesis for q equals 1 comma 2 comma 3,

StartLayout 1st Row 1st Column script í’µ 1 Superscript left-parenthesis 1 right-parenthesis 2nd Column equals 3rd Column upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline comma 2nd Row 1st Column script í’µ 2 Superscript left-parenthesis 1 right-parenthesis 2nd Column equals 3rd Column script í’µ 1 Superscript left-parenthesis 1 right-parenthesis Baseline plus upper F Subscript k Baseline upper B Subscript k minus 1 Baseline upper Q Subscript k minus 1 Baseline upper B Subscript k minus 1 Superscript upper T Baseline upper F Subscript k Superscript upper T Baseline comma 3rd Row 1st Column script í’µ 3 Superscript left-parenthesis 1 right-parenthesis 2nd Column equals 3rd Column script í’µ 1 Superscript left-parenthesis 2 right-parenthesis Baseline plus upper F Subscript k Baseline upper F Subscript k minus 1 Baseline upper B Subscript k minus 2 Baseline upper Q Subscript k minus 2 Baseline upper B Subscript k minus 2 Superscript upper T Baseline upper F Subscript k minus 1 Superscript upper T Baseline upper F Subscript k Superscript upper T Baseline comma EndLayout

and reasoning deductively, we obtain the following recursion for script í’µ Subscript q Superscript left-parenthesis 1 right-parenthesis,

where the matrix upper M Subscript q is still in batch form as

Similarly, we represent script í’µ Subscript q Superscript left-parenthesis 3 right-parenthesis in special cases as

StartLayout 1st Row 1st Column script í’µ 1 Superscript left-parenthesis 3 right-parenthesis 2nd Column equals 3rd Column upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline script í’¢ Subscript k Baseline comma 2nd Row 1st Column script í’µ 2 Superscript left-parenthesis 3 right-parenthesis 2nd Column equals 3rd Column script í’µ 1 Superscript left-parenthesis 3 right-parenthesis Baseline plus upper F Subscript k Baseline upper B Subscript k minus 1 Baseline upper Q Subscript k minus 1 Baseline upper B Subscript k minus 1 Superscript upper T Baseline left-parenthesis upper H Subscript k minus 1 Superscript upper T Baseline upper H Subscript k minus 1 Baseline upper F Subscript k Superscript negative 1 Baseline plus upper F Subscript k Superscript upper T Baseline upper H Subscript k minus 1 Superscript upper T Baseline upper H Subscript k Baseline right-parenthesis script í’¢ Subscript k Baseline comma 3rd Row 1st Column script í’µ 3 Superscript left-parenthesis 3 right-parenthesis 2nd Column equals 3rd Column script í’µ 2 Superscript left-parenthesis 3 right-parenthesis Baseline plus upper F Subscript k Baseline upper F Subscript k minus 1 Baseline upper B Subscript k minus 2 Baseline upper Q Subscript k minus 2 Baseline upper B Subscript k minus 2 Superscript upper T Baseline left-parenthesis upper H Subscript k minus 2 Superscript upper T Baseline upper H Subscript k minus 2 Baseline upper F Subscript k minus 1 Superscript negative 1 Baseline upper F Subscript k Superscript negative 1 Baseline 4th Row 1st Column Blank 2nd Column Blank 3rd Column plus upper F Subscript k minus 1 Superscript upper T Baseline upper H Subscript k minus 2 Superscript upper T Baseline upper H Subscript k minus 1 Baseline upper F Subscript k Superscript negative 1 Baseline plus upper F Subscript k minus 1 Superscript upper T Baseline upper F Subscript k Superscript upper T Baseline upper H Subscript k minus 2 Superscript upper T Baseline upper H Subscript k Baseline right-parenthesis script í’¢ Subscript k Baseline comma EndLayout

and then replace the sum in the parentheses with

which gives the following recursion for script í’µ Subscript q Superscript left-parenthesis 3 right-parenthesis,

By combining (6.90) and (6.93) with (6.89), we finally obtain the recursive form for the error covariance as

which should be computed starting with q equals 2 for the initial value

using the matrix upper M Subscript q given by (6.91) and upper L Subscript q by (6.92). Noticing that the recursive form for the batch matrix upper L Subscript q given by (6.92) is not available in this procedure, we postpone to “Problems” the alternative derivation of recursive forms for (6.85).

Time‐Invariant Case

For LTI systems, the matrix upper L Subscript q, given in batch form as (6.92), can easily be represented recursively as

upper L Subscript q Baseline equals upper L Subscript q minus 1 Baseline upper F Superscript negative 1 Baseline plus upper F Superscript q minus 1 Super Superscript upper T Baseline upper H Superscript upper T Baseline upper H

and the q‐lag FFFM UFIR smoothing algorithm can be modified accordingly. Computing the initial upper P overTilde Subscript 1 by (6.95) and knowing the matrix upper L 1 equals upper H Superscript upper T Baseline upper H, one can update the estimates for q equals 2 comma 3 period period period as

(6.96)upper M Subscript q Baseline equals upper F Superscript q minus 1 Baseline upper B upper Q upper B Superscript upper T Baseline comma
(6.97)upper L Subscript q Baseline equals upper L Subscript q minus 1 Baseline upper F Superscript negative 1 Baseline plus upper F Superscript q minus 1 Super Superscript upper T Superscript Baseline upper H Superscript upper T Baseline upper H comma
(6.98)upper P overTilde Subscript q Baseline equals upper P overTilde Subscript q minus 1 Baseline minus upper M Subscript q Baseline upper F Superscript q minus 1 Super Superscript upper T Superscript Baseline plus upper M Subscript q Baseline upper L Subscript q Baseline script í’¢ plus script í’¢ upper L Subscript q Superscript upper T Baseline upper M Subscript q Superscript upper T Baseline comma

It should be noted that the computation of the error covariance upper P Subscript k minus q using (6.99) does not have to be necessarily included in the iterative cycle and can be performed only once after q reaches the required lag‐value.

6.4.3 Equivalence of UFIR Smoothers

Other types of q‐lag UFIR smoothers can be obtained if we follow the FFBM, BFFM, and BFBM strategies discussed in Chapter . To show the equivalence of these smoothers, we will first look at the FFBM UFIR smoother and then draw an important conclusion.

The q‐lag FFBM UFIR smoother can be obtained similarly to the FFFM UFIR smoother in several steps. Referring to the backward state‐space model in (5.23) and (5.26), we define the state at k minus q) as

and the forward UFIR smoothing estimate as

From (6.100) at the point q equals upper N minus 1, we can also obtain

where ModifyingAbove Above upper S overbar With left-arrow Subscript k comma m is the last row vector in (5.41) and so is ModifyingAbove Above upper D overbar With left-arrow Subscript k comma m in ModifyingAbove upper D With left-arrow Subscript k comma m.

The unbiasedness condition script upper E left-brace x overTilde Subscript k minus q Baseline right-brace equals script upper E left-brace x Subscript k minus q Baseline right-brace applied to (6.100) and (6.101) gives

ModifyingAbove upper H With caret Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline upper H Subscript m comma k Baseline x Subscript m Baseline minus script í’³ Subscript k Superscript k minus q plus 1 Baseline x Subscript k Baseline equals minus ModifyingAbove Above upper S overbar With left-arrow Subscript k comma m Superscript left-parenthesis q right-parenthesis Baseline ModifyingAbove upper U With left-arrow Subscript k comma m Baseline minus left-parenthesis ModifyingAbove upper H With caret Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline upper L Subscript m comma k Baseline plus ModifyingAbove upper H With caret Subscript m comma k Superscript normal f left-parenthesis q right-parenthesis Baseline right-parenthesis upper U Subscript m comma k Baseline period

Taking into account that ModifyingAbove Above upper S overbar With left-arrow Subscript k comma m Superscript left-parenthesis q right-parenthesis Baseline ModifyingAbove upper U With left-arrow Subscript k comma m Baseline equals ModifyingAbove Above upper S overbar With left-arrow Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline upper U Subscript m comma k and replacing x Subscript k extracted from (6.102) with script upper E left-brace ModifyingAbove upper W With left-arrow Subscript k comma m Baseline right-brace equals 0, the previous relationship can be split into two unbiasedness constraints

What now follows is that the first constraint (6.103) is exactly the constraint (6.76) for the FFFM UFIR smoother. We then observe that for q greater-than-or-equal-to 1 we have script í’³ Subscript k Superscript k minus q plus 1 Baseline equals left-parenthesis script upper F Subscript k Superscript k minus q plus 1 Baseline right-parenthesis Superscript negative 1 and thus ModifyingAbove Above upper S overbar With left-arrow Subscript m comma k Superscript left-parenthesis q right-parenthesis can be transformed as

StartLayout 1st Row 1st Column ModifyingAbove Above upper S overbar With left-arrow Subscript m comma k Superscript left-parenthesis q right-parenthesis 2nd Column equals 3rd Column Start 1 By 7 Matrix 1st Row 1st Column 0 2nd Column ellipsis 3rd Column 0 4th Column upper F Subscript k minus q plus 1 Superscript negative 1 Baseline upper E Subscript k minus q plus 1 5th Column ellipsis 6th Column script í’³ Subscript k minus 1 Superscript k minus q plus 1 Baseline upper E Subscript k minus 1 7th Column script í’³ Subscript k Superscript k minus q plus 1 Baseline upper E Subscript k EndMatrix 2nd Row 1st Column Blank 2nd Column equals 3rd Column script í’³ Subscript k Superscript k minus q plus 1 Baseline Start 1 By 7 Matrix 1st Row 1st Column 0 2nd Column ellipsis 3rd Column 0 4th Column left-parenthesis script í’³ Subscript k Superscript k minus q plus 2 Baseline right-parenthesis Superscript negative 1 Baseline upper E Subscript k minus q plus 1 5th Column ellipsis 6th Column upper F Subscript k Baseline upper E Subscript k minus 1 7th Column upper E Subscript k EndMatrix 3rd Row 1st Column Blank 2nd Column equals 3rd Column left-parenthesis script upper F Subscript k Superscript k minus q plus 1 Baseline right-parenthesis Superscript negative 1 Baseline upper S overTilde Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline period EndLayout

Finally, we transform the second constraint (6.104) to

(6.105)ModifyingAbove upper H With caret Subscript m comma k Superscript normal f left-parenthesis q right-parenthesis Baseline equals left-parenthesis script upper F Subscript k Superscript k minus q plus 1 Baseline right-parenthesis Superscript negative 1 Baseline left-parenthesis upper S overbar Subscript m comma k Baseline minus upper S overTilde Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline minus ModifyingAbove upper H With caret Subscript m comma k Baseline upper L Subscript m comma k Baseline right-parenthesis

and conclude that this is constraint (6.77) for FFFM UFIR smoothing.

Now the following important conclusion can be drawn. Because the FFBM and FFFM UFIR smoothers obey the same unbiasedness constraints in (6.76) and (6.77), then it follows that these smoothers are equivalent. And this is not surprising, since all UFIR structures obeying only the unbiasedness constraint ignore noise. By virtue of that, the forward and backward models become identical at k minus q, and thus the FFFM and FMBM UFIR smoothers are equivalent. In addition, since the forward and backward UFIR filters are equivalent for the same reason, then it follows that the BFFM and BFBM UFIR smoothers are also equivalent, and an important finding follows.

Equivalence of UFIR smoothers: Satisfied only the unbiasedness condition, q‐lag FFFM, FFBM, BFFM, and BFBM UFIR smoothers are equivalent.

In view of the previous definition, the q‐lag FFFM UFIR smoother can be used universally as a UFIR smoother in both batch and iterative forms. Other UFIR smoothing structures such as FFBM, BFFM, and BFBM have rather theoretical meaning.

6.5 State Estimation Using Polynomial Models

There is a wide class of systems and processes whose states change slowly over time and, thus, can be represented by degree polynomials. Examples can be found in target tracking, networking, and biomedical applications. Signal envelopes in narrowband wireless communication channels, remote wireless control, and remote sensing are also slowly changing.

The theory of UFIR state estimation developed for discrete time‐invariant polynomial models [172] implies that the process can be represented on left-bracket m comma k right-bracket using the following state‐space equations

where w Subscript k and v Subscript k are zero mean noise vectors. The i greater-than-or-equal-to 1 power of the system matrix upper F element-of double-struck upper R Superscript upper K times upper K has a specific structure

(6.108)upper F Superscript i Baseline equals Start 5 By 5 Matrix 1st Row 1st Column 1 2nd Column tau i 3rd Column StartFraction left-parenthesis tau i right-parenthesis squared Over 2 EndFraction 4th Column ellipsis 5th Column StartFraction left-parenthesis tau i right-parenthesis Superscript upper K minus 1 Baseline Over left-parenthesis upper K minus 1 right-parenthesis factorial EndFraction 2nd Row 1st Column 0 2nd Column 1 3rd Column tau i 4th Column ellipsis 5th Column StartFraction left-parenthesis tau i right-parenthesis Superscript upper K minus 2 Baseline Over left-parenthesis upper K minus 2 right-parenthesis factorial EndFraction 3rd Row 1st Column 0 2nd Column 0 3rd Column 1 4th Column ellipsis 5th Column StartFraction left-parenthesis tau i right-parenthesis Superscript upper K minus 3 Baseline Over left-parenthesis upper K minus 3 right-parenthesis factorial EndFraction 4th Row 1st Column vertical-ellipsis 2nd Column vertical-ellipsis 3rd Column vertical-ellipsis 4th Column down-right-diagonal-ellipsis 5th Column vertical-ellipsis 5th Row 1st Column 0 2nd Column 0 3rd Column 0 4th Column ellipsis 5th Column 1 EndMatrix comma

which means that, by i equals 1, each row in upper F is represented with the descending ith degree, i element-of left-bracket 0 comma upper K minus 1 right-bracket, Taylor or Maclaurin series, where upper K is the number of the states.

6.5.1 Problems Solved with UFIR Structures

The UFIR approach applied to the model in (6.106) and (6.107) to satisfy the unbiasedness condition gives a unique ith degree polynomial impulse response function h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis for each of the states separately, where p greater-than-or-less-than 0 is a discrete time shift relative to the current point k. Function h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis has many useful properties, which make the UFIR estimate near optimal. Depending on p, the following types of h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis can be recognized. When p equals 0, function h Subscript k Superscript left-parenthesis i right-parenthesis is used to obtain UFIR filtering. When p less-than 0, function h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis negative q right-parenthesis serves to obtain left-parenthesis q equals negative p right-parenthesis‐lag UFIR smoothing filtering. Finally, when p greater-than 0, function h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis is used to obtain p‐step UFIR predictive filtering.

Accordingly, the following problems can be solved by applying UFIR structures to a polynomial signal s Subscript k measured as y Subscript k in the presence of zero mean additive noise:

  • Filtering provides an estimate at k based on data taken from left-bracket m comma k right-bracket,
  • Smoothing filtering provides a q‐lag, q greater-than 0, smoothing estimate at k based on data taken from left-bracket m plus q comma k plus q right-bracket,
  • Predictive filtering provides a p‐step, p greater-than 0, predictive estimate at k based on data taken from left-bracket m minus p comma k minus p right-bracket,

    Note that one‐step predictive UFIR filtering, p equals 1, was originally developed for polynomial models in [71]. In state space, it is known as RH FIR filtering [106] used in state‐feedback control and MPC.

  • Smoothing provides a q‐lag smoothing estimate at k minus q, q greater-than 0, based on data taken from left-bracket m comma k right-bracket,
  • Prediction provides a p‐step, p greater-than 0, prediction at k plus p based on data taken from left-bracket m comma k right-bracket,

In the previous definitions of the state estimation problems, the functions h Subscript n Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis and ModifyingAbove h With tilde Subscript n Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis are not equal for p not-equals 0, but can be transformed into each other. More detail can be found in [181].

6.5.2 The p‐shift UFIR Filter

Looking at the details of the UFIR strategy, we notice that the approach that ignores zero mean noise allows us to solve universally the filtering problem (6.109), the smoothing filtering problem (6.110), and the predictive filtering problem (6.111) by obtaining a p‐shift estimate [176]. The UFIR approach also assumes that a shift to the past can be achieved at point k using data taken from left-bracket m plus p comma k plus p right-bracket with a positive smoother lag q equals negative p, a shift to the future at point k using data taken from left-bracket m minus p comma k minus p right-bracket with a positive prediction step p greater-than 0, and that p equals 0 means filtering.

Thus, the p‐shift UFIR filtering estimate can be defined as

where the components of the gain ModifyingAbove script upper H With Ì‚ Subscript upper N Baseline left-parenthesis p right-parenthesis equals left-bracket script upper H 0 left-parenthesis p right-parenthesis script upper H 1 left-parenthesis p right-parenthesis ellipsis script upper H Subscript upper N minus 1 Baseline left-parenthesis p right-parenthesis right-bracket are diagonal matrices specified by the matrix

script upper H Subscript n Baseline left-parenthesis p right-parenthesis equals diag left-parenthesis h Subscript n Superscript left-parenthesis upper K minus 1 right-parenthesis Baseline left-parenthesis p right-parenthesis h Subscript n Superscript left-parenthesis upper K minus 2 right-parenthesis Baseline left-parenthesis p right-parenthesis ellipsis h Subscript n Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis p right-parenthesis right-parenthesis comma

whose components, in turn, are the values of the function h Subscript n Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis. The unbiasedness condition applied to (6.114) gives the unbiasedness constraint

where upper H Subscript upper N Baseline left-parenthesis p right-parenthesis equals left-bracket left-parenthesis upper F Superscript upper N minus 1 plus p Baseline right-parenthesis Superscript upper T Baseline left-parenthesis upper F Superscript upper N minus 2 plus p Baseline right-parenthesis Superscript upper T Baseline ellipsis left-parenthesis upper F Superscript 1 plus p Baseline right-parenthesis Superscript upper T Baseline left-parenthesis upper F Superscript p Baseline right-parenthesis Superscript upper T Baseline right-bracket Superscript upper T.

For the lth system state, the p‐shift UFIR filtering estimate is defined as

(6.116)ModifyingAbove x With caret Subscript l left-parenthesis k plus p right-parenthesis Baseline equals ModifyingAbove script upper H With Ì‚ Subscript upper N l Baseline left-parenthesis p right-parenthesis upper H Subscript upper N l Baseline left-parenthesis p right-parenthesis x Subscript m

and the constraint (6.115) is transformed to

where left-parenthesis upper F right-parenthesis Subscript l means the lth row in upper F and the remaining lth rows are given by

(6.118)ModifyingAbove script upper H With Ì‚ Subscript upper N l Baseline left-parenthesis p right-parenthesis equals left-bracket h 0 Superscript left-parenthesis upper K minus l right-parenthesis Baseline left-parenthesis p right-parenthesis h 1 Superscript left-parenthesis upper K minus l right-parenthesis Baseline left-parenthesis p right-parenthesis ellipsis h Subscript upper N minus 1 Superscript left-parenthesis upper K minus l right-parenthesis Baseline left-parenthesis p right-parenthesis right-bracket comma
(6.119)upper H Subscript upper N l Baseline equals left-bracket left-parenthesis upper F Subscript l Superscript upper N minus 1 plus p Baseline right-parenthesis Superscript upper T Baseline left-parenthesis upper F Subscript l Superscript upper N minus 2 plus p Baseline right-parenthesis Superscript upper T Baseline ellipsis left-parenthesis upper F Subscript l Superscript 1 plus p Baseline right-parenthesis Superscript upper T Baseline left-parenthesis upper F Subscript l Superscript p Baseline right-parenthesis Superscript upper T Baseline right-bracket Superscript upper T Baseline period

It is worth noting that the linear matrix equation 6.117 can be solved analytically for the ith degree polynomial impulse response h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis. This gives the p‐varying function

where i element-of left-bracket 0 comma upper K minus 1 right-bracket, k element-of left-bracket p comma upper N minus 1 plus p right-bracket, and the coefficient a Subscript j i Baseline left-parenthesis p right-parenthesis is defined by

where the determinant StartAbsoluteValue upper Lamda Subscript i Baseline left-parenthesis p right-parenthesis EndAbsoluteValue of the p‐varying Hankel matrix upper Lamda Subscript i Baseline left-parenthesis p right-parenthesis equals upper Theta Subscript i Superscript upper T Baseline left-parenthesis p right-parenthesis upper Theta Subscript i Baseline left-parenthesis p right-parenthesis is specified via the Vandermonde matrix upper Theta Subscript i Baseline left-parenthesis p right-parenthesis as

and upper M Subscript left-parenthesis j plus 1 right-parenthesis 1 Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis is the minor of upper Lamda Subscript i Baseline left-parenthesis p right-parenthesis. The uth component c Subscript u, u element-of left-bracket 0 comma 2 i right-bracket, of matrix (6.122) is the power series

(6.123)c Subscript u Baseline left-parenthesis p right-parenthesis equals sigma-summation Underscript i equals p Overscript upper N minus 1 plus p Endscripts i Superscript u Baseline equals StartFraction 1 Over u plus 1 EndFraction left-bracket upper B Subscript u plus 1 Baseline left-parenthesis upper N plus p right-parenthesis minus upper B Subscript u plus 1 Baseline left-parenthesis p right-parenthesis right-bracket comma

where upper B Subscript n Baseline left-parenthesis x right-parenthesis is the Bernoulli polynomial.

The coefficients of several low‐degree polynomials h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis, which are most widely used in practice, are given in Table 6.1. Using this table, or (6.121) for higher‐degree systems, one can obtain an analytic form for h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis as a function of p, where p equals 0 is for UFIR filtering, p equals negative q less-than 0 for UFIR smoothing filtering, and p greater-than 0 for UFIR predictive filtering.

Table 6.1 Coefficients a Subscript j i Baseline left-parenthesis p right-parenthesis of Low‐Degree Functions h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis.

h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesisCoefficients
Uniform:a 00 equals StartFraction 1 Over upper N EndFraction
Ramp:a 01 equals StartFraction 2 left-parenthesis 2 upper N minus 1 right-parenthesis left-parenthesis upper N minus 1 right-parenthesis plus 12 p left-parenthesis upper N minus 1 plus p right-parenthesis Over upper N left-parenthesis upper N squared minus 1 right-parenthesis EndFraction
a 11 equals minus StartFraction 6 left-parenthesis upper N minus 1 plus 2 p right-parenthesis Over upper N left-parenthesis upper N squared minus 1 right-parenthesis EndFraction
Quadratic:a 02 equals 3 StartFraction 3 upper N Superscript 4 Baseline minus 12 upper N cubed plus 17 upper N squared minus 12 upper N plus 4 plus 12 left-parenthesis upper N minus 1 right-parenthesis left-parenthesis 2 upper N squared minus 5 upper N plus 2 right-parenthesis p Over upper N left-parenthesis upper N Superscript 4 Baseline minus 5 upper N squared plus 4 right-parenthesis EndFraction
plus 3 StartFraction 12 left-parenthesis 7 upper N squared minus 15 upper N plus 7 right-parenthesis p squared plus 120 left-parenthesis upper N minus 1 right-parenthesis p cubed plus 60 p Superscript 4 Baseline Over upper N left-parenthesis upper N Superscript 4 Baseline minus 5 upper N squared plus 4 right-parenthesis EndFraction
a 12 equals minus 18 StartFraction 2 upper N cubed minus 7 upper N squared plus 7 upper N minus 2 plus 2 left-parenthesis 7 upper N squared minus 15 upper N plus 7 right-parenthesis p plus 30 left-parenthesis upper N minus 1 right-parenthesis p squared plus 20 p cubed Over upper N left-parenthesis upper N Superscript 4 Baseline minus 5 upper N squared plus 4 right-parenthesis EndFraction
a 22 equals 30 StartFraction upper N squared minus 3 upper N plus 2 plus 6 left-parenthesis upper N minus 1 right-parenthesis p plus 6 p squared Over upper N left-parenthesis upper N Superscript 4 Baseline minus 5 upper N squared plus 4 right-parenthesis EndFraction

Properties of p‐shift UFIR Filters

The most important properties of the impulse response function h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis are listed in Table 6.2, which also summarizes some of the critical findings [181]. If we set p equals 0, we can use this table to examine the properties of the UFIR filter. We can also characterize the UFIR filter in terms of system theory. Indeed, since the transfer function script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis z right-parenthesis of the ith degree UFIR filter is equal to unity at zero frequency, z equals 1, then it follows that this filter is essentially a low‐pass (LP) filter. Moreover, if we analyze other types of FIR structures in a similar way, we can come to the following general conclusion.

Table 6.2 Main Properties of h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis.

Property
Region of existence:p less-than-or-slanted-equals k less-than-or-slanted-equals upper N minus 1 plus p
z‐transform at omega equals 0:upper H Subscript i Baseline left-parenthesis z equals 1 comma p right-parenthesis equals 1  (UFIR filter is an LP filter)
Unit area:sigma-summation Underscript k equals p Overscript upper N minus 1 plus p Endscripts h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis equals 1
Energy (NPG):sigma-summation Underscript k equals p Overscript upper N minus 1 plus p Endscripts h Subscript k Superscript left-parenthesis i right-parenthesis squared Baseline left-parenthesis p right-parenthesis equals h 0 Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis equals a Subscript 0 i Baseline left-parenthesis p right-parenthesis
Value at zero:h 0 Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis greater-than 0
Zero moments:sigma-summation Underscript k equals p Overscript upper N minus 1 plus p Endscripts h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis k Superscript u Baseline equals 0, 1 less-than-or-slanted-equals u less-than-or-slanted-equals i
sigma-summation Underscript k equals p Overscript upper N minus 1 plus p Endscripts h Subscript k Superscript left-parenthesis l right-parenthesis Baseline left-parenthesis p right-parenthesis h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis k Superscript u Baseline equals 0, 1 less-than-or-slanted-equals u less-than-or-slanted-equals StartAbsoluteValue i minus l EndAbsoluteValue
Orthogonality:sigma-summation Underscript k equals 0 Overscript upper N minus 1 Endscripts StartFraction 2 k Over upper N left-parenthesis upper N minus 1 right-parenthesis EndFraction h Subscript k Superscript left-parenthesis l right-parenthesis Baseline h Subscript k Superscript left-parenthesis i right-parenthesis Baseline equals StartFraction i plus 1 Over upper N left-parenthesis upper N minus 1 right-parenthesis EndFraction product Underscript i equals 0 Overscript r Endscripts StartFraction upper N minus 1 minus r Over upper N plus r EndFraction delta Subscript k i,
sigma-summation Underscript k equals p Overscript upper N minus 1 plus p Endscripts rho left-parenthesis k comma p right-parenthesis h Subscript k Superscript left-parenthesis l right-parenthesis Baseline h Subscript k Superscript left-parenthesis i right-parenthesis Baseline equals d Subscript i Superscript 2 Baseline left-parenthesis k comma p right-parenthesis delta Subscript l i,
l comma i element-of left-bracket 0 comma upper K minus 1 right-bracket
Unbiasedness:integral Subscript 0 Superscript 2 pi Baseline script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j omega upper T Baseline right-parenthesis normal d left-parenthesis omega upper T right-parenthesis equals integral Subscript 0 Superscript 2 pi Baseline StartAbsoluteValue script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j omega upper T Baseline right-parenthesis EndAbsoluteValue squared normal d left-parenthesis omega upper T right-parenthesis
sigma-summation Underscript n equals 0 Overscript upper N minus 1 Endscripts StartAbsoluteValue script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis n right-parenthesis EndAbsoluteValue squared equals sigma-summation Underscript n equals 0 Overscript upper N minus 1 Endscripts script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis n right-parenthesis

State estimator in the transform domain: All optimal, optimal unbiased, and unbiased state estimators are essentially LP structures.

Since the sum of the values of h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis is equal to unity, it follows that the UFIR filter is strictly stable. More specifically, it is a BIBO stable filter due to the FIR. The sum of the squared values of h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis represents the filter NPG, which is equal to the energy of the function h Subscript k Superscript left-parenthesis i right-parenthesis. The important thing is that NPG is equal to the function h 0 Superscript left-parenthesis i right-parenthesis at zero, which, in turn, is equal to the zero‐degree coefficient a Subscript 0 i Baseline left-parenthesis p right-parenthesis. This means that the denoising properties of the UFIR filter can be fully explored using the value NPG equals a Subscript 0 i Baseline left-parenthesis p right-parenthesis. It is also worth noting that the family of functions h Subscript k Superscript left-parenthesis l right-parenthesis and h Subscript k Superscript left-parenthesis i right-parenthesis, StartSet l comma i EndSet element-of left-bracket 0 comma upper K minus 1 right-bracket, establish an orthogonal basis, and thus high‐degree impulse responses can be computed through low‐degree impulse responses using a recurrence relation.

The fact that all moments of the function h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis are equal to zero means nothing more and nothing less than the UFIR filter is strictly unbiased by design. The unbiasedness of FIR filters can also be checked by equating the area of the transfer function and the area of the squared magnitude frequency response. The same test for unbiasedness in the discrete Fourier transform (DSP) domain is ensured by equating the sum of the DSP values and the sum of the squared magnitude values. At the end of this chapter, when we will consider practical implementations, we will take a closer look at the properties of UFIR filters in the transform domain.

6.5.3 Filtering of Polynomial Models

The UFIR filter can be viewed as a special case of the p‐shift UFIR filter when p equals 0. This transforms the impulse response function (6.120) to

where the coefficient a Subscript j i is defined by (6.121) as

The constant (zero‐degree, i equals 0) FIR function h Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline equals a 00 equals StartFraction 1 Over upper N EndFraction is used for simple averaging. The ramp (first‐degree, i equals 1) FIR function

is applicable for linear signals. The quadratic (second‐degree, i equals 2) FIR function

(6.127)StartLayout 1st Row 1st Column h Subscript k Superscript left-parenthesis 2 right-parenthesis 2nd Column equals 3rd Column a 02 plus a 12 k plus a 22 k squared 2nd Row 1st Column Blank 2nd Column equals 3rd Column StartFraction 3 left-parenthesis 3 upper N squared minus 3 upper N plus 2 right-parenthesis minus 18 left-parenthesis 2 upper N minus 1 right-parenthesis minus 30 Over upper N left-parenthesis upper N plus 1 right-parenthesis left-parenthesis upper N plus 2 right-parenthesis EndFraction EndLayout

is applicable for quadratically changing signals, etc.

There is also a recurrence relation [131]

that can be used when i greater-than-or-equal-to 1 and h Subscript k Superscript left-parenthesis negative i right-parenthesis Baseline equals 0 to compute h Subscript k Superscript left-parenthesis i right-parenthesis of any degree in terms of the lower‐degree functions. Several low‐degree functions h Subscript k Superscript left-parenthesis i right-parenthesis computed using (6.128) are shown in Fig. 6.5.

Schematic illustration of low-degree polynomial FIR functions hk(i).

Figure 6.5 Low‐degree polynomial FIR functions h Subscript k Superscript left-parenthesis i right-parenthesis.

The NPG of a UFIR filter, which is defined as NPG equals a Subscript 0 i Baseline equals h 0 Superscript left-parenthesis i right-parenthesis, suggests that the best noise reduction associated with the lowest NPG is obtained by simple averaging (case i equals 0 in Fig. 6.5). An increase in the filter degree leads to an increase in the filter output noise, and the following statements can be made.

Noise reduction with polynomial filters: 1) A zero‐degree filter (simple averaging) is optimal in the sense of minimum produced noise; 2) An increase in the filter degree or, which is the same, the number of states leads to an increase in random errors.

Therefore, because of the better noise reduction, the low‐degree UFIR state estimators are most widely used. In Fig. 6.5, we see an increase in NPG equals h 0 Superscript left-parenthesis i right-parenthesis caused by an increase in the degree i at k equals 0.

6.5.4 Discrete Shmaliy Moments

In [131], the class of the ith‐degree polynomial FIR functions h Subscript k Superscript left-parenthesis i right-parenthesis, defined by (6.124) and having the previously listed fundamental properties, was tested using the orthogonality condition

where delta Subscript l i is the Kronecker symbol and StartSet l comma i EndSet element-of left-bracket 0 comma upper K minus 1 right-bracket. It was found that the set of functions left-brace h Subscript k Superscript left-parenthesis l right-parenthesis Baseline h Subscript k Superscript left-parenthesis i right-parenthesis Baseline right-brace for StartSet l comma i EndSet greater-than-or-equal-to 1 and l not-equals i is orthogonal on left-bracket 0 comma upper N minus 1 right-bracket with the square of the weighted norm d Subscript i Superscript 2 Baseline left-parenthesis upper N right-parenthesis of h Subscript k Superscript left-parenthesis i right-parenthesis given by

(6.130)d Subscript i Superscript 2 Baseline left-parenthesis upper N right-parenthesis equals StartFraction i plus 1 Over upper N left-parenthesis upper N minus 1 right-parenthesis EndFraction product Underscript g equals 0 Overscript i Endscripts StartFraction upper N minus 1 minus g Over upper N plus g EndFraction equals StartFraction left-parenthesis i plus 1 right-parenthesis left-parenthesis upper N minus i minus 1 right-parenthesis Subscript i Baseline Over upper N left-parenthesis upper N right-parenthesis Subscript i plus 1 Baseline EndFraction comma

where left-parenthesis a right-parenthesis Subscript 0 Baseline equals 1 and left-parenthesis a right-parenthesis Subscript i Baseline equals a left-parenthesis a plus 1 right-parenthesis ellipsis left-parenthesis a plus i minus 1 right-parenthesis for i greater-than-or-equal-to 1 is the Pochhammer symbol. The non‐negative weight rho left-parenthesis k comma upper N right-parenthesis in (6.129) is the ramp probability density function

(6.131)rho left-parenthesis k comma upper N right-parenthesis equals StartFraction 2 k Over upper N left-parenthesis upper N minus 1 right-parenthesis EndFraction greater-than-or-equal-to 0 period

An applied significance of this property for signal analysis is that, due to the orthogonality, higher‐degree functions h Subscript k Superscript left-parenthesis i right-parenthesis can be computed in terms of lower‐degree functions using a recurrence relation (6.128).

Since the functions h Subscript k Superscript left-parenthesis i right-parenthesis have the properties of discrete orthogonal polynomials (DOP), they were named in [61,162] discrete Shmaliy moments (DSM) and investigated in detail. It should be noted that, due to the embedded unbiasedness, DSM belong to the one‐parameter family of DOP, while the classical Meixner and Krawtchouk polynomials belong to the two‐parameter family, and the most general Hahn polynomials belong to the three‐parameter family of DOP [131]. This makes the DSM more suitable for unbiased analysis and reconstruction if signals than the classical DOP and Tchebyshev polynomials. Note that DSM are also generalized by Hanh's polynomials along with the classical DOP.

6.5.5 Smoothing Filtering and Smoothing

Both the q‐lag UFIR smoothing filtering problem (6.110) and the UFIR smoothing problem (6.112) can be solved universally using (6.120) and (6.121) if we assign p equals negative q, q greater-than 0.

Smoothing Filtering

A feature of UFIR smoothing filtering is that the function h 0 Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis q right-parenthesis exists on the horizon negative q less-than-or-slanted-equals k less-than-or-slanted-equals upper N minus 1 minus q, and otherwise it is equal to zero, while the lag q is limited to 0 less-than q less-than upper N minus 1. Zero‐degree UFIR smoothing filtering is still provided by simple averaging. First‐degree UFIR smoothing filtering can be obtained using the q‐varying ramp response function

where h Subscript k Superscript left-parenthesis 1 right-parenthesis is the UFIR filter ramp impulse response (6.126). What can be observed is that better noise reduction is accompanied in (6.132) by loss of stability. Indeed, when upper N approaches unity, the second term in (6.132) grows indefinitely, which also follows from NPG of the first‐degree given by

Approximation (6.134) valid for large upper N and q much-less-than upper N clearly shows that increasing the horizon length upper N leads to a decrease in NPG, which improves noise reduction. Likewise, increasing the lag q results in better noise reduction.

The features discussed earlier are inherent to UFIR smoothing filters of any degree, although with the important specifics illustrated in Fig. 6.6. This figure shows that all smoothing filters of degree i greater-than 0 provide better noise reduction as q increases, starting from zero. However, NPG can have multiple minima, and therefore the optimal lag q Subscript opt does not necessarily correspond to the middle of the averaging horizon left-bracket m comma k right-bracket. For odd degrees, q Subscript opt can be found exactly in the middle of left-bracket m comma k right-bracket, while for even degrees at other points. For more information see [174].

Schematic illustration of the q-varying NPG of a UFIR smoothing filter for several low-degrees.

Figure 6.6 The q‐varying NPG of a UFIR smoothing filter for several low‐degrees.

Smoothing

The smoothing problem defined by (6.112) and discussed in state space in Chapter can be solved if we introduce a gain ModifyingAbove h With tilde Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis q right-parenthesis as

(6.135)ModifyingAbove h With tilde Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis q right-parenthesis equals h Subscript k minus q Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis q right-parenthesis comma

which exists on left-bracket 0 comma upper N minus 1 right-bracket with the same major properties as h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis q right-parenthesis. Indeed, the ramp UFIR smoother can be designed using the FIR function

(6.136)ModifyingAbove h With tilde Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis q right-parenthesis equals h Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline minus 6 q StartFraction upper N minus 1 minus 2 k Over upper N left-parenthesis upper N squared minus 1 right-parenthesis EndFraction period

The NPG for this smoother is defined by

(6.137)NPG left-parenthesis q right-parenthesis equals h Subscript q Superscript left-parenthesis 1 right-parenthesis Baseline minus 6 q StartFraction upper N minus 1 minus q Over upper N left-parenthesis upper N squared minus 1 right-parenthesis EndFraction

As expected, NPG (6.138) is exactly the same as (6.133) of the UFIR smoothing filter, since noise reduction is provided by both structures with equal efficiency. Note that similar conclusions can be drawn for other UFIR smoothing structures applied to polynomial models.

6.5.6 Generalized Savitzky‐Golay Filter

A special case of the UFIR smoothing filter was originally shown in [158] and is now called the Savitzky‐Golay (SG) filter. The convolution‐based smoothed estimate appears at the output of the SG filter with a lag q equals StartFraction upper N minus 1 Over 2 EndFraction in the middle of the averaging horizon as

where the set of upper N convolution coefficients psi Subscript n is determined by the linear LS method to fit with typically low‐degree polynomial processes. Since the coefficients psi Subscript n can be taken directly from the FIR function h Subscript n Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis negative q right-parenthesis, the SG filter is a special case of (6.110) with the following restrictions:

  • The horizon length upper N must be odd; otherwise, a fractional number appears in the sum limits.
  • The fixed‐lag is set as q equals StartFraction upper N minus 1 Over 2 EndFraction, while some applications require different lags and the optimal lag may not be equal to this value.

It then follows that the UFIR smoothing filter (6.110), developed for arbitrary upper N greater-than 1 and lags 0 less-than q less-than upper N minus 1, generalizes the SG filter (6.139) in the particular case of odd upper N and q equals StartFraction upper N minus 1 Over 2 EndFraction. Also note that the lag in (6.110) can be optimized for even‐degree polynomials as shown in [174].

6.5.7 Predictive Filtering and Prediction

The predictive filtering problem (6.111) can be solved directly using the p‐shift FIR function (6.120) if we set p greater-than 0. Like filtering and smoothing, zero‐degree UFIR predictive filtering is provided by simple averaging. The first‐degree predictive filter can be designed using a p‐varying ramp function

(6.140)h Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis p right-parenthesis equals h Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline plus 12 p StartFraction upper N minus 1 plus p minus k Over upper N left-parenthesis upper N squared minus 1 right-parenthesis EndFraction comma

which makes a difference with smoothing filtering. The NPG of the predictive filter is determined by

and we note an important feature: increasing the prediction step p leads to an increase in NPG, and denoising becomes less efficient. Looking at the region around p equals 0 in Fig. 6.5 and referring to (6.138) and (6.142), we come to the obvious conclusion that prediction is less precise than filtering and filtering is less precise than smoothing.

The prediction problem (6.113) can be solved similarly to the smoothing problem by introducing the gain

(6.143)ModifyingAbove h With tilde Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis equals h Subscript k plus p Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis comma

which exists on left-bracket 0 comma upper N minus 1 right-bracket with the same main properties as ModifyingAbove h With tilde Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis q right-parenthesis. The ramp UFIR predictor can be designed using the FIR function

(6.144)ModifyingAbove h With tilde Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis p right-parenthesis equals h Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline plus 6 p StartFraction upper N minus 1 minus 2 k Over upper N left-parenthesis upper N squared minus 1 right-parenthesis EndFraction

and its efficiency can be estimated using the NPG (6.141). Note that similar conclusions can be drawn for other UFIR predictors corresponding to polynomial models.

6.6 UFIR State Estimation Under Colored Noise

Like KF, the UFIR filter can also be generalized for Gauss‐Markov colored noise, if we take into account that unbiased averaging ignores zero mean noise. Accordingly, if we convert a model with colored noise to another with white noise and then ignore the white noise sources, the UFIR filter can be used directly. In Chapter, we generalized KF for CMN and CPN. In what follows, we will look at the appropriate modifications to the UFIR filter and focus on what makes it better in the first place: the ability to filter out more realistic nonwhite noise. Although such modifications require tuning factors, and therefore the filter may be more vulnerable and less robust, the main effect is usually positive.

6.6.1 Colored Measurement Noise

We consider the following state‐space model with Gauss‐Markov CMN, which was used in Chapter to design the GKF,

(6.146)v Subscript k Baseline equals upper Psi Subscript k Baseline v Subscript k minus 1 Baseline plus xi Subscript k Baseline comma
(6.147)y Subscript k Baseline equals upper H Subscript k Baseline x Subscript k Baseline plus v Subscript k Baseline comma

where w Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q Subscript k Baseline right-parenthesis and xi Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper R Subscript xi k Baseline right-parenthesis have the covariances upper Q Subscript k Baseline equals upper E left-brace w Subscript k Baseline w Subscript k Superscript upper T Baseline right-brace and upper R Subscript xi k Baseline equals upper E left-brace xi Subscript k Baseline xi Subscript k Superscript upper T Baseline right-brace. The coloredness factor upper Psi Subscript k is chosen such that the Gauss‐Markov noise v Subscript k is always stationary, as required. Using measurement differencing as z Subscript k Baseline equals y Subscript k Baseline minus upper Psi Subscript k Baseline y Subscript k minus 1, we write a new observation as

where upper H overbar Subscript k Baseline equals upper H Subscript k Baseline minus upper Gamma Subscript k is the new observation matrix, the auxiliary matrices are defined as upper E overbar Subscript k Baseline equals upper Gamma Subscript k Baseline upper E Subscript k and upper Gamma Subscript k Baseline equals upper Psi Subscript k Baseline upper H Subscript k minus 1 Baseline upper F Subscript k Superscript negative 1, and the noise

(6.149)v overbar Subscript k Baseline equals upper Gamma Subscript k Baseline upper B Subscript k Baseline w Subscript k Baseline plus xi Subscript k

is zero mean white Gaussian with the properties upper E left-brace v overbar Subscript k Baseline v overbar Subscript k Superscript upper T Baseline right-brace equals upper Gamma Subscript k Baseline upper Phi Subscript k Baseline plus upper R Subscript k, upper E left-brace v overbar Subscript k Baseline w Subscript k Superscript upper T Baseline right-brace equals upper Gamma Subscript k Baseline upper B Subscript k Baseline upper Q Subscript k, and upper E left-brace w Subscript k Baseline v overbar Subscript k Superscript upper T Baseline right-brace equals upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline upper Gamma Subscript k Superscript upper T, where upper Phi Subscript k Baseline equals upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline upper Gamma Subscript k Superscript upper T.

It can be seen that the modified state‐space model in (6.145) and (6.148) contains white and time‐correlated noise sources w Subscript k and v overbar Subscript k. Unlike KF, the UFIR filter does not require any information about noise, except for the zero mean assumption. Therefore, both w Subscript k and v overbar Subscript k can be ignored, and thus the UFIR filter is unique for both correlated and de‐correlated w Subscript k and v overbar Subscript k. However, the UFIR filter cannot ignore CMN v Subscript k, which is biased on a finite horizon left-bracket m comma k right-bracket.

The pseudocode of the a posteriori UFIR filtering algorithm for CMN is listed as Algorithm 13. To initialize iterations avoiding singularities, the algorithm requires a short measurement vector upper Y Subscript m comma s Baseline equals left-bracket y Subscript m Superscript upper T Baseline ellipsis y Subscript s Superscript upper T Baseline right-bracket Superscript upper T and an auxiliary block matrix

upper C Subscript m comma s Baseline equals Start 4 By 1 Matrix 1st Row upper H overbar Subscript m Baseline left-parenthesis upper F Subscript s Baseline period period period upper F Subscript m plus 1 Baseline right-parenthesis Superscript negative 1 Baseline 2nd Row vertical-ellipsis 3rd Row upper H overbar Subscript s minus 1 Baseline upper F Subscript s Superscript negative 1 Baseline 4th Row upper H overbar Subscript s Baseline EndMatrix period

It can be seen that for upper Psi Subscript n Baseline equals 0 this algorithm becomes the standard UFIR filtering algorithm. More details about the UFIR filter developed for CMN can be found in [183].

The error covariance for the UFIR filter is given by [179]

(6.150)StartLayout 1st Row 1st Column upper P Subscript k 2nd Column equals 3rd Column left-parenthesis upper I minus script í’¢ Subscript k Baseline upper H overbar Subscript k Superscript upper T Baseline upper H overbar Subscript k Baseline right-parenthesis upper P Subscript k Superscript minus Baseline left-parenthesis upper I minus script í’¢ Subscript k Baseline upper H overbar Subscript k Superscript upper T Baseline upper H overbar Subscript k Baseline right-parenthesis Superscript upper T plus script í’¢ Subscript k Baseline upper H overbar Subscript k Superscript upper T 2nd Row 1st Column Blank 2nd Column Blank 3rd Column times left-parenthesis upper Gamma Subscript k Baseline upper Phi Subscript k Baseline plus upper R Subscript k Baseline right-parenthesis upper H overbar Subscript k Baseline script í’¢ Subscript k minus 2 left-parenthesis upper I minus script í’¢ Subscript k Baseline upper H overbar Subscript k Superscript upper T Baseline upper H overbar Subscript k Baseline right-parenthesis upper Phi Subscript k Baseline upper H overbar Subscript k Baseline script í’¢ Subscript k 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper P Subscript k Superscript minus Baseline minus 2 left-parenthesis upper P Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T Baseline plus upper Phi Subscript k Baseline right-parenthesis upper H overbar Subscript k Baseline script í’¢ Subscript k plus script í’¢ Subscript k Baseline upper H overbar Subscript k Superscript upper T Baseline upper S Subscript k Baseline upper H overbar Subscript k Baseline script í’¢ Subscript k 4th Row 1st Column Blank 2nd Column equals 3rd Column upper P Subscript k Superscript minus Baseline minus left-parenthesis 2 upper P Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T Baseline plus 2 upper Phi Subscript k Baseline plus script í’¢ Subscript k Baseline upper H overbar Subscript k Superscript upper T Baseline upper S Subscript k Baseline right-parenthesis upper H overbar Subscript k Baseline script í’¢ Subscript k Baseline comma EndLayout

where the matrices upper H overbar Subscript k, upper Psi Subscript k, and upper Gamma Subscript k are defined earlier and the reader should remember that the GNPG matrix script í’¢ Subscript k is symmetric.

Typical RMSEs produced by the KF and UFIR algorithms versus psi are shown in Fig. 6.8 [183], where we recognize several basic features. It can be seen that the KF and UFIR filter modified for CMN give fewer errors than the original ones. It should also be noted that GKF performs better when 0 less-than psi less-than 0.95, and that the general UFIR filter is more accurate when 0.95 less-than psi less-than 1. This means that a more robust UFIR filter may be a better choice when measurement noise is heavily colored.

Schematic illustration of typical RMSEs produced by KF and UFIR filter for a two-state model versus the coloredness factor Ψ [183].

Figure 6.8 Typical RMSEs produced by KF and UFIR filter for a two‐state model versus the coloredness factor psi [183].

6.6.2 Colored Process Noise

Unlike the CMN, which always needs to be filtered out, the CPN, or at least its slow spectral components, can be tracked to avoid losing information about the process behavior. Let us show how to deal with CMN based on the following the state‐space model

(6.151)x Subscript k Baseline equals upper F Subscript k Baseline x Subscript k minus 1 Baseline plus upper E Subscript k Baseline u Subscript k Baseline plus upper B Subscript k Baseline w Subscript k Baseline comma
(6.152)w Subscript k Baseline equals upper Theta Subscript k Baseline w Subscript k minus 1 Baseline plus mu Subscript k Baseline comma
(6.153)y Subscript k Baseline equals upper H Subscript k Baseline x Subscript k Baseline plus v Subscript k Baseline comma

where matrices upper F Subscript k Baseline element-of double-struck upper R Superscript upper K times upper K, upper B Subscript k Baseline element-of double-struck upper R Superscript upper K times upper K, and upper Theta Subscript k Baseline element-of double-struck upper R Superscript upper K times upper K are nonsingular, upper H Subscript k Baseline element-of double-struck upper R Superscript upper M times upper K, and w Subscript k Baseline element-of double-struck upper R Superscript upper K is the Gauss‐Markov CPN. Noise vectors mu Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q Subscript k Baseline right-parenthesis element-of double-struck upper R Superscript upper K and v Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper R Subscript k Baseline right-parenthesis element-of double-struck upper R Superscript upper M are mutually uncorrelated with the covariances upper E left-brace mu Subscript k Baseline mu Subscript k Superscript upper T Baseline right-brace equals upper Q Subscript k and upper E left-brace v Subscript k Baseline v Subscript k Superscript upper T Baseline right-brace equals upper R Subscript k. The coloredness factor matrix upper Theta Subscript k is chosen such that the CPN w Subscript k is always stationary.

Using state differencing (3.175a), a new state equation can be written as

(6.154)chi Subscript k Baseline equals upper F overTilde Subscript k Baseline chi Subscript k minus 1 Baseline plus u overtilde Subscript k Baseline plus upper B Subscript k Baseline mu Subscript k Baseline comma

where mu Subscript k is white Gaussian, u overtilde Subscript k Baseline equals upper E Subscript k Baseline u Subscript k Baseline minus upper F overTilde Subscript k Baseline upper Pi Subscript k minus 1 Baseline upper F Subscript k minus 1 Superscript negative 1 Baseline u Subscript k minus 1, upper Pi Subscript k Baseline equals upper F overTilde Subscript k plus 1 Superscript negative 1 Baseline upper Theta overbar Subscript k plus 1 Baseline upper F Subscript k, and upper F overTilde Subscript k is defined by solving for initial upper F overTilde equals upper Theta overbar the NARE upper F overTilde squared minus upper F overTilde left-parenthesis upper F plus upper Theta overbar right-parenthesis plus upper Theta overbar upper F equals 0, where upper Theta overbar equals upper B upper Theta upper B Superscript negative 1.

Using (3.188), we write the modified observation equation as

(6.155)y overTilde Subscript k Baseline equals y Subscript k Baseline minus upper H Subscript k Baseline upper Pi Subscript k Baseline x Subscript k minus 1 Baseline equals upper H Subscript k Baseline chi Subscript k Baseline plus v Subscript k Baseline comma

where x Subscript k minus 1 can be substituted with the available past estimate ModifyingAbove x With caret Subscript k minus 1.

The pseudocode of the UFIR algorithm developed for CPN is listed as Algorithm 14. To initialize iterations, Algorithm 14 employs a short data vector upper Y Subscript m comma s Baseline equals left-bracket y Subscript m Superscript upper T Baseline ellipsis y Subscript s Superscript upper T Baseline right-bracket Superscript upper T and an auxiliary matrix

upper C Subscript m comma s Baseline equals Start 4 By 1 Matrix 1st Row upper H Subscript m Baseline left-parenthesis upper F overTilde Subscript s Baseline ellipsis upper F overTilde Subscript m plus 1 Baseline right-parenthesis Superscript negative 1 Baseline 2nd Row vertical-ellipsis 3rd Row upper H Subscript s minus 1 Baseline upper F overTilde Subscript s Superscript negative 1 Baseline 4th Row upper H Subscript s Baseline EndMatrix period

Note that, by setting upper Theta overbar Subscript k Baseline equals 0 and upper F overTilde Subscript k Baseline equals upper F Subscript k, Algorithm 14 becomes the standard iterative UFIR filtering algorithm.

The error covariance of the UFIR filter modified for CPN can be found if we notice that epsilon Subscript k Baseline equals x Subscript k Baseline minus ModifyingAbove x With caret Subscript k Baseline equals epsilon Subscript k Baseline plus upper Pi Subscript k Baseline epsilon Subscript k minus 1, where epsilon Subscript k Baseline equals chi Subscript k Baseline minus ModifyingAbove chi With Ì‚ Subscript k. Since this estimate is subject to the constraint upper F overTilde Subscript k Baseline upper Pi Subscript k minus 1 Baseline upper F Subscript k minus 1 Superscript negative 1 Baseline upper Theta overbar Subscript k Superscript negative 1 Baseline equals upper I [182], the error epsilon Subscript k for upper K Subscript k Baseline equals script í’¢ Subscript k Baseline upper H Subscript k Superscript upper T can be transformed to

StartLayout 1st Row 1st Column bold epsilon Subscript k 2nd Column equals 3rd Column upper F overTilde Subscript k Baseline chi Subscript k minus 1 plus mu Subscript k minus upper F overTilde Subscript k Baseline ModifyingAbove chi With Ì‚ Subscript k minus 1 minus upper K Subscript k Baseline left-parenthesis z Subscript k Baseline minus upper H Subscript k Baseline upper F overTilde Subscript k Baseline ModifyingAbove chi With Ì‚ Subscript k minus 1 Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column equals 3rd Column left-parenthesis upper I minus upper K Subscript k Baseline upper H Subscript k Baseline right-parenthesis upper F overTilde Subscript k Baseline epsilon Subscript k minus 1 Baseline plus left-parenthesis upper I minus upper K Subscript k Baseline upper H Subscript k Baseline right-parenthesis mu Subscript k Baseline minus upper K Subscript k Baseline v Subscript k Baseline comma EndLayout

and the corresponding error covariance upper P overbar Subscript k Baseline equals upper E left-brace epsilon Subscript k Baseline epsilon Subscript k Superscript upper T Baseline right-brace found to be

StartLayout 1st Row 1st Column upper P overbar Subscript k 2nd Column equals 3rd Column left-parenthesis upper I minus upper K Subscript k Baseline upper H Subscript k Baseline right-parenthesis left-parenthesis upper F overTilde Subscript k Baseline upper P overbar Subscript k minus 1 Baseline upper F overTilde Subscript k Superscript upper T Baseline plus upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column Blank 3rd Column times left-parenthesis upper I minus upper K Subscript k Baseline upper H Subscript k Baseline right-parenthesis Superscript upper T Baseline plus upper K Subscript k Baseline upper R Subscript k Baseline upper K Subscript k Superscript upper T Baseline period EndLayout

This finally gives

upper P Subscript k Baseline equals upper P overbar Subscript k Baseline plus upper Pi Subscript k Baseline upper P Subscript k minus 1 Baseline upper Pi Subscript k Superscript upper T Baseline period

Typical RMSEs produced by the modified and original filters for a two‐state polynomial model with CPN are shown in Fig. 6.9 as functions of the scalar coloredness factor theta [182]. The filtering effect here is reminiscent of the effect shown in Fig. 6.6 for CMN, and we notice that the accuracy of the original filters has been improved. However, a significant improvement in performance is recognized only when the coloredness factor is relatively large, theta greater-than 0.5. Otherwise, the discrepancies between the filter outputs are not significant.

Schematic illustration of typical RMSEs produced by the two-state UFIR filter, KF, and modified KF and UFIR filter in the presence of CPN as functions of the coloredness factor θ [182].

Figure 6.9 Typical RMSEs produced by the two‐state UFIR filter, KF, and modified KF and UFIR filter in the presence of CPN as functions of the coloredness factor theta [182].

Considering the previous modifications of the UFIR filter, we finally conclude that the filtering effect in the presence of CMN and/or CPN is noticeable only with strong coloration.

6.7 Extended UFIR Filtering

Representation of physical processes and approximation of systems using linear models does not always fit with practical needs. Looking at the nonlinear model in (3.226) and (3.227) and analyzing the Taylor series approach that results in the extended KF algorithms, we conclude that UFIR filtering can also be adapted to nonlinear behaviors [178], as will be shown next.

Given a nonlinear state‐space model

where w Subscript k and v Subscript k are mutually uncorrelated, zero mean, and not obligatorily Gaussian additive noise vectors. In Chapter, when derived EKF, it was shown that (6.156) and (6.157) can be approximated using the second‐order Taylor series expansion as

where y overTilde Subscript k Baseline equals y Subscript k Baseline minus psi Subscript k is the modified observation vector and eta Subscript k and psi Subscript k represent the components resulting from the linearization,

(6.160)eta Subscript k Baseline equals f Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis minus ModifyingAbove upper F With dot Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline plus one half alpha Subscript k Baseline comma
(6.161)psi Subscript k Baseline equals h Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis minus ModifyingAbove upper H With dot Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline plus one half beta Subscript k Baseline comma

in which alpha Subscript k Baseline equals sigma-summation Underscript i equals 1 Overscript upper K Endscripts e Subscript i Superscript upper K Baseline epsilon Subscript k minus 1 Superscript upper T Baseline ModifyingAbove upper F With two-dots Subscript i k Baseline epsilon Subscript k minus 1, beta Subscript k Baseline equals sigma-summation Underscript j equals 1 Overscript upper M Endscripts e Subscript j Superscript upper M Baseline epsilon Subscript k Superscript minus Baseline Superscript upper T Baseline ModifyingAbove upper H With two-dots Subscript j k Baseline epsilon Subscript k Superscript minus, and e Subscript i Superscript upper K Baseline element-of double-struck upper R Superscript upper K and e Subscript j Superscript upper M Baseline element-of double-struck upper R Superscript upper M are Cartesian basis vectors with the ith and jth components unity, and all others are zeros. The nonlinear functions are represented by

StartLayout 1st Row 1st Column f Subscript k Baseline left-parenthesis x Subscript k minus 1 Baseline right-parenthesis 2nd Column approximately-equals 3rd Column f Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis plus ModifyingAbove upper F With dot Subscript k Baseline epsilon Subscript k minus 1 Baseline plus one half alpha Subscript k Baseline comma 2nd Row 1st Column h Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis 2nd Column approximately-equals 3rd Column h Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis plus ModifyingAbove upper H With dot Subscript k Baseline epsilon Subscript k Superscript minus Baseline plus one half beta Subscript k Baseline comma EndLayout

where ModifyingAbove upper F With dot Subscript k Baseline equals StartFraction partial-differential f Subscript k Baseline Over partial-differential x EndFraction vertical-bar Subscript x equals ModifyingAbove x With caret Sub Subscript k minus 1 and ModifyingAbove upper H With dot Subscript k Baseline equals StartFraction partial-differential h Subscript k Baseline Over partial-differential x EndFraction vertical-bar Subscript x equals ModifyingAbove x With caret Sub Subscript k Sub Superscript minus are Jacobian matrices and ModifyingAbove upper F With two-dots Subscript i k Baseline equals StartFraction partial-differential squared f Subscript i k Baseline Over partial-differential x squared EndFraction vertical-bar Subscript x equals ModifyingAbove x With caret Sub Subscript k minus 1 and ModifyingAbove upper H With two-dots Subscript j k Baseline equals StartFraction partial-differential squared h Subscript j k Baseline Over partial-differential x squared EndFraction vertical-bar Subscript x equals ModifyingAbove x With caret Sub Subscript k Sub Superscript minus are Hessian matrices.

Based on (6.158) and (6.159), we can now develop the first‐ and second‐order extended UFIR filtering algorithms. Similarly to the EKF‐1 and EKF‐2 algorithms, we will refer to the extended UFIR algorithms as EFIR‐1 and EFIR‐2.

6.7.1 First‐Order Extended UFIR Filter

Let us look at the model in (6.158) and (6.159) again and assume that the mutually uncorrelated w Subscript k and v Subscript k are zero mean and white Gaussian. The EFIR‐1 (first‐order) filtering algorithm can be designed using the following recursions [178]

(6.162)ModifyingAbove x With caret Subscript k Baseline equals f Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis plus script í’¢ Subscript k Baseline ModifyingAbove upper H With dot Subscript k Superscript upper T Baseline left-bracket y Subscript k Baseline minus h Subscript k Baseline left-parenthesis f Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis right-parenthesis right-bracket comma
(6.163)script í’¢ Subscript k Baseline equals left-bracket ModifyingAbove upper H With dot Subscript k Superscript upper T Baseline ModifyingAbove upper H With dot Subscript k Baseline plus left-parenthesis ModifyingAbove upper F With dot Subscript k Baseline script í’¢ Subscript k minus 1 Baseline ModifyingAbove upper F With dot Subscript k Superscript upper T Baseline right-parenthesis Superscript negative 1 Baseline right-bracket Superscript negative 1 Baseline period

The pseudocode of the EFIR‐1 filtering algorithm is listed as Algorithm 15. As in the EKF‐1 algorithm, here the prior estimate x overbar Subscript l Superscript minus is obtained using a nonlinear projection f Subscript l Baseline left-parenthesis x overbar Subscript l minus 1 Baseline right-parenthesis, and then x overbar Subscript l Superscript minus is projected onto the observation as h Subscript l Baseline left-parenthesis x overbar Subscript l Superscript minus Baseline right-parenthesis. Also, the system and observation matrices ModifyingAbove upper F With dot Subscript k and ModifyingAbove upper H With dot Subscript k are Jacobian. The error covariance for this filter can be computed using (6.37) and the Jacobian matrices ModifyingAbove upper F With dot Subscript k and ModifyingAbove upper H With dot Subscript k.

The EFIR‐1 filtering algorithm developed in this way turns out to be simple and in most cases truly efficient. However, it should be noted that the initial state x overbar Subscript s, computed linearly in line 5 of Algorithm 15, may be too rough when the nonlinearity is strong. If so, then x overbar Subscript s can be computed using multiple projections as x overbar Subscript m plus 1 Baseline equals f Subscript m plus 1 Baseline left-parenthesis x overbar Subscript m Baseline right-parenthesis, x overbar Subscript m plus 2 Baseline equals f Subscript m plus 2 Baseline left-parenthesis x overbar Subscript m plus 1 Baseline right-parenthesis, ..., x overbar Subscript s Baseline equals f Subscript s Baseline left-parenthesis x overbar Subscript s minus 1 Baseline right-parenthesis. Otherwise, an auxiliary EKF‐1 algorithm can be used to obtain x overbar Subscript s.

6.7.2 Second‐Order Extended UFIR Filter

The derivation of the second‐order EFIR‐2 filter is more complex, and its application may not be very useful because it loses the ability to ignore noise covariances. To come up with the EFIR‐2 algorithm, we will mainly follow the results obtained in [178].

We first define the prior estimate by

for which, by the cyclic property of the trace operator, the expectation of alpha Subscript n can be found as

(6.165)script upper E left-brace alpha Subscript k Baseline right-brace equals alpha overbar Subscript k Baseline equals sigma-summation Underscript i equals 1 Overscript upper K Endscripts e Subscript i Superscript upper K Baseline trace left-brace ModifyingAbove upper F With two-dots Subscript i k Baseline upper P Subscript k minus 1 Baseline right-brace period

We can show that for ModifyingAbove x With caret Subscript k Superscript minus given by (6.164), the expectation of the prior error script upper E left-brace epsilon Subscript k Superscript minus Baseline right-brace equals script upper E left-brace x Subscript k Baseline minus ModifyingAbove x With caret Subscript k Superscript minus Baseline right-brace becomes identically zero,

script upper E left-brace epsilon Subscript k Superscript minus Baseline right-brace equals script upper E left-brace ModifyingAbove upper F With dot Subscript k Baseline epsilon Subscript k minus 1 Baseline plus one half left-parenthesis alpha Subscript k Baseline minus alpha overbar Subscript k Baseline right-parenthesis plus upper B Subscript k Baseline w Subscript k Baseline right-brace equals 0 period

Averaging the nonlinear function h Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis gives

(6.166)script upper E left-brace h Subscript k Baseline left-parenthesis x Subscript k Superscript minus Baseline right-parenthesis right-brace equals ModifyingAbove h With bar Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis equals h Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis plus one half beta overbar Subscript k Baseline comma

where the expectation of beta Subscript k can be found as

(6.167)script upper E left-brace beta Subscript k Baseline right-brace equals beta overbar Subscript k Baseline equals sigma-summation Underscript j equals 1 Overscript upper M Endscripts e Subscript j Superscript upper M Baseline trace left-brace ModifyingAbove upper H With two-dots Subscript j k Baseline upper P Subscript k Superscript minus Baseline right-brace comma

that allows us to obtain the error covariance as will be shown next.

Prior Error Covariance

Using (6.158) and (6.164) and taking into account that, for zero mean Gaussian noise, the vector script upper E left-brace epsilon Subscript k minus 1 Baseline left-parenthesis epsilon Subscript k minus 1 Superscript upper T Baseline ModifyingAbove upper F With two-dots Subscript i k Baseline epsilon Subscript k minus 1 Baseline right-parenthesis right-brace and other similar vectors are equal to zero, the a priori error covariance upper P Subscript k Superscript minus Baseline equals script upper E left-brace epsilon Subscript k Superscript minus Baseline epsilon Subscript k Superscript minus Super Superscript upper T Superscript Baseline right-brace can be transformed as

(6.168)StartLayout 1st Row 1st Column upper P Subscript k Superscript minus 2nd Column equals 3rd Column script upper E left-brace left-bracket f Subscript k Baseline left-parenthesis x Subscript k minus 1 Baseline right-parenthesis plus upper B Subscript k Baseline w Subscript k Baseline minus f Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis minus one half alpha overbar Subscript k Baseline right-bracket left-bracket ellipsis right-bracket Superscript upper T Baseline right-brace 2nd Row 1st Column Blank 2nd Column equals 3rd Column script upper E left-brace left-bracket upper F Subscript k Baseline epsilon Subscript k minus 1 Baseline plus upper B Subscript k Baseline w Subscript k Baseline plus one half left-parenthesis alpha Subscript k Baseline minus alpha overbar Subscript k Baseline right-parenthesis right-bracket left-bracket ellipsis right-bracket Superscript upper T Baseline right-brace 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper F Subscript k Baseline upper P Subscript k minus 1 Baseline upper F Subscript k Superscript upper T Baseline plus upper B Subscript k Baseline upper R Subscript k Baseline upper B Subscript k Superscript upper T Baseline plus one half script upper F overbar Subscript k Baseline comma EndLayout

where matrix script upper F overbar Subscript k is specialized via its left-parenthesis u v right-parenthesisth component

(6.169)StartLayout 1st Row 1st Column script upper F overbar Subscript left-parenthesis u v right-parenthesis k 2nd Column equals 3rd Column trace left-parenthesis ModifyingAbove upper F With two-dots Subscript u k Baseline upper P Subscript k minus 1 Baseline ModifyingAbove upper F With two-dots Subscript v k Baseline upper P Subscript k minus 1 Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column Blank 3rd Column plus one half trace left-parenthesis ModifyingAbove upper F With two-dots Subscript u k Baseline upper P Subscript k minus 1 Baseline right-parenthesis trace left-parenthesis ModifyingAbove upper F With two-dots Subscript v k Baseline upper P Subscript k minus 1 Baseline right-parenthesis minus one half alpha overbar Subscript u k Baseline alpha overbar Subscript v k Superscript upper T Baseline 3rd Row 1st Column Blank 2nd Column equals 3rd Column trace left-parenthesis ModifyingAbove upper F With two-dots Subscript u k Baseline upper P Subscript k minus 1 Baseline ModifyingAbove upper F With two-dots Subscript v k Baseline upper P Subscript k minus 1 Baseline right-parenthesis period EndLayout

Posterior Error Covariance

Reasoning similarly, the a posteriori error covariance upper P Subscript k Baseline equals script upper E left-brace epsilon Subscript k Baseline epsilon Subscript k Superscript upper T Baseline right-brace can be transformed using extended nonlinearities if we first represent it as

StartLayout 1st Row 1st Column upper P Subscript k 2nd Column equals 3rd Column script upper E left-brace left-bracket f Subscript k Baseline left-parenthesis x Subscript k minus 1 Baseline right-parenthesis plus upper B Subscript k Baseline w Subscript k Baseline minus f Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column Blank 3rd Column minus one half alpha overbar Subscript k Baseline minus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus ModifyingAbove h With bar Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis right-parenthesis right-bracket left-bracket ellipsis right-bracket Superscript upper T Baseline right-brace 3rd Row 1st Column Blank 2nd Column equals 3rd Column script upper E left-brace left-bracket upper F Subscript k Baseline epsilon Subscript k minus 1 Baseline plus upper B Subscript k Baseline w Subscript k Baseline plus one half left-parenthesis alpha Subscript k Baseline minus alpha overbar Subscript k Baseline right-parenthesis minus upper K Subscript k Baseline left-parenthesis upper H Subscript k Baseline epsilon Subscript k Superscript minus Baseline 4th Row 1st Column Blank 2nd Column Blank 3rd Column plus one half left-parenthesis beta Subscript k Baseline minus beta overbar Subscript k Baseline right-parenthesis plus v Subscript k Baseline right-parenthesis right-bracket left-bracket ellipsis right-bracket Superscript upper T Baseline right-brace comma EndLayout

take into account that script upper E left-brace epsilon Subscript k minus 1 Baseline right-brace equals 0 and script upper E left-brace epsilon Subscript k Superscript minus Baseline right-brace equals 0, provide the averaging, and obtain

StartLayout 1st Row 1st Column upper P Subscript k 2nd Column equals 3rd Column upper F Subscript k Baseline upper P Subscript k minus 1 Baseline upper F Subscript k Superscript upper T minus upper F Subscript k Baseline script upper E left-brace epsilon Subscript k minus 1 Baseline epsilon Subscript k Superscript minus Baseline Superscript upper T Baseline right-brace upper H Subscript k Superscript upper T Baseline upper K Subscript k Superscript upper T 2nd Row 1st Column Blank 2nd Column Blank 3rd Column plus one half script upper F overbar Subscript k minus one fourth left-parenthesis script upper E left-brace alpha Subscript k Baseline beta Subscript k Superscript upper T Baseline right-brace minus alpha overbar Subscript k Baseline beta overbar Subscript k Superscript upper T Baseline right-parenthesis upper K Subscript k Superscript upper T plus upper B Subscript k Baseline upper R Subscript k Baseline upper B Subscript k Superscript upper T 3rd Row 1st Column Blank 2nd Column Blank 3rd Column minus upper B Subscript k Baseline script upper E left-brace w Subscript k Baseline epsilon Subscript k Superscript minus Baseline Superscript upper T Baseline right-brace upper H Subscript k Superscript upper T Baseline upper K Subscript k Superscript upper T minus upper K Subscript k Baseline upper H Subscript k Baseline script upper E left-brace epsilon Subscript k Superscript minus Baseline epsilon Subscript k minus 1 Superscript upper T Baseline right-brace upper F Subscript k Superscript upper T 4th Row 1st Column Blank 2nd Column Blank 3rd Column minus upper K Subscript k Baseline upper H Subscript k Baseline script upper E left-brace epsilon Subscript k Superscript minus Baseline w Subscript k Superscript upper T Baseline right-brace upper B Subscript k Superscript upper T plus upper K Subscript k Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper K Subscript k Superscript upper T 5th Row 1st Column Blank 2nd Column Blank 3rd Column minus one fourth upper K Subscript k Baseline script upper E left-brace beta Subscript k Baseline alpha Subscript k Superscript upper T Baseline right-brace plus one fourth upper K Subscript k Baseline beta overbar Subscript k Baseline alpha overbar Subscript k Superscript upper T plus one fourth upper K Subscript k Baseline script upper E left-brace beta Subscript k Baseline beta Subscript k Superscript upper T Baseline right-brace upper K Subscript k Superscript upper T 6th Row 1st Column Blank 2nd Column Blank 3rd Column minus one fourth upper K Subscript k Baseline beta overbar Subscript k Baseline beta overbar Subscript k Superscript upper T Baseline upper K Subscript k Superscript upper T Baseline plus upper K Subscript k Baseline upper Q Subscript k Baseline upper K Subscript k Superscript upper T Baseline period EndLayout

Due to the symmetry of the matrices upper P Subscript k, upper R Subscript k, and upper Q Subscript k, the following expectations can be transformed as

StartLayout 1st Row 1st Column script upper E left-brace epsilon Subscript k Superscript minus Baseline epsilon Subscript k minus 1 Superscript upper T Baseline right-brace 2nd Column equals 3rd Column script upper E left-brace left-parenthesis x Subscript k Baseline minus ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis left-parenthesis x Subscript k minus 1 Baseline minus ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis Superscript upper T Baseline right-brace 2nd Row 1st Column equals 2nd Column script upper E left-brace left-bracket upper F Subscript k Baseline epsilon Subscript k minus 1 Baseline plus upper B Subscript k Baseline w Subscript k Baseline plus one half left-parenthesis alpha Subscript k Baseline minus alpha overbar Subscript k Baseline right-parenthesis right-bracket epsilon Subscript k minus 1 Superscript upper T Baseline right-brace equals upper F Subscript k Baseline upper P Subscript k minus 1 Baseline comma 3rd Row 1st Column script upper E left-brace w Subscript k Baseline epsilon Subscript k Superscript minus Baseline Superscript upper T Baseline right-brace 2nd Column equals 3rd Column script upper E left-brace w Subscript k Baseline left-bracket upper F Subscript k Baseline epsilon Subscript k minus 1 Baseline plus upper B Subscript k Baseline w Subscript k Baseline plus one half left-parenthesis alpha Subscript k Baseline minus alpha overbar Subscript k Baseline right-parenthesis right-bracket Superscript upper T Baseline right-brace 4th Row 1st Column equals 2nd Column upper R Subscript k Baseline upper B Subscript k Superscript upper T Baseline comma 5th Row 1st Column script upper E left-brace epsilon Subscript k minus 1 Baseline epsilon Subscript k Superscript minus Baseline Superscript upper T Baseline right-brace 2nd Column equals 3rd Column upper P Subscript k minus 1 Baseline upper F Subscript k Superscript upper T Baseline comma 6th Row 1st Column script upper E left-brace epsilon Subscript k Superscript minus Baseline w Subscript k Superscript upper T Baseline right-brace 2nd Column equals 3rd Column upper B Subscript k Baseline upper R Subscript k Baseline period EndLayout

Then, taking into account that the expectations of other products are matrices with zero components, we finally write the covariance upper P Subscript k in the form

where, the left-parenthesis r g right-parenthesisth component of matrix script upper H overbar Subscript k is defined by

(6.171)script upper H overbar Subscript left-parenthesis r g right-parenthesis k Baseline equals trace left-bracket ModifyingAbove upper H With two-dots Subscript r k Baseline upper P Subscript k Superscript minus Baseline ModifyingAbove upper H With two-dots Subscript g k Baseline upper P Subscript k Superscript minus Baseline right-bracket

and the left-parenthesis u r right-parenthesisth component of matrix script upper M overbar Subscript k is

(6.172)StartLayout 1st Row 1st Column script upper M overbar Subscript left-parenthesis u r right-parenthesis k 2nd Column equals 3rd Column trace left-bracket ModifyingAbove upper F With two-dots Subscript u k Baseline upper P Subscript k minus 1 Baseline upper F Subscript k Superscript upper T Baseline ModifyingAbove upper H With two-dots Subscript r k Baseline upper F Subscript k Baseline upper P Subscript k minus 1 Baseline right-bracket plus sigma-summation Underscript q equals 1 Overscript upper K Endscripts sigma-summation Underscript t equals 1 Overscript upper K Endscripts ModifyingAbove upper H With two-dots Subscript r k Baseline 2nd Row 1st Column Blank 2nd Column Blank 3rd Column times trace left-bracket ModifyingAbove upper F With two-dots Subscript u k Baseline upper P Subscript k minus 1 Baseline ModifyingAbove upper F With two-dots Subscript q k Baseline upper P Subscript k minus 1 Baseline ModifyingAbove upper F With two-dots Subscript t k Baseline upper P Subscript k minus 1 Baseline right-bracket period EndLayout

It has to be remarked now that when developing the second‐order extended algorithms, the authors use two forms of upper P Subscript k. The complete form in (6.170) can be found in [12,157]. On the contrary, in [72,185] only first‐order components are preserved.

The pseudocode of the EFIR‐2 filtering algorithm is listed as Algorithm 16. For the given upper N, upper Q Subscript k, and upper R Subscript k, the set of auxiliary matrices is computed and updated at each k. Then all matrices and vectors are updated iteratively, and the last updated ModifyingAbove x With caret Subscript k and upper P Subscript k go to the output when l equals k. Although the second‐order EFIR‐2 algorithm has been designed to improve accuracy, empirical studies show that its usefulness is questionable due to the following drawbacks:

  • Unlike the EFIR‐1 Algorithm 15, the EFIR‐2 Algorithm 16 requires upper Q Subscript k and upper R Subscript k and is thus less robust. It thus has more in common with the EKF rather than with the EFIR‐1 filter.
  • As noted in [178], nothing definite can be said about the accuracy of the EFIR‐2 algorithm compared to the EFIR‐1 algorithm. The same conclusion was made earlier in [185] regarding the EKF‐2 algorithm.

Overall, it can be said that the EFIR‐2 and EKF‐2 filtering algorithms do not demonstrate essential advantages over the EFIR‐1 and EKF‐1 algorithms. Moreover, these algorithms are more computationally complex and slower in operation.

6.8 Robustness of the UFIR Filter

Practice dictates that having a good estimator is not enough if the operating conditions are not satisfied from various perspectives, especially in unknown environments. In such a case, the required estimator must also be robust. In Chapter, we introduced the fundamentals of robustness, which is seen as the ability of an estimator not to respond to undesirable factors such as errors in noise statistics, model errors, and temporary uncertainties. We are now interested in investigating the trade‐off in robustness between the UFIR estimator and some other available state estimators. To obtain reliable results, we will examine along the KF, which is optimal and not robust, and the robust game theory recursive upper H Subscript infinity filter (3.307)–(3.310), which was developed in [185]. We will use the following state‐space model

where the noise covariances upper Q and upper R in the noise vectors w Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q right-parenthesis and v Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper R right-parenthesis are not necessarily known, as required by KF. To apply the upper H Subscript infinity filter, w Subscript k and v Subscript k will be thought of as norm‐bounded with symmetric and positive definite matrices script í’¬ and script upper R.

In our scenario, there is not enough information about upper Q and upper R to optimally tune KF, and the maximum values of the matrices script í’¬ and script upper R are also not known to make the upper H Subscript infinity filter robust. Therefore, we organize a scaling test for robustness by representing any uncertain component Ï’ in (6.173) and (6.174) as Ï’ equals ModifyingAbove Ï’ With bar plus upper Delta equals gamma ModifyingAbove Ï’ With bar, where the increment upper Delta equals left-parenthesis gamma minus 1 right-parenthesis ModifyingAbove Ï’ With bar is due to a positive‐valued scaling factor gamma greater-than 0 such that gamma equals 1 means undisturbed Ï’ equals ModifyingAbove Ï’ With bar. This test can be applied with the following substitutions: upper Q left-arrow alpha squared upper Q, script í’¬ left-arrow alpha squared script í’¬, upper R left-arrow beta squared upper R, script upper R left-arrow beta squared script upper R, upper F left-arrow eta upper F, and upper H left-arrow mu upper H, where the set of scaling factors StartSet alpha comma beta comma eta comma mu EndSet greater-than 0 can either change matrices or not when StartSet alpha comma beta comma eta comma mu EndSet equals 1. For eta upper F, the product matrix script upper F Subscript r Superscript g becomes

(6.175)script upper F Subscript r Superscript g Baseline left-arrow StartLayout Enlarged left-brace 1st Row 1st Column left-parenthesis eta upper F right-parenthesis Superscript r minus g plus 1 Baseline 2nd Column g less-than-or-slanted-equals r 2nd Row 1st Column eta upper I 2nd Column g equals r plus 1 3rd Row 1st Column 0 2nd Column g greater-than r plus 1 EndLayout period

We can learn about the robustness of recursive estimators by examining the sensitivity of the bias correction gain to interfering factors and its immunity to these factors. Taken from the UFIR Algorithm 11, the alternate KF (3.92)–(3.96) [184], and the upper H Subscript infinity filter (3.307)–(3.310) [185], the bias corrections gains can be written as, respectively,

where upper P Subscript k Superscript minus Baseline equals upper F upper P Subscript k minus 1 Baseline upper F Superscript upper T Baseline plus upper Q, script í’« Subscript k Superscript minus Baseline equals upper F script í’« Subscript k minus 1 Baseline upper F Superscript upper T Baseline plus script í’¬, and matrix upper S overbar Subscript k is constrained by the positive definite matrix left-parenthesis script í’« Subscript k Superscript minus Baseline right-parenthesis Superscript negative 1 Baseline minus theta upper S overbar Subscript k Baseline plus upper H Superscript upper T Baseline script upper R Superscript negative 1 Baseline upper H greater-than 0. Note that the tuning factor theta is required by the game theory upper H Subscript infinity filter in order to outperform KF.

The influence of StartSet alpha comma beta comma eta comma mu comma theta EndSet on (6.176)(6.178) can be learned if we use the following rule: if the error factor causes a decrease in upper K Subscript k, then the bias errors will grow; otherwise, random errors will dominate. The increments upper Delta upper K caused by the error factors in the bias correction gains can now be represented for each of the filters as

StartLayout 1st Row 1st Column upper Delta upper K Superscript normal upper U Baseline left-parenthesis eta comma mu right-parenthesis 2nd Column equals 3rd Column upper K Superscript normal upper U Baseline left-parenthesis eta comma mu right-parenthesis minus upper K Superscript normal upper U Baseline left-parenthesis 1 comma 1 right-parenthesis comma 2nd Row 1st Column upper Delta upper K Superscript normal upper K Baseline left-parenthesis alpha comma beta comma eta comma mu right-parenthesis 2nd Column equals 3rd Column upper K Superscript normal upper K Baseline left-parenthesis alpha comma beta comma eta comma mu right-parenthesis minus upper K Superscript normal upper K Baseline left-parenthesis 1 comma 1 comma 1 comma 1 right-parenthesis comma 3rd Row 1st Column upper Delta upper K Superscript infinity Baseline left-parenthesis alpha comma beta comma eta comma mu comma theta right-parenthesis 2nd Column equals 3rd Column upper K Superscript infinity Baseline left-parenthesis alpha comma beta comma eta comma mu comma theta right-parenthesis minus upper K Superscript infinity Baseline left-parenthesis 1 comma 1 comma 1 comma 1 comma 0 right-parenthesis comma EndLayout

and we notice that lower upper Delta upper K means higher robustness. There is one more important preliminary remark to be made. While more tuning factors make an estimator potentially more accurate and precise, it also makes an estimator less robust due to possible tuning errors (Fig. 1.3). In this sense, the two‐parameter StartSet eta comma mu EndSet UFIR filter appears to be more robust, but less accurate, while the four‐parameter StartSet alpha comma beta comma eta comma mu EndSet KF and five‐parameter StartSet alpha comma beta comma eta comma mu comma theta EndSet game theory upper H Subscript infinity filter are less robust but potentially more accurate.

6.8.1 Errors in Noise Covariances and Weighted Matrices

The additional errors produced by estimators applied to stochastic models and caused by alpha not-equals 1 and beta not-equals 1 occur due to the practical inability to collect accurate estimates of noise covariances and norm‐bounded weights, especially for LTV systems.

UFIR Filter

The UFIR filter does not require any information about zero mean noise. Thus, this filter is insensitive (robust) to variations in alpha and beta, unlike the KF and game theory upper H Subscript infinity filter.

Kalman Filter

For alpha not-equals 1 and beta not-equals 1, errors in the KF can be learned in stationary mode if we allow upper P Subscript k Superscript minus Baseline equals upper P Subscript k minus 1 Superscript minus Baseline equals upper P Superscript minus. Accordingly, the error covariance can be represented using the DARE

The solution to (6.179) does not exist in simple form. But if we accept upper P Subscript k minus 1 Baseline almost-equals upper P Subscript k Superscript minus Baseline equals upper P Superscript minus, which is true for low measurement noise, upper R almost-equals 0, then (6.179) can be replaced by the discrete Lyapunov equation [184] (A.34)

which is solvable (A.35). Although approximation (6.180) can be rough when v Subscript k is not small, it helps to compare the KF and upper H Subscript infinity filter for robustness, as will be shown next.

When upper R almost-equals 0, we can assume that KF is tracking state with high precision and let upper P Subscript k minus 1 Baseline almost-equals 0 that gives upper P Subscript k Superscript minus Baseline almost-equals upper Q. This gives upper P Subscript k Baseline almost-equals upper H Superscript upper T Baseline upper R Superscript negative 1 Baseline upper H and upper P Subscript n plus 1 Superscript minus Baseline almost-equals upper Q, and we conclude that upper P Superscript minus Baseline equals upper P Subscript k Superscript minus Baseline almost-equals upper P Subscript k plus 1 Superscript minus Baseline almost-equals upper Q. Note that this relationship is consistent with the equality in (6.183), which was obtained for the isolated cases of alpha equals 1 and a equals 0.

Referring to lemma 6.1, the bias correction gain (6.177) can now be approximated for a less-than 1 by the inequality

which does not hold true for a greater-than-or-equal-to 1. It is worth noting that alpha and beta act in opposite directions, and therefore the worst case will be when alpha greater-than 1 and beta less-than 1 or vice versa.

Game Theory upper H Subscript infinity Filter

Reasoning similarly for equal weighting errors obtained with upper S overbar Subscript k Baseline equals upper I, the bias correction gain (6.178) for the recursive game theory upper H Subscript infinity filter can be approximated by the inequality [180]

It can be seen that theta equals 0 makes no difference with the KF gain (6.184) for Gaussian models implying upper Q equals script í’¬ and upper R equals script upper R. Otherwise, we can expect KF to be less accurate and the upper H Subscript infinity filter to perform better, provided that both script í’¬ and script upper R are properly maximized. Indeed, if we assume that alpha not-equals 1 and beta not-equals 1, then we can try to find some small theta greater-than 0 such that the effect of alpha and beta is compensated. However, if theta is not set properly, the upper H Subscript infinity filter can cause even more errors than the KF. Moreover, even if theta is set properly, any deviation of beta from unity will additionally chance the gain through the product of beta squared theta. More information and examples on this topic can be found in [180].

What follows behind the approximations (6.184) and (6.185) is that, if properly tuned with theta, the upper H Subscript infinity filter will be more accurate than the KF in the presence of errors in noise covariances. In practice, however, it can be difficult to find and set the correct theta, especially for LTV systems that imply a new theta at each point in time. If so, then the upper H Subscript infinity filter may give more errors and even diverge. Thus, the relationship between the filters in terms of robustness to errors in noise statistics should be practically as follows:

where KF less-than upper H Subscript infinity Baseline holds true for properly maximized script í’¬ and script upper R and properly set theta. Otherwise, the KF may perform better. In turn, the UFIR filter that is StartSet alpha comma beta EndSet‐invariant may be a better choice, especially with large errors in noise covariances.

6.8.2 Model Errors

Permanent estimation errors arise from incorrect modeling and persistent model uncertainties, known as mismodeling, when the model is not fully consistent with the process over all time [69]. If no improvement is expected in the model, then the best choice may be to use robust estimators, in which case testing becomes an important subject of confirmation of the estimator accuracy and stability.

UFIR Filter

In UFIR filtering, errors caused by StartSet eta comma mu EndSet are taken into account only on the horizon left-bracket m comma k right-bracket. Accordingly, the bias correction gain upper K Superscript normal upper U can be expressed as

(6.187)StartLayout 1st Row 1st Column upper K Superscript normal upper U 2nd Column equals 3rd Column script í’¢ upper H Superscript upper T Baseline equals left-parenthesis upper C Subscript m comma k Superscript upper T Baseline upper C Subscript m comma k Baseline right-parenthesis Superscript negative 1 Baseline upper H Superscript upper T Baseline 2nd Row 1st Column Blank 2nd Column equals 3rd Column StartFraction 1 Over mu EndFraction left-bracket sigma-summation Underscript i equals 0 Overscript upper N minus 1 Endscripts eta Superscript minus 2 left-parenthesis upper N minus 2 minus i right-parenthesis Baseline left-parenthesis upper F Superscript negative upper N plus 2 plus i Baseline right-parenthesis Superscript upper T Baseline upper H Superscript upper T Baseline upper H upper F Superscript negative upper N plus 2 plus i Baseline right-bracket Superscript negative 1 Baseline upper H Superscript upper T EndLayout

and approximated using the following lemma.

The gain upper K Superscript normal upper U Baseline equals script í’¢ upper H Superscript upper T can finally be approximated with

(6.191)upper K Superscript normal upper U Baseline less-than-or-slanted-equals StartFraction 1 Over mu EndFraction left-bracket upper H Superscript upper T Baseline upper H plus a squared StartFraction 1 minus left-parenthesis eta a right-parenthesis Superscript 2 left-parenthesis upper N minus 1 right-parenthesis Baseline Over left-parenthesis eta a right-parenthesis Superscript 2 upper N Baseline left-parenthesis 1 minus eta squared a squared right-parenthesis EndFraction upper F Superscript negative upper T Baseline upper H Superscript upper T Baseline upper H upper F Superscript negative 1 Baseline right-bracket Superscript negative 1 Baseline upper H Superscript upper T Baseline comma

It is seen that the factor mu affects upper K Superscript normal upper U directly and as a reciprocal. However, the same cannot be said about the factor eta raised to the power upper N. Indeed, for chi equals left-parenthesis eta a right-parenthesis squared less-than 1, the gain upper K Superscript normal upper U can significantly grow. Otherwise, when chi greater-than 1, it decreases. Thus, we conclude that the effect of errors in the system matrix on the bias correction gain of the UFIR filter is more complex than the effect of errors in the observation matrix.

Kalman Filter

When examining Kalman filter errors associated with mismodeling, eta not-equals 1 and mu not-equals 1, it should be kept in mind that such errors are usually observed along with errors in noise covariances. If we ignore errors in the description of noise, the picture will be incomplete due to multiplicative effects. Therefore, we assume that StartSet eta comma mu EndSet not-equals 1 and StartSet alpha comma beta EndSet not-equals 1, and analyze the errors similarly to the UFIR filter. To do this, we start with the discrete Lyapunov equation 6.180, the solution of which can be approximated using the following lemmas.

Referring to lemma 6.3 and lemma 6.4, the bias correction gain upper K Superscript normal upper K of the KF, which is given by (6.177), can be approximated as

and we notice that inequality (6.196) is inapplicable to some models.

Analyzing (6.195), it can be concluded that the mismodeling errors, StartSet eta comma mu EndSet not-equals 1, and errors in noise covariance, StartSet alpha comma beta EndSet not-equals 1, cause multiplicative effects in the Kalman gain. In the best case, these effects can compensate for each another, although not completely. In the worst case, which is of practical interest, errors can grow essentially. Again, we see that eta and mu act in opposite directions, as in the case of StartSet alpha comma beta EndSet not-equals 1.

Game Theory upper H Subscript infinity Filter

The game theory upper H Subscript infinity filter obtained in [185] does not take into account errors in the system and observation matrices. Therefore, it is interesting to know its robustness to such errors in comparison with the UFIR filter and KF. Referring to (6.195) and (6.196), the bias correction gain upper K Superscript infinity of the upper H Subscript infinity filter, which is given by (6.178), can be approximated for StartSet eta comma mu EndSet not-equals 1 and StartSet alpha comma beta EndSet not-equals 1 by

(6.197)upper K Superscript infinity Baseline less-than-or-slanted-equals StartFraction 1 Over mu EndFraction left-bracket upper H Superscript upper T Baseline upper R Superscript negative 1 Baseline upper H plus StartFraction beta squared Over mu squared EndFraction left-parenthesis StartFraction 1 minus eta squared a squared Over alpha squared EndFraction upper Q Superscript negative 1 Baseline minus theta upper I right-parenthesis right-bracket Superscript negative 1 Baseline upper H Superscript upper T Baseline upper R Superscript negative 1 Baseline comma
(6.198)StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column if chi less-than 1 comma 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals 3rd Column StartFraction 1 Over mu EndFraction left-parenthesis upper H Superscript upper T Baseline upper R Superscript negative 1 Baseline upper H minus StartFraction beta squared Over mu squared EndFraction theta upper I right-parenthesis Superscript negative 1 Baseline upper H Superscript upper T Baseline upper R Superscript negative 1 Baseline right-arrow 0 comma 3rd Row 1st Column Blank 2nd Column Blank 3rd Column if chi greater-than-or-equal-to 1 period EndLayout

These inequalities more clearly demonstrate the key advantage of the upper H Subscript infinity filter: a properly set theta can dramatically improve the estimation accuracy. Indeed, if the tuning factor theta constrained by left-parenthesis script í’« Subscript k Superscript minus Baseline right-parenthesis Superscript negative 1 Baseline minus theta upper S overbar Subscript k Baseline plus upper H Superscript upper T Baseline script upper R Superscript negative 1 Baseline upper H greater-than 0 is chosen such that the relationships in parentheses become zero, then it follows that the effects of StartSet alpha comma beta comma eta EndSet are reduced to zero, and errors in the observation matrix will remain the main source. Furthermore, by adjusting theta, the effect of StartSet alpha comma beta comma eta comma mu EndSet can be fully compensated.

Unfortunately, the previous remedy is effective only if the correct theta is available at any given time. Otherwise, the upper H Subscript infinity filter may produce more errors than the KF, and can even diverge. For more information, the reader can read [180], where a complete analysis for robustness is presented with typical examples.

The general conclusion that can be drawn from the analysis of the impact of mismodeling errors is that, under StartSet eta comma mu EndSet not-equals 1 and StartSet alpha comma beta EndSet not-equals 1, the KF performance can degrade dramatically and that the upper H Subscript infinity can improve it if we set a proper tuning factor theta at each time instant. Since this is hardly possible for many practical applications, the UFIR filter is still preferred, and the relationship between the filters in terms of robustness to model errors will generally be the same (6.186), where upper H Subscript infinity Baseline greater-than KF holds true for properly maximized errors in upper F and upper H if script í’¬ and script upper R are properly maximized and theta is set properly. Otherwise, the upper H Subscript infinity filter may give large errors and go to divergence, while the KF may perform better.

6.8.3 Temporary Uncertainties

Certainly persistent model errors can seriously degrade the estimator performance, causing uncontrollable bias errors. But their effect can be mitigated by improving the model, at least theoretically. What cannot be done efficiently is the elimination of errors caused by temporary uncertainties such as jumps in phase, frequency, and velocity. Such errors are not easy to deal with due to the unpredictability and short duration of the impacts. The problem is complicated by the fact that temporary uncertainties exist in different forms, and it is hard to imagine that they have a universal model.

One way to investigate the associated estimation errors is to assume that the model has no past errors up to the time index k minus 1 and that the uncertainty caused by StartSet eta comma mu EndSet not-equals 1 occurs at k. The estimator that is less sensitive to such an impact caused by StartSet alpha comma beta EndSet not-equals 1 at k can be said to be the most robust.

UFIR Filter

Suppose the model is affected by StartSet alpha comma beta EndSet over all time and that upper P Subscript k minus 1 is known at k minus 1. At the next step, at k, the system experiences an unpredictable impact caused by eta not-equals 1 and mu not-equals 1. Provided that script í’¢ Subscript k minus 1 is also known at k minus 1, the bias correction gain upper K Subscript k Superscript normal upper U of the UFIR filter (6.176) can be transformed to

As can be seen, eta and mu act in the same way in (6.199) as in the case of model errors represented by (6.192). However, the effect in (6.199) turns out to be stronger because of the square of mu, in contrast to (6.192). This means that temporary data errors have a stronger effect on the UFIR filter than permanent model errors. The conclusion just made should not be unexpected, given the fact that rapid changes cause transients, the values of which usually exceed steady‐state errors.

Kalman Filter

The Kalman gain can be approximated similarly to the bias correction gain of the UFIR filter. Substituting the prior estimate upper P Subscript k Superscript minus Baseline equals upper F upper P Subscript k minus 1 Baseline upper F Superscript upper T Baseline plus upper Q into (6.177), where the matrices are scaled by the error factors eta and mu taking into account that StartSet alpha comma beta EndSet not-equals 1, we obtain the approximation of the Kalman gain in the form

Analyzing (6.199) and (6.200), we draw attention to an important feature. Namely, the effect of the first eta is partially compensated by the second eta in the parentheses, which is not observed in the UFIR filter. Because of this, the KF responds to temporary uncertainty with lower values than the UFIR filter. In other words, the UFIR filter is more sensitive to temporary uncertainties. On the other hand, all transients in the UFIR filter are limited by upper N points, while the KF filter generates long transients due to IIR. Both these effects, which are always seen in practice, represent one of the fundamental differences between the UFIR filter and the KF [179].

Transients in the UFIR filter and KF: Responding to the stepwise temporary uncertainty, the UFIR filter produces upper N points transient with a larger overshoot, and the KF produces a longer transient with a shorter overshoot.

Examples of transients in the UFIR filter and KF are given in Fig. 4.2 and Fig. 6.3, and we notice that the difference between the overshoots is usually left-parenthesis 30 minus 50 right-parenthesis percent-sign.

Game Theory upper H Subscript infinity Filter

Providing similar transformations as for (6.200), we approximate the bias correction gain of the upper H Subscript infinity filter (6.178) as

and notice an important difference with (6.200). In (6.201), there is an additional term containing theta, which can be chosen such that the effect of StartSet alpha comma beta comma eta comma mu EndSet is fully compensated. This is considered to be the main advantage of the game theory upper H Subscript infinity filter over KF. The drawback is that the tuning factor theta is an unknown analytical function of the set StartSet alpha comma beta comma eta comma mu EndSet, which contains uncertain components. Therefore, if theta cannot be set properly at every point of time, the upper H Subscript infinity filter performance may significantly degrade, and the filter may even demonstrate the divergence [180]. Analyzing (6.201), it can also be noted that the problem is complicated by the higher sensitivity of upper K Subscript k Superscript infinity to theta.

All that follows from the previous analysis of estimation errors caused by temporary uncertainties is that the UFIR filter can still be considered the most robust solution. The game theory upper H Subscript infinity filter can improve the performance of KF by properly setting the tuning factor theta. However, since the exact theta is not available at every point of time, this filter can become unstable and diverge.

6.9 Implementation of Polynomial UFIR Filters

Hardware implementation of digital filters is usually not required in state space. In contrast, scalar input‐to‐output structures have found much more applications. Researchers often prefer to use UFIR polynomial structures, whenever suboptimal filtering is required. Examples can be found in tracking, control, positioning, timekeeping, etc. If such a UFIR filter matches the model, then the group delay reaches a minimum. Otherwise, the group delay grows at a lower rate than in IIR filters. This makes UFIR structures very useful in engineering practice of suboptimal filtering. Next we will present and analyze the polynomial UFIR structures in the z domain [29] and discrete Fourier transform (DFT) domain [30].

6.9.1 Filter Structures in z‐Domain

The transfer function script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis z right-parenthesis of the ith degree polynomial UFIR filter is specialized by the z‐transform applied to the FIR function h Subscript k Superscript left-parenthesis i right-parenthesis given by (6.120) with p equals 0; that is,

(6.202a)script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis z right-parenthesis equals sigma-summation Underscript k equals 0 Overscript upper N minus 1 Endscripts h Subscript k Superscript left-parenthesis i right-parenthesis Baseline z Superscript negative k

where z equals e Superscript j omega upper T, omega is an angular frequency, upper T is the sampling time, a Subscript j i is given by (6.121), and conventionally we will also use j in z equals e Superscript j omega upper T as the imaginary sign j equals StartRoot negative 1 EndRoot. The following properties of script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis z right-parenthesis can be listed in addition to the inherent 2 pi‐periodicity, symmetry of StartAbsoluteValue script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis z right-parenthesis EndAbsoluteValue, and antisymmetry of arg script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis z right-parenthesis.

  • Transfer function at omega equals 0. By z equals e Superscript 0 Baseline equals 1, the transfer function becomes
    (6.203)script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript 0 Baseline right-parenthesis equals 1
    for all i, which means that the UFIR filter is an LP filter.
  • Impulse response at k equals 0. By the inverse z‐transform, the value of h Subscript k Superscript left-parenthesis i right-parenthesis at k equals 0 is defined as

    Because h 0 Superscript left-parenthesis i right-parenthesis is always positive‐valued, h 0 Superscript left-parenthesis i right-parenthesis Baseline greater-than 0, and for all i, the counterclockwise circular integration in (6.204a) always produces a positive imaginary value, which gives

    (6.205)contour-integral Underscript upper C 1 Endscripts StartFraction script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis z right-parenthesis Over j z EndFraction normal d z equals 2 pi h 0 Superscript left-parenthesis i right-parenthesis Baseline greater-than 0 period
  • Transfer function at omega upper T equals pi. By z equals e Superscript j pi, the transfer function becomes
    (6.206)script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j pi Baseline right-parenthesis equals minus one half sigma-summation Underscript j equals 0 Overscript i Endscripts a Subscript j i Baseline left-bracket left-parenthesis negative 1 right-parenthesis Superscript upper N Baseline upper E Subscript j Baseline left-parenthesis upper N right-parenthesis minus upper E Subscript j Baseline left-parenthesis 0 right-parenthesis right-bracket comma
    where upper E Subscript j Baseline left-parenthesis x right-parenthesis is the Euler polynomial. For low‐degree impulse responses, the Euler polynomials become upper E 0 left-parenthesis x right-parenthesis equals 1, upper E 1 left-parenthesis x right-parenthesis equals x minus one half, upper E 2 left-parenthesis x right-parenthesis equals x squared minus x, and upper E 3 left-parenthesis x right-parenthesis equals x cubed minus three halves x squared plus one fourth.
  • Energy. By Parseval's theorem, the following relations hold
    (6.207a)StartFraction 1 Over 2 pi EndFraction integral Subscript 0 Superscript 2 pi Baseline StartAbsoluteValue script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j omega upper T Baseline right-parenthesis EndAbsoluteValue squared normal d left-parenthesis omega upper T right-parenthesis equals sigma-summation Underscript k equals 0 Overscript upper N minus 1 Endscripts h Subscript k Superscript left-parenthesis i right-parenthesis squared
    (6.207b)equals sigma-summation Underscript j equals 0 Overscript i Endscripts a Subscript j i Baseline sigma-summation Underscript k equals 0 Overscript upper N minus 1 Endscripts h Subscript k Superscript left-parenthesis i right-parenthesis Baseline k Superscript j

    and it follows that the energy (or squared norm) of the FIR function in the z domain is equal to the value of h Subscript k Superscript left-parenthesis i right-parenthesis at k equals 0.

  • Unbiasedness in the zdomain. The following theorem establishes an unbiasedness condition that is fundamental to digital FIR filters in the z domain.
  • Noise power gain. The squared norm of h Subscript k Superscript left-parenthesis i right-parenthesis, which represents the NPG g Superscript left-parenthesis i right-parenthesis Baseline equals parallel-to h Subscript k Superscript left-parenthesis i right-parenthesis parallel-to of the UFIR filter (Table 6.2), is also the energy of h Subscript k Superscript left-parenthesis i right-parenthesis. By Parseval's theorem, NPG takes the following equivalent forms
    (6.209a)g Superscript left-parenthesis i right-parenthesis Baseline equals StartFraction 1 Over 2 pi EndFraction integral Subscript 0 Superscript 2 pi Baseline StartAbsoluteValue script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j omega upper T Baseline right-parenthesis EndAbsoluteValue squared normal d left-parenthesis omega upper T right-parenthesis
    (6.209b)equals StartFraction 1 Over 2 pi EndFraction integral Subscript 0 Superscript 2 pi Baseline script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j omega upper T Baseline right-parenthesis normal d left-parenthesis omega upper T right-parenthesis
    (6.209c)equals h 0 Superscript left-parenthesis i right-parenthesis Baseline equals a Subscript 0 i Baseline period

It is worth noting that using to the properties listed, it becomes possible to design and optimize polynomial FIR filter structures in the z domain with maximum efficiency for real‐time operation.

Transfer Function in the z‐Domain

Although the inner sum in (6.202b) does not have a closed form, the properties of the FIR filter in the z‐domain allow one to represent script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis z right-parenthesis as

By assigning the following subtransfer functions

(6.211)script í’¯ Subscript beta Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis z right-parenthesis equals left-parenthesis sigma-summation Underscript j equals 0 Overscript i Endscripts beta Subscript j Baseline z Superscript negative j Baseline right-parenthesis slash left-parenthesis 1 plus sigma-summation Underscript j equals 1 Overscript i plus 1 Endscripts alpha Subscript j Baseline z Superscript negative j Baseline right-parenthesis comma
(6.212)script í’¯ Subscript gamma Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis z right-parenthesis equals left-parenthesis sigma-summation Underscript j equals 0 Overscript i Endscripts gamma Subscript j Baseline z Superscript negative j Baseline right-parenthesis slash left-parenthesis 1 plus sigma-summation Underscript j equals 1 Overscript i plus 1 Endscripts alpha Subscript j Baseline z Superscript negative j Baseline right-parenthesis comma

the generalized block diagram of the ith degree UFIR filter can be shown as in Fig. 6.10. The low‐degree coefficients alpha Subscript j, beta Subscript j, and gamma Subscript j are listed for this structure in Table 6.3 [29].

Schematic illustration of generalized block diagram of the ith degree UFIR filter.

Figure 6.10 Generalized block diagram of the ith degree UFIR filter.

Table 6.3 Coefficients alpha Subscript j, beta Subscript j, and gamma Subscript j of Low‐Degree UFIR Filters.

i
0123
beta 0StartFraction 1 Over upper N EndFractiona 01a 02a 03
beta 10StartFraction 4 Over upper N EndFractionStartFraction 18 left-parenthesis upper N minus 1 right-parenthesis Over upper N left-parenthesis upper N plus 1 right-parenthesis EndFractionStartFraction 48 left-parenthesis upper N squared minus 2 upper N plus 2 right-parenthesis Over upper N left-parenthesis upper N plus 1 right-parenthesis left-parenthesis upper N plus 2 right-parenthesis EndFraction
beta 200StartFraction 9 Over upper N EndFractionStartFraction 24 left-parenthesis 2 upper N minus 3 right-parenthesis Over upper N left-parenthesis upper N plus 1 right-parenthesis EndFraction
beta 3000StartFraction 16 Over upper N EndFraction
gamma 0StartFraction 1 Over upper N EndFractionStartFraction 2 Over upper N EndFractionStartFraction 3 Over upper N EndFractionStartFraction 4 Over upper N EndFraction
gamma 10StartFraction 2 left-parenthesis upper N minus 2 right-parenthesis Over upper N left-parenthesis upper N plus 1 right-parenthesis EndFractionStartFraction 6 left-parenthesis upper N minus 3 right-parenthesis Over upper N left-parenthesis upper N plus 1 right-parenthesis EndFractionStartFraction 12 left-parenthesis upper N minus 4 right-parenthesis Over upper N left-parenthesis upper N plus 1 right-parenthesis EndFraction
gamma 200StartFraction 3 left-parenthesis upper N minus 2 right-parenthesis left-parenthesis upper N minus 3 right-parenthesis Over upper N left-parenthesis upper N plus 1 right-parenthesis left-parenthesis upper N plus 2 right-parenthesis EndFractionStartFraction 12 left-parenthesis upper N minus 3 right-parenthesis left-parenthesis upper N minus 4 right-parenthesis Over upper N left-parenthesis upper N plus 1 right-parenthesis left-parenthesis upper N plus 2 right-parenthesis EndFraction
gamma 3000StartFraction 4 left-parenthesis upper N minus 2 right-parenthesis left-parenthesis upper N minus 3 right-parenthesis left-parenthesis upper N minus 4 right-parenthesis Over upper N left-parenthesis upper N plus 1 right-parenthesis left-parenthesis upper N plus 2 right-parenthesis left-parenthesis upper N plus 3 right-parenthesis EndFraction
alpha 1−1−2−3−4
alpha 20136
alpha 300−1−4
alpha 40001

The magnitude response functions StartAbsoluteValue script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j omega upper T Baseline right-parenthesis EndAbsoluteValue of low‐degree polynomial UFIR filters are shown in Fig. 6.12. A distinctive feature of LP filters of this type is a negative slop of 20 dB per decade in the Bode plot (Fig. 6.12b) in the transient region. Another feature is that increasing the degree of the polynomial filter expands the bandwidth. It can also be seen that the transfer function has multiple intensive side lobes that are related to the shape of the impulse response (Fig. 6.5). The later property is discouraged in the design of standard LP filters. However, it is precisely this shape of StartAbsoluteValue script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j omega upper T Baseline right-parenthesis EndAbsoluteValue that guarantees the filter unbiasedness.

Figure 6.12a assures that bias is eliminated at the filter output by shifting and lifting the side lobes of a zero‐degree uniform FIR filter, which provides simple averaging. Accordingly, the i‐degree filter passes the spectral content close to zero without change, magnifies the components falling into the first lobe, and attenuates the power of the higher‐frequency components with 10 dB per decade (Fig. 6.12b).

The phase response functions arg script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j omega upper T Baseline right-parenthesis of low‐degree polynomial UFIR filters are shown in Fig. 6.13a, and the group delay functions obtained by StartFraction normal d Over normal d left-parenthesis omega upper T right-parenthesis EndFraction arg script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j omega upper T Baseline right-parenthesis are shown in Fig. 6.13b. The phase response function of this filter is linear on average (Fig. 6.13a). However, the phase response changes following variations in the magnitude response, which, in turn, leads to changes in the group delay around a small constant value (Fig. 6.13b). From the standpoint of the design of basic LP filters, the presence of periodic variations in the phase response is definitely a disadvantage. But it is also a key condition that cannot be violated without making the filter output biased.

Schematic illustration of phase response functions of the low-degree UFIR filters for N=20: (a) phase response arg(i)(ejωT) and (b) group delay dd(ωT)arg(i)(ejωT).

Figure 6.13 Phase response functions of the low‐degree UFIR filters for upper N equals 20: (a) phase response arg script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j omega upper T Baseline right-parenthesis and (b) group delay StartFraction normal d Over normal d left-parenthesis omega upper T right-parenthesis EndFraction arg script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j omega upper T Baseline right-parenthesis.

6.9.2 Transfer Function in the DFT Domain

The DFT of the ith degree UFIR filter impulse response h Subscript k Superscript left-parenthesis i right-parenthesis is obtained as

where upper W Subscript upper N Baseline equals e Superscript minus j StartFraction 2 pi Over upper N EndFraction. In addition to the inherent upper N‐periodicity, the symmetry of StartAbsoluteValue script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis Baseline EndAbsoluteValue, and the antisymmetry of arg script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis, the following properties are important for the implementation of UFIR filters in the DFT domain.

  • DFT value at n equals 0. By n equals 0, the function upper W Subscript upper N Superscript n k becomes unity, upper W Subscript 2 upper N Superscript 0 k Baseline equals 1, and, by the properties listed in Table 6.2, the DFT function (6.214) is transformed to
    (6.215)script í’¯ 0 Superscript left-parenthesis i right-parenthesis Baseline equals 1
    for all i, which fits with LP filtering.
  • Impulse response at k equals 0. For k equals 0 and upper W Subscript 2 upper N Superscript n Baseline 0 Baseline equals 1, the inverse DFT (IDFT) applied to script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis gives
    (6.216)h 0 Superscript left-parenthesis i right-parenthesis Baseline equals StartFraction 1 Over upper N EndFraction sigma-summation Underscript n equals 0 Overscript upper N minus 1 Endscripts script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis Baseline period

    Since h 0 Superscript left-parenthesis i right-parenthesis Baseline greater-than 0 holds for all i, the sum of the DFT coefficients is real and positive. It then follows that

    (6.217)sigma-summation Underscript n equals 0 Overscript upper N minus 1 Endscripts script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis Baseline equals upper N h 0 Superscript left-parenthesis i right-parenthesis Baseline greater-than 0 period
  • DFT value at n equals upper N slash 2. At the point of symmetry n equals upper N slash 2 for even upper N, the function upper W Subscript 2 upper N Superscript n k becomes upper W Subscript 2 upper N Superscript 0 k Baseline equals left-parenthesis negative 1 right-parenthesis Superscript k and the following relation holds
    (6.218)script í’¯ Subscript StartFraction upper N Over 2 EndFraction Superscript left-parenthesis i right-parenthesis Baseline equals minus one half sigma-summation Underscript j equals 0 Overscript i Endscripts a Subscript j i Baseline left-bracket upper E Subscript j Baseline left-parenthesis upper N right-parenthesis minus upper E Subscript j Baseline left-parenthesis 0 right-parenthesis right-bracket comma
    where upper E Subscript j Baseline left-parenthesis x right-parenthesis is the Euler polynomial. For low degrees, the Euler polynomials take the following form: upper E 0 left-parenthesis x right-parenthesis equals 1, upper E 1 left-parenthesis x right-parenthesis equals x minus one half, upper E 2 left-parenthesis x right-parenthesis equals x squared minus x, and upper E 3 left-parenthesis x right-parenthesis equals x cubed minus three halves x squared plus one fourth.
  • Noise power gain. As a measure of noise reduction at the UFIR filter output, NPG g Superscript left-parenthesis i right-parenthesis for white Gaussian noise is determined by the energy of h Subscript k Superscript left-parenthesis i right-parenthesis. The NPG has the following equivalent forms in the DFT domain:
    (6.219a)g Superscript left-parenthesis i right-parenthesis Baseline equals StartFraction 1 Over upper N EndFraction sigma-summation Underscript n equals 0 Overscript upper N minus 1 Endscripts StartAbsoluteValue script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis Baseline EndAbsoluteValue squared
    (6.219b)equals StartFraction 1 Over upper N EndFraction sigma-summation Underscript n equals 0 Overscript upper N minus 1 Endscripts script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis
    (6.219c)equals h 0 Superscript left-parenthesis i right-parenthesis Baseline equals a Subscript 0 i Baseline period
  • Unbiasedness condition in the DFT domain. The following theorem establishes an unbiasedness condition that is fundamental to UFIR filters in the DFT domain.

    Proof. To prove (6.220), use the following fundamental condition for optimal filtering: the order of the optimal and/or unbiased filter must be the same as that of the system. Then represent h Subscript k Superscript left-parenthesis i right-parenthesis by (6.124),

    h Subscript k Superscript left-parenthesis i right-parenthesis Baseline equals sigma-summation Underscript j equals 0 Overscript i Endscripts a Subscript j i Baseline k Superscript j Baseline comma

    where the coefficient a Subscript j i is given by (6.125). Recall that function (6.124) has the following main properties, given in Table 6.2: the sum of its coefficients is equal to unity, and the moments zero; that is,

    (6.221)1 equals sigma-summation Underscript k equals 0 Overscript upper N minus 1 Endscripts h Subscript k Superscript left-parenthesis i right-parenthesis Baseline comma
    (6.222)0 equals sigma-summation Underscript k equals 0 Overscript upper N minus 1 Endscripts h Subscript k Superscript left-parenthesis i right-parenthesis Baseline k Superscript u Baseline comma 1 less-than-or-slanted-equals u less-than-or-slanted-equals i period

    Use Parseval's theorem and obtain the following relationships,

    (6.223a)StartFraction 1 Over upper N EndFraction sigma-summation Underscript n equals 0 Overscript upper N minus 1 Endscripts StartAbsoluteValue script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis Baseline EndAbsoluteValue squared equals sigma-summation Underscript k equals 0 Overscript upper N minus 1 Endscripts h Subscript k Superscript left-parenthesis i right-parenthesis squared
    (6.223b)equals sigma-summation Underscript j equals 0 Overscript i Endscripts a Subscript j i Baseline sigma-summation Underscript k equals 0 Overscript upper N minus 1 Endscripts h Subscript k Superscript left-parenthesis i right-parenthesis Baseline k Superscript j
    (6.223c)equals a Subscript 0 i Baseline equals h 0 Superscript left-parenthesis i right-parenthesis Baseline period

    Now observe that the IDFT applied to script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis at k equals 0 gives h 0 Superscript left-parenthesis i right-parenthesis Baseline equals StartFraction 1 Over upper N EndFraction sigma-summation Underscript n equals 0 Overscript upper N minus 1 Endscripts script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis that finally leads to (6.220) and completes the proof.

  • Estimation error boundary. The concept of NPG g Superscript left-parenthesis i right-parenthesis can be used to specify the bound epsilon overbar Superscript left-parenthesis i right-parenthesis for the estimation error in the three‐sigma sense as
    (6.224)epsilon overbar Superscript left-parenthesis i right-parenthesis Baseline equals 3 sigma Subscript v Baseline StartRoot g Superscript left-parenthesis i right-parenthesis Baseline EndRoot comma
    where sigma Subscript v is the standard deviation of the measurement white noise v Subscript n.

Note that the previously discussed properties of polynomial UFIR filters in the DFT domain are preserved for any polynomial degree, but in practice only low‐degree digital UFIR filters, l less-than-or-slanted-equals 3, are usually found. The reason for using low‐degree filters is explained earlier: increasing the degree leads to larger random errors at the filter output.

Transfer Function in the DFT Domain

Using the properties listed, the transfer function script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis of the ith degree UFIR filter can be represented in the DFT domain with the sum

in which the inner sum has no closed‐form solution for an arbitrary j. However, solutions can be found for low‐degree polynomials as shown in [30]. Next we will illustrate such a solution for a first‐degree UFIR filter and postpone to “Problems” the search for solutions associated with higher degrees.

The magnitude response StartAbsoluteValue script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis Baseline EndAbsoluteValue, Bode plot, and phase response arg script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis functions of the ith degree, i element-of left-bracket 1 comma 3 right-bracket, polynomial UFIR filter are shown in Fig. 6.14. For the 1st degree, the functions are computed by (6.226b) and for the next two low degrees the transfer functions can be found in [30]. In addition to the inherent properties of periodicity with a repetition period of upper N points, symmetry of StartAbsoluteValue script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis Baseline EndAbsoluteValue, and antisymmetry of arg script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis, the transfer function script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis has several other features that are of practical importance.

  • The magnitude response StartAbsoluteValue script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis Baseline EndAbsoluteValue is a monotonically decreasing function of n, which changes from n equals 0 to n equals upper N slash 2 (Fig. 6.14a), and has a transition slope n Superscript negative 2 on the Bode plot (Fig. 6.14b). So we have further proof that the UFIR filter is essentially an LP filter.
  • The phase response arg script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis is an antisymmetric function existing from minus StartFraction pi Over 2 EndFraction to StartFraction pi Over 2 EndFraction on n element-of left-bracket 0 comma upper N minus 1 right-bracket with a positive slope, except for the transient region where an increase in the filter degree makes it more complex (Fig. 6.14c). This function is close to linear for low‐degree filters, and it is strictly linear for the first‐degree filter.
Schematic illustration of DFT of the low-degree polynomial UFIR filters: (a) magnitude response |n(i)| for N=20, (b) Bode plot of |n(i)|2 for N=200, and (c) phase response argn(i) for N=20.

Figure 6.14 DFT of the low‐degree polynomial UFIR filters: (a) magnitude response StartAbsoluteValue script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis Baseline EndAbsoluteValue for upper N equals 20, (b) Bode plot of StartAbsoluteValue script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis Baseline EndAbsoluteValue squared for upper N equals 200, and (c) phase response arg script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis for upper N equals 20.

Finally, we come to an important practical conclusion. Since the transfer function of the polynomial UFIR filter is monotonic and does not contain the periodic variations observed in the z‐domain (Fig. 6.13), it follows that the filter can be easily implemented with all of the advantages of suboptimal unbiased filtering.

6.10 Summary

By abandoning the requirement for initial values and ignoring zero mean noise, the UFIR state estimator appears to be the most robust among other linear estimators such as OFIR, OUFIR, and ML state estimators. Moreover, its iterative algorithm is more robust than the recursive KF algorithm. The only tuning factor required for the UFIR filter is the optimal horizon, which can be determined much more easily than noise statistics. Furthermore, at given averaging horizons, the UFIR state estimator becomes blind, which is very much appreciated in practice. In general, it is only within a narrow range of error factors caused by various types of uncertainties that optimal and ML estimators are superior to the UFIR estimator. For the most part, this explains the better performance of the UFIR state estimator in many real‐world applications.

Like other FIR filters, the UFIR filter operates on the averaging horizon left-bracket m comma k right-bracket of upper N points, from m equals k minus upper N plus 1 to k. Its discrete convolution‐based batch resembles the LS estimator. But, the latter is not a state estimator. The main performance characteristic of a scalar input‐to‐output UFIR filter is NPG. If the UFIR filter is designed to work in state space, then its noise reduction properties are characterized by GNPG.

The recursive forms used to iteratively compute the batch UFIR estimate are not Kalman recursions. An important feature is that UFIR filter recursions serve any zero mean noise, while Kalman recursions are optimal only for white Gaussian noise. It is worth noting that the error covariance of the UFIR and Kalman filters are represented by the same Riccati equation. The difference lies in the different bias correction gains. The optimal bias correction gain of the KF is called the Kalman gain upper K Subscript k, while the bias correction gain of the UFIR filter is computed in terms of GNPG as script í’¢ Subscript k Baseline upper H Superscript upper T.

Since the UFIR filter does not involve noise covariances to the algorithm, it minimizes the MSE on the optimal horizon of upper N Subscript opt points (Fig. 6.1). The significance of upper N Subscript opt is that random errors increase if the horizon length upper N is chosen such that upper N less-than upper N Subscript opt. Otherwise, bias errors grow if upper N greater-than upper N Subscript opt. Using (6.49), the optimal horizon upper N Subscript opt can be estimated through the measurement residual without using ground truth. In response to stepwise temporary uncertainties, the UFIR filter generates finite time transients at upper N points with larger overshoots, while the KF generates longer transients with lower overshoots. This property represents the main difference between the transients in both filters.

It turns out that, since zero mean noise is ignored by UFIR state estimators, the FFFM, FFBM, BFFM, and BFBM q‐lag UFIR smoothing algorithms are equivalent. It should also be kept in mind that all unbiased, optimal, and optimal unbiased state estimators are essentially LP filters. Moreover, the zero‐degree (simple average) UFIR filter is the best in the sense of the minimum produces noise. This is because an increase in the filter degree or the number of the states leads to an increase in random errors at the estimator output. It also follows that the set of degree polynomial impulse responses of the UFIR filter establishes a class of discrete orthogonal polynomials that are suitable for signal analysis and restoration due to the built‐in unbiasedness.

Although the UFIR filter ignores zero mean noise, it is not suitable for colored noise that is biased on short horizons. If the colored noise is well‐approximated by the Gauss‐Markov process, then the general UFIR filter becomes universal for time‐correlated and uncorrelated driving white noise sources. Like GKF, a general UFIR filter can be designed to work with CMN and CPN. It can also be applied to state‐space models with smooth nonlinearities using the first‐ or second‐order Taylor series expansions. However, it turns out that the second‐order EFIR‐2 filter has no practical advantage over the first‐order EFIR‐1 filter.

The implementation of polynomial UFIR filters can be most efficiently obtained in the DFT domain due to the following critical property: the DFT transfer function is smooth and does not exhibit periodic variations inherent to the z‐domain.

6.11 Problems

  1. Explain the difference between polynomial fitting and filtering (smoothing) of polynomial models.
  2. NPG for scalar signals is given by (6.15). Give the interpretation of GNPG defined by (6.16a) for state vectors. Why does the NPG decrease with an increase in the averaging horizon?
  3. Solved problem: Recursive forms for UFIR filter. Consider the batch UFIR filtering estimate ModifyingAbove x With caret Subscript k Baseline equals left-parenthesis upper C Subscript m comma k Superscript upper T Baseline upper C Subscript m comma k Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript m comma k Superscript upper T Baseline upper Y Subscript m comma k with the fundamental gain given by (6.10b). Another way to obtain recursive forms for this filter (Algorithm 11) is the following [179]. Represent the inverse of the GNPG script í’¢ Subscript k Baseline equals left-parenthesis upper C Subscript m comma k Superscript upper T Baseline upper C Subscript m comma k Baseline right-parenthesis Superscript negative 1 as
    StartLayout 1st Row 1st Column script í’¢ Subscript k Superscript negative 1 2nd Column equals 3rd Column sigma-summation Underscript i equals 0 Overscript upper N minus 1 Endscripts left-parenthesis script upper F Subscript k Superscript m plus 1 plus i Baseline right-parenthesis Superscript negative upper T Baseline upper H Subscript m plus i Superscript upper T Baseline upper H Subscript m plus i Baseline left-parenthesis script upper F Subscript k Superscript m plus 1 plus i Baseline right-parenthesis Superscript negative 1 Baseline comma 2nd Row 1st Column Blank 2nd Column equals 3rd Column upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline plus upper F Subscript k Superscript negative upper T Baseline left-bracket sigma-summation Underscript i equals 0 Overscript upper N minus 2 Endscripts left-parenthesis script upper F Subscript k minus 1 Superscript m plus 1 plus i Baseline right-parenthesis Superscript negative upper T Baseline upper H Subscript m plus i Superscript upper T Baseline upper H Subscript m plus i Baseline left-parenthesis script upper F Subscript k minus 1 Superscript m plus 1 plus i Baseline right-parenthesis Superscript negative 1 Baseline right-bracket upper F Subscript k Superscript negative 1 Baseline period EndLayout

    Since script upper F Subscript r Superscript g Baseline equals 0 holds for g greater-than r plus 1, write script í’¢ Subscript k minus 1 Superscript negative 1 as

    script í’¢ Subscript k minus 1 Superscript negative 1 Baseline equals sigma-summation Underscript i equals 0 Overscript upper N minus 2 Endscripts left-parenthesis script upper F Subscript k minus 1 Superscript m plus 1 plus i Baseline right-parenthesis Superscript negative upper T Baseline upper H Subscript m plus i Superscript upper T Baseline upper H Subscript m plus i Baseline left-parenthesis script upper F Subscript k minus 1 Superscript m plus 1 plus i Baseline right-parenthesis Superscript negative 1 Baseline comma

    substitute to the previous relation, and arrive at the recursion (6.21) for script í’¢ Subscript k.

    Similarly, represent the product upper C Subscript m comma k Superscript upper T Baseline upper Y Subscript m comma k as

    StartLayout 1st Row 1st Column upper C Subscript m comma k Superscript upper T Baseline upper Y Subscript m comma k 2nd Column equals 3rd Column upper H Subscript k Superscript upper T Baseline y Subscript k Baseline plus upper F Subscript k Superscript negative upper T Baseline sigma-summation Underscript i equals 0 Overscript upper N minus 2 Endscripts left-parenthesis script upper F Subscript k minus 1 Superscript m plus 1 plus i Baseline right-parenthesis Superscript negative upper T Baseline upper H Subscript m plus i Baseline y Subscript m plus i Baseline comma 2nd Row 1st Column Blank 2nd Column equals 3rd Column upper H Subscript k Superscript upper T Baseline y Subscript k Baseline plus upper F Subscript k Superscript negative upper T Baseline upper C Subscript m comma k minus 1 Superscript upper T Baseline upper Y Subscript m comma k minus 1 Baseline comma EndLayout

    combine with script í’¢ Subscript k, obtain ModifyingAbove x With caret Subscript k Baseline equals script í’¢ Subscript k Baseline left-parenthesis upper H Subscript k Superscript upper T Baseline y Subscript k Baseline plus upper F Subscript k Superscript negative upper T Baseline upper C Subscript m comma k minus 1 Superscript upper T Baseline upper Y Subscript m comma k minus 1 Baseline right-parenthesis, substitute upper C Subscript m comma k minus 1 Superscript upper T Baseline upper Y Subscript m comma k minus 1 Baseline equals script í’¢ Subscript k minus 1 Superscript negative 1 Baseline ModifyingAbove x With caret Subscript k minus 1, and come up with

    ModifyingAbove x With caret Subscript k Baseline equals script í’¢ Subscript k Baseline left-parenthesis upper H Subscript k Superscript upper T Baseline y Subscript k Baseline plus upper F Subscript k Superscript negative upper T Baseline script í’¢ Subscript k minus 1 Superscript negative 1 Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis period

    From (6.21) find script í’¢ Subscript k minus 1 Superscript negative 1 Baseline equals upper F Subscript k Superscript upper T Baseline left-parenthesis script í’¢ Subscript k Superscript negative 1 Baseline minus upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline right-parenthesis upper F Subscript k, substitute into the previous relation, and arrive at the recursion (6.29) for the UFIR estimate.

  4. The error covariance of the UFIR filter is given by (6.37) as
    StartLayout 1st Row 1st Column upper P Subscript k 2nd Column equals 3rd Column left-parenthesis upper I minus script í’¢ Subscript k Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline right-parenthesis left-parenthesis upper F Subscript k Baseline upper P Subscript k minus 1 Baseline upper F Subscript k Superscript upper T Baseline plus upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline right-parenthesis left-parenthesis upper I minus script í’¢ Subscript k Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline right-parenthesis Superscript upper T 2nd Row 1st Column Blank 2nd Column Blank 3rd Column plus script í’¢ Subscript k Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Baseline upper H Subscript k Baseline script í’¢ Subscript k Baseline period EndLayout

    Compare this relation to the error covariance of the KF and explain the difference between the bias correction gain upper K Subscript k Baseline equals script í’¢ Subscript k Baseline upper H Subscript k Superscript upper T of the UFIR filter and the Kalman gain upper K Subscript k Baseline equals upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper S Subscript k Superscript negative 1. Why can the Kalman gain not be less than the optimal value? Why does the bias correction gain upper K Subscript k of the UFIR decrease with increasing the horizon length?

  5. To minimize MSE, the averaging horizon for the UFIR filter should be optimal upper N Subscript opt (Fig. 6.1) by solving the following minimization problem
    upper N Subscript opt Baseline equals arg min Underscript upper N Endscripts trace upper P Subscript k Baseline left-parenthesis upper N right-parenthesis period

    Why does the OFIR filter not need an optimal horizon? Why does the error in the OFIR filter decrease with increasing the horizon length, while the UFIR filter minimizes the MSE by only upper N Subscript opt? Give simple and intuitive explanations.

  6. Measurement data transmitted over a wireless communication channel with latency are represented at the receiver with the following state‐space equations
    StartLayout 1st Row 1st Column x Subscript k 2nd Column equals 3rd Column upper F x Subscript k minus 1 Baseline plus w Subscript k Baseline comma 2nd Row 1st Column y Subscript k 2nd Column equals 3rd Column gamma Subscript 0 k Baseline upper H x Subscript k Baseline plus gamma Subscript 1 k Baseline upper H x Subscript k minus 1 Baseline plus gamma Subscript 2 k Baseline upper H x Subscript k minus 2 Baseline plus v Subscript k Baseline comma EndLayout

    where gamma Subscript i k, i element-of left-bracket 0 comma 2 right-bracket, is a deterministic weight, which can be either unity or zero. The time‐stamped data indicate a value of i for which the weight is unity and the other weights are zero. Transform the model to another without delay and develop a UFIR filter.

  7. A useful property of the measurement residual upper S Subscript k of the UFIR filter is that the derivative of its trace with respect to the horizon length reaches a minimum when upper N approaches upper N Subscript opt (Fig. 6.2). This makes it possible to determine upper N Subscript opt by (6.49) or by solving the minimization problem
    upper N Subscript opt Baseline approximately-equals arg min Underscript upper N Endscripts StartFraction partial-differential Over partial-differential upper N EndFraction trace upper S Subscript k Baseline left-parenthesis upper N right-parenthesis period

    Give an explanation to this fact and discuss the problems that may arise in the practical implementations of this method.

  8. An open and challenging problem is to find an analytical relationship between upper N Subscript opt and noise covariances upper Q Subscript k and upper R Subscript k similarly to (6.51) [153]. Find a solution to this problem for a periodical process observed as
    y Subscript k Baseline equals a Subscript 0 k Baseline plus a Subscript 1 k Baseline cosine left-parenthesis StartFraction pi Over 12 EndFraction k plus phi 1 right-parenthesis plus v Subscript k Baseline comma

    where v Subscript k Baseline tilde script í’© left-parenthesis 0 comma sigma Subscript v Superscript 2 Baseline right-parenthesis and a Subscript 0 k, a Subscript 1 k, and phi 1 are state variables. Write the state equation with additive white Gaussian noise.

  9. The GNPG of the backward UFIR filter is defined by (6.62) as
    ModifyingAbove script í’¢ With left-arrow Subscript m Baseline equals script í’³ Subscript k Superscript m plus 1 Baseline left-parenthesis ModifyingAbove upper H With left-arrow Subscript k comma m Superscript upper T Baseline ModifyingAbove upper H With left-arrow Subscript k comma m Baseline right-parenthesis Superscript negative 1 Baseline script í’³ Subscript k Superscript m plus 1 Super Superscript upper T Superscript Baseline period

    Represent GNPG as ModifyingAbove script í’¢ With left-arrow Subscript m Baseline equals left-parenthesis ModifyingAbove upper C With left-arrow Subscript k comma m Superscript upper T Baseline ModifyingAbove upper C With left-arrow Subscript k comma m Baseline right-parenthesis Superscript negative 1 and specify ModifyingAbove upper C With left-arrow Subscript k comma m.

  10. The error covariance upper P Subscript m of the backward UFIR filter is given by
    StartLayout 1st Row 1st Column upper P Subscript m 2nd Column equals 3rd Column left-parenthesis upper I minus ModifyingAbove script í’¢ With left-arrow Subscript m Baseline upper H Subscript m Superscript upper T Baseline upper H Subscript m Baseline right-parenthesis upper F Subscript m plus 1 Superscript negative 1 Baseline left-parenthesis upper P Subscript m plus 1 Baseline plus upper B Subscript m plus 1 Baseline upper Q Subscript m plus 1 Baseline upper B Subscript m plus 1 Superscript upper T Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column Blank 3rd Column times upper F Subscript m plus 1 Superscript negative upper T Baseline left-parenthesis upper I minus ModifyingAbove script í’¢ With left-arrow Subscript m Baseline upper H Subscript m Superscript upper T Baseline upper H Subscript m Baseline right-parenthesis Superscript upper T Baseline plus ModifyingAbove script í’¢ With left-arrow Subscript m Baseline upper H Subscript m Superscript upper T Baseline upper R Subscript m Baseline upper H Subscript m Baseline ModifyingAbove script í’¢ With left-arrow Subscript m Baseline period EndLayout

    Reasoning similarly as for the forward UFIR filter, provide the derivation of (6.72). Analyze this relationship and find out what will happen to upper P Subscript m if the noise covariance upper Q Subscript m plus 1 is set equal to zero.

  11. The error covariance of the batch q‐lag FFFM UFIR smoother is given by (6.85). Recursive computation of (6.85) is provided by (6.94), where the matrix upper L Subscript q still has a batch form (6.92) given by
    upper L Subscript q Baseline equals sigma-summation Underscript i equals 1 Overscript q Endscripts script upper F Subscript k minus q plus i Superscript k minus q plus 2 Super Superscript upper T Superscript Baseline upper H Subscript k minus q plus 1 Superscript upper T Baseline upper H Subscript k minus q plus i Baseline left-parenthesis script upper F Subscript k Superscript k minus q plus i plus 1 Baseline right-parenthesis Superscript negative 1 Baseline period

    Find a recursive form for (6.92) or, otherwise, develop a different approach for recursive computation of (6.85).

  12. Using deductive reasoning, the recursive form for script í’µ Subscript q Superscript left-parenthesis 1 right-parenthesis Baseline equals upper D overbar Subscript m comma k Baseline script í’¬ Subscript m comma k Baseline upper D overTilde Subscript m comma k Superscript left-parenthesis q right-parenthesis Super Superscript upper T was found as (6.90) and for script í’µ Subscript q Superscript left-parenthesis 3 right-parenthesis Baseline equals upper D overTilde Subscript m comma k Superscript left-parenthesis q right-parenthesis Baseline script í’¬ Subscript m comma k Baseline upper G Subscript m comma k Superscript upper T Baseline ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript normal h Super Superscript upper T as (6.93), respectively,
    StartLayout 1st Row 1st Column script í’µ Subscript q Superscript left-parenthesis 1 right-parenthesis 2nd Column equals 3rd Column script í’µ Subscript q minus 1 Superscript left-parenthesis 1 right-parenthesis Baseline plus upper M Subscript q Baseline left-parenthesis script upper F Subscript k Superscript k minus q plus 2 Baseline right-parenthesis Superscript negative 1 Baseline comma 2nd Row 1st Column script í’µ Subscript q Superscript left-parenthesis 3 right-parenthesis 2nd Column equals 3rd Column script í’µ Subscript q minus 1 Superscript left-parenthesis 3 right-parenthesis Baseline plus upper M Subscript q Baseline upper L Subscript q Baseline script í’¢ Subscript k Baseline comma EndLayout

    Show other possible ways to obtain recursions for (6.90) and (6.93).

  13. Referring to the optimal state estimation problem and considering the transform of the UFIR filter gain ModifyingAbove script upper H With Ì‚ Subscript k Baseline equals left-parenthesis upper C Subscript m comma k Superscript upper T Baseline upper C Subscript m comma k Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript m comma k Superscript upper T, find an explanation for the fact that the optimal, optimal unbiased, ML, and unbiased FIR filters are LP filters.
  14. It follows from (6.129) that polynomial FIR functions h Subscript k Superscript left-parenthesis i right-parenthesis, i element-of left-bracket 0 comma upper K minus 1 right-bracket, given by (6.124), establish a new class discrete orthogonal polynomials related by the recurrence relation (6.128). Reasoning in a similar way, examine for orthogonality the class of more general p‐shift FIR functions h Subscript k Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis p right-parenthesis, i element-of left-bracket 0 comma upper K minus 1 right-bracket, k element-of left-bracket p comma upper N minus 1 plus p right-bracket, given by (6.120), and find the recurrence relation, if any.
  15. Find an explanation for the fact that increasing the number of states makes the state estimator less effective in terms of noise reduction. In this sense, explain why simple averaging is best in terms of the minimum produced noise.
  16. It follows from Fig. 6.5 that prediction errors grow with increasing the p‐step. Which method is more efficient in predicting future states: stochastic prediction requiring future noise values? Deterministic prediction ignoring future noise? Or linear deterministic prediction?
  17. General UFIR and Kalman filters serve for correlated and de‐correlated Gauss‐Markov process noise w Subscript k Baseline equals upper Theta Subscript k Baseline w Subscript k minus 1 Baseline plus mu Subscript k and measurement noise v Subscript k Baseline equals upper Psi Subscript k Baseline v Subscript k minus 1 Baseline plus xi Subscript k, where mu Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q Subscript mu Baseline right-parenthesis and xi Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper R Subscript xi Baseline right-parenthesis. Can we modify the UFIR filter and KF for non‐Gaussian colored noise? If not, explain why.
  18. The periodic system is represented in state space by the equations
    StartLayout 1st Row 1st Column x Subscript k 2nd Column equals 3rd Column Start 2 By 2 Matrix 1st Row 1st Column cosine phi 2nd Column sine phi 2nd Row 1st Column minus sine phi 2nd Column cosine phi EndMatrix x Subscript k minus 1 Baseline plus StartBinomialOrMatrix 1 Choose 1 EndBinomialOrMatrix w Subscript k Baseline comma 2nd Row 1st Column y Subscript k 2nd Column equals 3rd Column Start 2 By 2 Matrix 1st Row 1st Column 1 2nd Column 0 2nd Row 1st Column 0 2nd Column 1 EndMatrix x Subscript k Baseline plus v Subscript k Baseline comma EndLayout

    where phi is a constant angular measure, and w Subscript k and v Subscript k are zero mean noise sources. Using the derivation of the UFIR filter for polynomial models, derive the scalar FIR functions for the first state h Subscript 1 k and the second state h Subscript 2 k to satisfy the unbiasedness condition script upper E left-brace ModifyingAbove x With caret Subscript k Baseline right-brace equals script upper E left-brace x Subscript k Baseline right-brace.

  19. The bias correction gain of the KF is approximated by (6.184). Referring to the derivation of (6.184), give a proof of the corresponding approximation (6.185) for the upper H Subscript infinity filter.
  20. Lemma 6.3 states that the prior error covariance upper P Superscript minus of the KF is approximated by
    upper P Superscript minus Baseline less-than-or-slanted-equals upper Q StartFraction alpha squared Over 1 minus chi EndFraction comma

    where alpha and chi are given constants. Using the proof of lemma 6.1, give a corresponding proof of the lemma 6.3.

  21. Using the derivation procedure given in [180], provide a proof of approximation (6.194) of the prior error covariance upper P Superscript minus of the KF stated by lemma 6.4.
  22. A linear digital system operates normally without uncertainties from the past to the time index k minus 1 inclusive. Then it experiences uncertainties in the coefficients eta and mu at the time index k. Check that the approximate gains of the UFIR filter (6.199), KF (6.200), and upper H Subscript infinity filter (6.201) are correct.
  23. For the ith degree polynomial scalar FIR function h Subscript k Superscript left-parenthesis i right-parenthesis existing on left-bracket m comma k right-bracket and the transfer function script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis z right-parenthesis, the unbiasedness constraint in the z‐domain is established by theorem 6.2 as
    integral Subscript 0 Superscript 2 pi Baseline script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j omega upper T Baseline right-parenthesis normal d left-parenthesis omega upper T right-parenthesis equals integral Subscript 0 Superscript 2 pi Baseline StartAbsoluteValue script í’¯ Superscript left-parenthesis i right-parenthesis Baseline left-parenthesis e Superscript j omega upper T Baseline right-parenthesis EndAbsoluteValue squared normal d left-parenthesis omega upper T right-parenthesis period

    Obtain the corresponding constraint for the general UFIR filter matrix gain case ModifyingAbove script upper H With Ì‚ Subscript m comma k.

  24. Given a digital UFIR filter with the ith degree transfer function script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis corresponding to a polynomial FIR function h Subscript k Superscript left-parenthesis i right-parenthesis existing on left-bracket m comma k right-bracket, theorem 6.3 establishes the unique unbiasedness constrain for this filter in the DFT domain as
    sigma-summation Underscript n equals 0 Overscript upper N minus 1 Endscripts StartAbsoluteValue script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis Baseline EndAbsoluteValue squared equals sigma-summation Underscript n equals 0 Overscript upper N minus 1 Endscripts script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis Baseline period

    Obtain the corresponding constraint for the UFIR filter matrix gain ModifyingAbove script upper H With Ì‚ Subscript m comma k.

  25. The transfer function script í’¯ Superscript left-parenthesis i right-parenthesis of the ith degree polynomial UFIR filter is given in the z‐domain by (6.210), which for arbitrary i has no closed‐form solution. Using the properties of the UFIR filters in the z‐domain and Table 6.3, find the closed forms of this function for the second and third degrees and represent the filter with block diagrams similar to that shown in Fig. 6.11.
  26. The transfer function script í’¯ Subscript n Superscript left-parenthesis i right-parenthesis of the ith degree polynomial UFIR filter is given by (6.225) and has no closed‐form solution. Find solutions in closed-form for special cases of the second and third degrees.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset