7
FIR Prediction and Receding Horizon Filtering

When the number of factors coming into play in a phenomenological complex is too large, scientific method in most cases fails. One need only think of the weather, in which case the prediction even for a few days ahead is impossible.

Albert Einstein, Science, Philosophy and Religion (1879–1955)

7.1 Introduction

A one‐step state predictive FIR approach called RH FIR filtering was developed for MPC. As an excerpt from [106] says, the term receding horizon was introduced “since the horizon recedes as time proceeds.” Therefore, it can be applied to any FIR structure and is thus redundant. But, with due respect to this still‐used technical jargon, we will keep it for one‐step FIR predictive filtering. Note that the theory of bias‐constrained (not optimal) RH FIR filtering was developed by W. H. Kwon and his followers [106].

The idea behind RH FIR filtering is to use an FE‐based model and derive an FIR predictive filter to obtain an estimate at k over the horizon left-bracket m minus 1 comma k minus 1 right-bracket of most recent past observations. Since the predicted state can be used at the current discrete point, the properties of such filters are highly valued in digital state feedback control. Although an FIR filter that gives an estimate at k minus 1 over left-bracket m minus 1 comma k minus 1 right-bracket can also be used with this purpose by projecting the estimate to k, the RH FIR filter does it directly. Equivalently, the estimate obtained over left-bracket m comma k right-bracket can be projected to k plus 1 using the one‐step FIR predictor.

In this chapter, we elucidate the modern theory of FIR prediction and RH FIR filtering. Some of the most interesting RH FIR solutions will also be considered, and we notice that the zero time step makes the RH FIR and FIR estimators equal in continuous time. Since the FIR predictor and the RH FIR filter can be transformed into each other by changing the time index, we will mainly focus on the FIR predictors due to their simpler forms.

7.2 Prediction Strategies

The current object state can most accurately be estimated at k as ModifyingAbove x With caret Subscript k vertical-bar k using the a posteriori OFIR filter or KF. Since the estimate ModifyingAbove x With caret Subscript k vertical-bar k may be too biased for state feedback control at the next time index k plus 1, a one‐step predicted estimate x overTilde Subscript k plus 1 Baseline delta-equals x overTilde Subscript k plus 1 vertical-bar k is required. There are two basic strategies for solving this problem (Fig. 7.1):

  • Use the OFIR predictor and obtain the estimate x overTilde Subscript k plus 1 over left-bracket m comma k right-bracket as shown in Fig. 7.1a. This also implies that, by replacing k with k minus 1, the estimate ModifyingAbove x With caret Subscript k can be obtained over left-bracket m minus 1 comma k minus 1 right-bracket using the RH Kalman predictor (KP) [103] or RH FIR filtering.
  • Use the OFIR filter, obtain the a posteriori estimate ModifyingAbove x With caret Subscript k vertical-bar k, and then project it to k plus 1 as shown in Fig. 7.1b.
Schematic illustration of two basic strategies to obtain the predicted estimate x˜k+1 at k+1 over [m,k]: (a) prediction and (b) projection from k to k+1.

Figure 7.1 Two basic strategies to obtain the predicted estimate x overTilde Subscript k plus 1 at k plus 1 over left-bracket m comma k right-bracket: (a) prediction and (b) projection from k to k plus 1.

Both these strategies are suitable for state feedback control but suffer from an intrinsic drawback: the predicted estimate is less accurate than the filtered one. Note that KP can be used here as a limited memory predictor (LMP) operating on left-bracket m comma k right-bracket to produce an estimate at k plus 1.

7.2.1 Kalman Predictor

The general form of the KP for LTV systems appears if we consider the discrete‐time state‐space model [100]

where x Subscript k Baseline element-of double-struck upper R Superscript upper K, u Subscript k Baseline element-of double-struck upper R Superscript upper L, y Subscript k Baseline element-of double-struck upper R Superscript upper P, upper F Subscript k Baseline element-of double-struck upper R Superscript upper K times upper K, upper H Subscript k Baseline element-of double-struck upper R Superscript upper P times upper K, upper E Subscript k Baseline element-of double-struck upper R Superscript upper K times upper L, upper B Subscript k Baseline element-of double-struck upper R Superscript upper K times upper M, w Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q Subscript k Baseline right-parenthesis element-of double-struck upper R Superscript upper M, and v Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper R Subscript k Baseline right-parenthesis element-of double-struck upper R Superscript upper P. The prior predicted estimate can be extracted from (7.1) as

where x overTilde Subscript k is the predicted estimate at k, and the measurement residual s Subscript k Baseline equals y Subscript k Baseline minus upper H Subscript k Baseline x overTilde Subscript k Baseline equals upper H Subscript k Baseline epsilon Subscript k Baseline plus v Subscript k gives the innovation covariance

Referring to (7.3), the prediction x overTilde Subscript k plus 1 at k plus 1 can be written as

(7.5)StartLayout 1st Row 1st Column x overTilde Subscript k plus 1 2nd Column equals 3rd Column x overTilde Subscript k plus 1 Superscript minus Baseline plus upper K Subscript k Baseline s Subscript k Baseline comma 2nd Row 1st Column Blank 2nd Column equals 3rd Column upper F Subscript k Baseline x overTilde Subscript k plus upper E Subscript k Baseline u Subscript k plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline x overTilde Subscript k Baseline right-parenthesis EndLayout

and then, for the estimation error

(7.6)StartLayout 1st Row 1st Column epsilon Subscript k plus 1 2nd Column equals 3rd Column x Subscript k plus 1 Baseline minus x overTilde Subscript k plus 1 2nd Row 1st Column Blank 2nd Column equals 3rd Column left-parenthesis upper F Subscript k Baseline minus upper K Subscript k Baseline upper H Subscript k Baseline right-parenthesis epsilon Subscript k Baseline plus upper B Subscript k Baseline w Subscript k Baseline minus upper K Subscript k Baseline v Subscript k Baseline comma EndLayout

the error covariance can be found to be

Further minimizing the trace of (7.7) by upper K Subscript k gives the optimal bias correction gain (KP gain)

where the innovation covariance upper S Subscript k is given by (7.4). Using (7.8), the error covariance (7.7) can finally be written as

(7.9)upper P Subscript k plus 1 Baseline equals left-parenthesis upper F Subscript k Baseline minus upper K Subscript k Baseline upper H Subscript k Baseline right-parenthesis upper P Subscript k Baseline upper F Subscript k Superscript upper T Baseline plus upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline period

Thus, the estimates are updated in the KP algorithm for the given x 0 and upper P 0 as follows [103]:

(7.11)upper K Subscript k Baseline equals upper F Subscript k Baseline upper P Subscript k Baseline upper H Subscript k Superscript upper T Baseline upper S Subscript k Superscript negative 1 Baseline comma
(7.12)x overTilde Subscript k plus 1 Baseline equals upper F Subscript k Baseline x overTilde Subscript k Baseline plus upper E Subscript k Baseline u Subscript k Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline x overTilde Subscript k Baseline right-parenthesis comma

and we notice that KP does not require the prior error covariance and operates only with upper P Subscript k. The KP can also work as an LMP on left-bracket m comma k right-bracket to obtain an estimate at k plus 1 for the given initial x overTilde Subscript m minus 1 and upper P Subscript m minus 1 at k minus 1.

We can now start looking at FIR predictors, which traditionally require extended state and observation equations.

7.3 Extended Predictive State‐Space Model

Reasoning along similar lines as for the state‐space equations (4.1) and (4.2), introducing an extended predictive state vector

upper X Subscript m plus 1 comma k plus 1 Baseline equals left-bracket x Subscript m plus 1 Superscript upper T Baseline x Subscript m plus 2 Superscript upper T Baseline ellipsis x Subscript k plus 1 Superscript upper T Baseline right-bracket Superscript upper T Baseline comma

and taking other extended vectors from (4.4)–(4.6), (4.12), and (4.13), we extend the model (7.1) and (7.2) as

where the extended matrices are given as upper F Subscript m comma k Superscript p Baseline equals upper F Subscript m comma k Baseline upper F Subscript m,

(7.16)upper H Subscript m comma k Superscript p Baseline equals upper H overbar Subscript m comma k Baseline upper F Subscript m minus 1 comma k minus 1 Baseline comma
(7.17)upper L Subscript m comma k Superscript p Baseline equals upper H overbar Subscript m comma k Baseline upper S Subscript m comma k Superscript p Baseline comma
(7.18)upper G Subscript m comma k Superscript p Baseline equals upper H overbar Subscript m comma k Baseline upper D Subscript m comma k Superscript p Baseline comma
(7.19)upper S Subscript m comma k Superscript p Baseline equals Start 5 By 5 Matrix 1st Row 1st Column 0 2nd Column 0 3rd Column ellipsis 4th Column 0 5th Column 0 2nd Row 1st Column upper E Subscript m Baseline 2nd Column 0 3rd Column ellipsis 4th Column 0 5th Column 0 3rd Row 1st Column vertical-ellipsis 2nd Column vertical-ellipsis 3rd Column down-right-diagonal-ellipsis 4th Column vertical-ellipsis 5th Column vertical-ellipsis 4th Row 1st Column script upper F Subscript k minus 2 Superscript m plus 1 Baseline upper E Subscript m Baseline 2nd Column script upper F Subscript k minus 2 Superscript m plus 2 Baseline upper E Subscript m plus 1 Baseline 3rd Column ellipsis 4th Column 0 5th Column 0 5th Row 1st Column script upper F Subscript k minus 1 Superscript m plus 1 Baseline upper E Subscript m Baseline 2nd Column script upper F Subscript k minus 1 Superscript m plus 2 Baseline upper E Subscript m plus 1 Baseline 3rd Column ellipsis 4th Column upper E Subscript k minus 1 Baseline 5th Column 0 EndMatrix comma

matrix upper D Subscript m comma k Superscript p has the same structure and components as upper S Subscript m comma k Superscript p if we substitute upper E Subscript k with upper B Subscript k, upper S Subscript m comma k is given by (4.9), upper D Subscript m comma k becomes upper S Subscript m comma k if we substitute upper E Subscript k with upper B Subscript k, and matrix upper H overbar Subscript m comma k Baseline equals diag left-parenthesis upper H Subscript m Baseline upper H Subscript m plus 1 Baseline ellipsis upper H Subscript k Baseline right-parenthesis is diagonal. Hereinafter, the superscript “p” is used to denote matrices in prediction models.

As with the FE‐based model, extended equations 7.14 and (7.15) will be used to derive FIR predictors and RH FIR filters.

7.4 UFIR Predictor

The UFIR predictor can be derived if we define the prediction as

and extract from (7.14) the model

where upper S overbar Subscript m comma k is the last row vector in upper S Subscript m comma k and so is upper D overbar Subscript m comma k in upper D Subscript m comma k.

The unbiasedness condition script upper E left-brace x overTilde Subscript k plus 1 Baseline right-brace equals script upper E left-brace x Subscript k plus 1 Baseline right-brace applied to (7.20) and (7.21) gives two unbiasedness constraints

which have the same forms as (4.21) and (4.22) previously found for the OFIR filter, but with modified matrices and gains ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p and ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p normal f.

7.4.1 Batch UFIR Predictor

In batch form, the UFIR predictor appears by solving (7.22) for the fundamental gain ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p, which gives

(7.24a)ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p Baseline equals script upper F Subscript k Superscript m Baseline left-parenthesis upper H Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline upper H Subscript m comma k Superscript p Baseline right-parenthesis Superscript negative 1 Baseline upper H Subscript m comma k Superscript p Super Superscript upper T
(7.24c)equals script í’¢ Subscript k Baseline upper C Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline comma

where upper C Subscript m comma k Superscript p Baseline equals upper H Subscript m comma k Superscript p Baseline script upper F Subscript k Superscript m Super Superscript negative 1 is the auxiliary block matrix and the GNPG matrix script í’¢ Subscript k Baseline equals left-parenthesis upper C Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline upper C Subscript m comma k Superscript p Baseline right-parenthesis Superscript negative 1 is square and symmetric. Using (7.23), the UFIR predicted estimate can be written in the batch form as

where the gain ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p is defined by (7.24b). The error covariance is given by

where the system and observation error residual matrices are defined as

Again we notice that the form (7.26) is unique for all bias‐constrained FIR state estimators, where the individual properties are collected in the error residual matrices, such as (7.27) and (7.28).

7.4.2 Iterative Algorithm using Recursions

Recursions for the batch UFIR prediction (7.25) can be found similarly to the batch UFIR filtering estimate if we represent x overTilde Subscript k plus 1 as the sum of the homogeneous estimate x overTilde Subscript k plus 1 Superscript normal h and the forced estimates x overTilde Subscript k plus 1 Superscript normal f. To do this, we will use the following matrix decompositions,

To find a recursion for x overTilde Subscript k plus 1 Superscript normal h using upper C Subscript m comma k Superscript p taking from (7.29), we transform the inverse of GNPG script í’¢ Subscript k Baseline equals left-parenthesis upper C Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline upper C Subscript m comma k Superscript p Baseline right-parenthesis Superscript negative 1 as

StartLayout 1st Row 1st Column script í’¢ Subscript k Superscript negative 1 2nd Column equals 3rd Column upper F Subscript k Superscript negative upper T Baseline Start 1 By 2 Matrix 1st Row 1st Column upper C Subscript m comma k minus 1 Superscript p Super Superscript upper T 2nd Column upper H Subscript k Superscript upper T EndMatrix Start 3 By 1 Matrix 1st Row upper C Subscript m comma k minus 1 Superscript p 2nd Row upper H Subscript k 3rd Row Blank EndMatrix upper F Subscript k Superscript negative 1 2nd Row 1st Column Blank 2nd Column equals 3rd Column upper F Subscript k Superscript negative upper T Baseline left-parenthesis upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline plus script í’¢ Subscript k minus 1 Superscript negative 1 Baseline right-parenthesis upper F Subscript k Superscript negative 1 Baseline period EndLayout

This gives the following direct and inverse recursive forms,

(7.31)script í’¢ Subscript k minus 1 Superscript negative 1 Baseline equals upper F Subscript k Superscript upper T Baseline script í’¢ Subscript k Superscript negative 1 Baseline upper F Subscript k Baseline minus upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline period

Likewise, we represent the product upper C Subscript m comma k Superscript p Super Superscript upper T Baseline upper Y Subscript m comma k as

(7.32)upper C Subscript m comma k Superscript p Super Superscript upper T Baseline upper Y Subscript m comma k Baseline equals upper F Subscript k Superscript negative upper T Baseline left-parenthesis script í’¢ Subscript k minus 1 Superscript negative 1 Baseline ModifyingAbove x With caret Subscript k Baseline plus upper H Subscript k Superscript upper T Baseline y Subscript k Baseline right-parenthesis

and then transform the homogeneous estimate x overTilde Subscript k plus 1 Superscript normal h Baseline equals script í’¢ Subscript k Baseline upper C Subscript m comma k Superscript p Super Superscript upper T Baseline upper Y Subscript m comma k to

(7.33)x overTilde Subscript k plus 1 Superscript normal h Baseline equals upper F Subscript k Baseline x overTilde Subscript k Superscript normal h Baseline plus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline x overTilde Subscript k Superscript normal h Baseline right-parenthesis comma

where the GNPG script í’¢ Subscript k is computed recursively using (7.30).

To find a recursive form for the forced estimate in (7.25), it is necessary to find recursions for the two components in (7.25) separately. To this end, we refer to (7.29) and first obtain

Next, we use ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p Baseline equals script í’¢ Subscript k Baseline script upper F Subscript k Superscript m Super Superscript negative upper T Baseline upper H Subscript m comma k Superscript p Super Superscript upper T, take some decompositions from (7.29), and transform the remaining component ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p Baseline upper L Subscript m comma k Superscript p Baseline upper U Subscript m comma k as

Combining (7.34) and (7.35), we finally write the forced estimate in the form

(7.36)x overTilde Subscript k plus 1 Superscript normal f Baseline equals upper F Subscript k Baseline x overTilde Subscript k Superscript normal f Baseline minus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline x overTilde Subscript k Superscript normal f Baseline plus upper E Subscript k Baseline u Subscript k Baseline period

The UFIR prediction x overTilde Subscript k plus 1 Baseline equals x overTilde Subscript k plus 1 Superscript normal h Baseline plus x overTilde Subscript k plus 1 Superscript normal f can now be represented with the recursion

and the pseudocode of the iterative UFIR prediction algorithm can be listed as Algorithm 17. This algorithm iteratively updates the estimates on left-bracket m comma k right-bracket, starting with estimates script í’¢ Subscript s and x overTilde Subscript s plus 1 computed over left-bracket m comma s right-bracket in short batch forms, and the final prediction appears at k plus 1.

Now, let us again note two forms of UFIR state estimators suitable for stochastic state feedback control. One can replace k by k minus 1 in (7.37) and consider x overTilde Subscript k as an RH UFIR filtering estimate. Otherwise, the same task can be accomplished by taking the UFIR filtering estimate at k minus 1 and projecting it onto k using the system matrix upper F Subscript k. While these solutions are not completely equivalent, they provide a similar control quality because both are unbiased.

Equivalence of Projected and Predicted Estimates

So far, we have looked at LTV systems, for which the BE‐ and FE‐based state models cannot be converted into each other, and the projected and predicted UFIR estimates are not equivalent. However, in the special case of the LTI system without input, the equivalence of such structures can be shown.

Consider (6.10a), assume that all matrices are time‐invariant, substitute the subscript m comma k in matrices with upper N, and write

ModifyingAbove x With caret Subscript k Baseline equals ModifyingAbove script upper H With Ì‚ Subscript upper N Baseline upper Y Subscript m comma k Baseline comma

where ModifyingAbove script upper H With Ì‚ Subscript upper N Baseline equals upper F Superscript upper N minus 1 Baseline left-parenthesis upper H Subscript upper N Superscript upper T Baseline upper H Subscript upper N Baseline right-parenthesis Superscript negative 1 Baseline upper H Subscript upper N Superscript upper T is the UFIR filter gain. Then the projected estimate ModifyingAbove x With caret Subscript k plus 1 Superscript pj can be written as

StartLayout 1st Row 1st Column ModifyingAbove x With caret Subscript k plus 1 Superscript pj 2nd Column equals 3rd Column upper F ModifyingAbove x With caret Subscript k Baseline equals upper F ModifyingAbove script upper H With Ì‚ Subscript upper N Baseline upper Y Subscript m comma k Baseline 2nd Row 1st Column Blank 2nd Column equals 3rd Column upper F Superscript upper N Baseline left-parenthesis upper H Subscript upper N Superscript upper T Baseline upper H Subscript upper N Baseline right-parenthesis Superscript negative 1 Baseline upper H Subscript upper N Superscript upper T Baseline upper Y Subscript m comma k EndLayout

and the predicted estimate x overTilde Subscript k plus 1 Superscript p r can be written as

x overTilde Subscript k plus 1 Superscript p r Baseline equals upper F Superscript upper N Baseline left-parenthesis upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline upper H Subscript upper N Superscript p Baseline right-parenthesis Superscript negative 1 Baseline upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline upper Y Subscript m comma k Baseline period

It is easy to show now that for LTI systems the matrices upper H Subscript upper N and upper H Subscript upper N Superscript p are identical and thus the predicted and projected UFIR estimates are equivalent, x overTilde Subscript k plus 1 Superscript p r Baseline equals ModifyingAbove x With caret Subscript k plus 1 Superscript pj. It also follows that, for LTI systems without input, the UFIR prediction can be organized using the projected estimate as x overTilde Subscript k plus 1 Superscript p r Baseline equals upper F ModifyingAbove x With caret Subscript k.

UFIR prediction: For LTI systems, the UFIR predicted estimate x overTilde Subscript k plus 1 and projected estimate ModifyingAbove x With caret Subscript k plus 1 Baseline equals upper F ModifyingAbove x With caret Subscript k are equivalent.

This statement was confirmed by Example 7.1, where it was numerically demonstrated that the predicted and projected UFIR estimates are identical.

7.4.3 Recursive Error Covariance

There are two ways to find recursive forms for the error covariance of the UFIR predictor. We can start with (7.25), find recursions for each of the batch components, and then combine them in the final form. Otherwise, we can obtain upper P Subscript k plus 1 using recursion (7.37). To make sure that these approaches lead to the same results, next we give the most complex derivation and postpone the simplest to “Problems.”

Consider the batch error covariance (7.26) and represent it as

where the matrices are: upper P Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline equals upper D overbar Subscript m comma k Baseline script í’¬ Subscript m comma k Baseline upper D overbar Subscript m comma k Superscript upper T, upper P Subscript k Superscript left-parenthesis 2 right-parenthesis Baseline equals upper D overbar Subscript m comma k Baseline script í’¬ Subscript m comma k Baseline upper G Subscript m comma k Superscript p Super Superscript upper T Baseline ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p Super Superscript upper T, upper P Subscript k Superscript left-parenthesis 3 right-parenthesis Baseline equals ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p Baseline upper G Subscript m comma k Superscript p Baseline script í’¬ Subscript m comma k Baseline upper D overbar Subscript m comma k Superscript upper T, upper P Subscript k Superscript left-parenthesis 4 right-parenthesis Baseline equals ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p Baseline upper G Subscript m comma k Superscript p Baseline script í’¬ Subscript m comma k Baseline upper G Subscript m comma k Superscript p Super Superscript upper T Baseline ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p Super Superscript upper T, and upper P Subscript k Superscript left-parenthesis 5 right-parenthesis Baseline equals ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p Baseline script upper R Subscript m comma k Baseline ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p Super Superscript upper T.

Following the derivation procedure applied in Chapter to the error covariance of the UFIR filter, we represent components of (7.38) as

StartLayout 1st Row 1st Column upper P Subscript k Superscript left-parenthesis 1 right-parenthesis 2nd Column equals 3rd Column upper F Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 1 right-parenthesis Baseline upper F Subscript k Superscript upper T Baseline plus upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline comma 2nd Row 1st Column upper P Subscript k Superscript left-parenthesis 2 right-parenthesis 2nd Column equals 3rd Column upper F Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 2 right-parenthesis Baseline upper F Subscript k Superscript upper T minus upper F Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 2 right-parenthesis Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper F Subscript k Superscript negative 1 Baseline script í’¢ Subscript k 3rd Row 1st Column Blank 2nd Column plus upper F Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 1 right-parenthesis Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper F Subscript k Superscript negative 1 Baseline script í’¢ Subscript k Baseline comma 4th Row 1st Column upper P Subscript k Superscript left-parenthesis 3 right-parenthesis 2nd Column equals 3rd Column upper F Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 3 right-parenthesis Baseline upper F Subscript k Superscript upper T minus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 3 right-parenthesis Baseline upper F Subscript k Superscript upper T 5th Row 1st Column Blank 2nd Column plus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 1 right-parenthesis Baseline upper F Subscript k Superscript upper T Baseline comma 6th Row 1st Column upper P Subscript k Superscript left-parenthesis 4 right-parenthesis 2nd Column equals 3rd Column upper F Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 4 right-parenthesis Baseline upper F Subscript k Superscript upper T minus upper F Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 4 right-parenthesis Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper F Subscript k Superscript negative 1 Baseline script í’¢ Subscript k minus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 4 right-parenthesis Baseline upper F Subscript k Superscript upper T 7th Row 1st Column Blank 2nd Column plus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 4 right-parenthesis Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper F Subscript k Superscript negative 1 Baseline script í’¢ Subscript k plus upper F Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 3 right-parenthesis Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper F Subscript k Superscript negative 1 Baseline upper G Subscript k 8th Row 1st Column Blank 2nd Column Blank 3rd Column minus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 3 right-parenthesis Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper F Subscript k Superscript negative 1 Baseline script í’¢ Subscript k plus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 2 right-parenthesis Baseline upper F Subscript k Superscript upper T 9th Row 1st Column Blank 2nd Column Blank 3rd Column minus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 2 right-parenthesis Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper F Subscript k Superscript negative 1 Baseline script í’¢ Subscript k 10th Row 1st Column Blank 2nd Column Blank 3rd Column plus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 1 right-parenthesis Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper F Subscript k Superscript negative 1 Baseline script í’¢ Subscript k 11th Row 1st Column upper P Subscript k Superscript left-parenthesis 5 right-parenthesis 2nd Column equals 3rd Column upper F Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 5 right-parenthesis Baseline upper F Subscript k Superscript upper T minus upper F Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 5 right-parenthesis Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper F Subscript k Superscript negative 1 Baseline script í’¢ Subscript k minus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 5 right-parenthesis Baseline upper F Subscript k Superscript upper T 12th Row 1st Column Blank 2nd Column Blank 3rd Column plus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper P Subscript k minus 1 Superscript left-parenthesis 5 right-parenthesis Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline upper F Subscript k Superscript negative 1 Baseline script í’¢ Subscript k Baseline plus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Baseline upper H Subscript k Baseline upper F Subscript k Superscript negative 1 Baseline script í’¢ Subscript k Baseline period EndLayout

Combining these matrices in (7.38), we obtain the following recursive form for the error covariance,

All that follows from (7.39) is that it is unified by the KP error covariance (7.7) if we introduce the bias correction gain upper K Subscript k Baseline equals script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T instead of the Kalman gain. It should also be noted that recursion (7.39) can be obtained much easier if we start with the recursive estimate (7.37). The corresponding derivation is postponed to “Problems.”

7.5 Optimal FIR Predictor

In the discrete convolution‐based batch form, the OFIR predictive estimate can be defined similarly to the OFIR filtering estimate as

where the gains script upper H Subscript m comma k Superscript p and script upper H Subscript m comma k Superscript p normal f are to be found by minimizing the MSE with respect to the model

which is given by the last row vector in (7.14) and where upper S overbar Subscript m comma k is the last row vector in upper S Subscript m comma k and so is upper D overbar Subscript m comma k in upper D Subscript m comma k.

7.5.1 Batch Estimate and Error Covariance

For the estimation error epsilon Subscript k plus 1 Baseline equals x Subscript k plus 1 Baseline minus x overTilde Subscript k plus 1, determined taking into account (7.40) and (7.41), we apply the orthogonality condition as

(7.42)script upper E left-brace left-parenthesis x Subscript k plus 1 Baseline minus script upper H Subscript m comma k Superscript p Baseline upper Y Subscript m comma k Baseline minus script upper H Subscript m comma k Superscript p f Baseline upper U Subscript m comma k Baseline right-parenthesis upper Y Subscript m comma k Superscript upper T Baseline right-brace equals 0

and transform it to

where the error residual matrices given by

(7.45)script í’² Subscript m comma k Superscript p Baseline equals upper D overbar Subscript m comma k Baseline minus script upper H Subscript m comma k Superscript p Baseline upper G Subscript m comma k Superscript p Baseline comma

ensure optimal cancellation of regular (bias) and random errors at the OFIR predictor output.

For zero input, upper Psi Subscript m comma k Baseline equals 0, relation (7.43) gives the fundamental gain script upper H Subscript m comma k Superscript p for the OFIR predictor,

(7.47a)script upper H Subscript m comma k Superscript p Baseline equals left-parenthesis script upper F Subscript k Superscript m Baseline chi Subscript m Baseline upper H Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline plus script í’µ 1 Superscript p Baseline right-parenthesis left-parenthesis script í’µ Subscript chi Superscript p Baseline plus script í’µ 2 Superscript p Baseline plus script upper R Subscript m comma k Baseline right-parenthesis Superscript negative 1 Baseline comma

where script í’µ Subscript chi Superscript p Baseline equals upper H Subscript m comma k Superscript p Baseline chi Subscript m Baseline upper H Subscript m comma k Superscript p Super Superscript upper T, script í’µ 1 Superscript p Baseline equals upper D overbar Subscript m comma k Baseline script í’¬ Subscript m comma k Baseline upper G Subscript m comma k Superscript p Super Superscript upper T, script í’µ 2 Superscript p Baseline equals upper G Subscript m comma k Superscript p Baseline script í’¬ Subscript m comma k Baseline upper G Subscript m comma k Superscript p Super Superscript upper T, and the UFIR predictor gain ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p is given by (7.24b).

Since the forced impulse response script upper H Subscript m comma k Superscript p normal f is determined by constraint (7.23), the batch OFIR predictor (7.40) eventually becomes

where upper Y Subscript m comma k and upper U Subscript m comma k are real vectors containing data collected on left-bracket m comma k right-bracket. It can be seen that, for deterministic models with zero noise, we have script upper H Subscript m comma k Superscript p Baseline equals ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p, and thus the OFIR predictor becomes the UFIR predictor.

The batch error covariance upper P Subscript k plus 1 for the OFIR predictor is given by

where the error residual matrices are provided with (7.44)(7.46). Next, we will find recursive forms required to develop an iterative OFIR predictive algorithm based on (7.49).

7.5.2 Recursive Forms and Iterative Algorithm

Using expansions (7.29), the recursions for the OFIR predictor can be found similarly to the OFIR filter, as stated in the following theorem.

A simple glance at the result reveals that the iterative OFIR prediction algorithm (theorem 7.1), operating on left-bracket m comma k right-bracket, employs the KP recursions given by (7.10)(7.13). We wish to note this property as fundamental, since all estimators that minimize MSE in the same linear stochastic model can be transformed into each other. It also follows, as an extension, that (7.48) represents the batch KP by setting the starting point to zero, m equals 0.

It is also worth mentioning that the OFIR projector and predictor give almost identical estimates (Example 7.2). Thus, it follows that a simple projection of the state from k to k plus 1 through the system matrix can effectively serve not only for unbiased prediction but also for suboptimal prediction.

7.6 Receding Horizon FIR Filtering

Suboptimal RH FIR filters subject to the unbiasedness constraint were originally obtained for stationary stochastic processes in [105] and for nonstationary stochastic processes in [106]. Both solutions were called the minimum variance FIR (MVF) filter. Therefore, to distinguish the difference, we will refer to them as the MVF‐I filter and the MVF‐II filter, respectively. Note that MVF filters turned out to be the first practical solutions in the family of FIR state estimators, although their derivation draws heavily on the early work [97]. Next, we will derive both MVF filters, keeping the original ideas and derivation procedures, but accepting the definitions given in this book.

7.6.1 MVF‐I Filter for Stationary Processes

The MVF‐I filter resembles the OUFIR predictive filter but ignores the process dynamics and thus has most in common with the weighted LS estimate (3.61), which is suitable for stationary processes.

To obtain the MVF‐I solution, let us start with the model in (7.1) and (7.2). Since the MVF‐I filter ignores the process dynamics, it only needs the observation equation, which can be extended on the horizon left-bracket k minus upper N comma k minus 1 right-bracket as

(7.66)upper Y Subscript k minus 1 Baseline equals upper C Subscript k minus 1 Baseline x Subscript k Baseline minus upper L Subscript k minus 1 Baseline upper U Subscript k minus 1 Baseline minus upper G Subscript k minus 1 Baseline upper W Subscript k minus 1 Baseline plus upper V Subscript k minus 1 Baseline comma

where the following extended vectors were introduced,

StartLayout 1st Row 1st Column upper Y Subscript k minus 1 2nd Column delta-equals 3rd Column upper Y Subscript k minus upper N comma k minus 1 Baseline equals Start 1 By 4 Matrix 1st Row 1st Column y Subscript k minus upper N Superscript upper T Baseline 2nd Column y Subscript k minus upper N plus 1 Superscript upper T Baseline 3rd Column ellipsis 4th Column y Subscript k minus 1 Superscript upper T Baseline EndMatrix Superscript upper T Baseline comma 2nd Row 1st Column upper U Subscript k minus 1 2nd Column delta-equals 3rd Column upper U Subscript k minus upper N comma k minus 1 Baseline equals Start 1 By 4 Matrix 1st Row 1st Column u Subscript k minus upper N Superscript upper T Baseline 2nd Column u Subscript k minus upper N plus 1 Superscript upper T Baseline 3rd Column ellipsis 4th Column u Subscript k minus 1 Superscript upper T Baseline comma EndMatrix Superscript upper T Baseline comma 3rd Row 1st Column upper W Subscript k minus 1 2nd Column delta-equals 3rd Column upper W Subscript k minus upper N comma k minus 1 Baseline equals Start 1 By 4 Matrix 1st Row 1st Column w Subscript k minus upper N Superscript upper T Baseline 2nd Column w Subscript k minus upper N plus 1 Superscript upper T Baseline 3rd Column ellipsis 4th Column w Subscript k minus 1 Superscript upper T Baseline EndMatrix Superscript upper T Baseline comma 4th Row 1st Column upper V Subscript k minus 1 2nd Column delta-equals 3rd Column upper V Subscript k minus upper N comma k minus 1 Baseline equals Start 1 By 4 Matrix 1st Row 1st Column v Subscript k minus upper N Superscript upper T Baseline 2nd Column v Subscript k minus upper N plus 1 Superscript upper T Baseline 3rd Column ellipsis 4th Column v Subscript k minus 1 Superscript upper T Baseline EndMatrix Superscript upper T Baseline comma EndLayout

and the extended matrices upper C Subscript k minus 1 Baseline delta-equals upper C Subscript k minus upper N comma k minus 1, upper L Subscript k minus 1 Baseline delta-equals upper L Subscript k minus upper N comma k minus 1, upper G Subscript k minus 1 Baseline delta-equals upper G Subscript k minus upper N comma k minus 1, and upper H overbar Subscript k minus 1 Baseline delta-equals upper H overbar Subscript k minus upper N comma k minus 1 are defined as

(7.67)upper C Subscript k minus 1 Baseline equals upper H overbar Subscript k minus 1 Baseline Start 4 By 1 Matrix 1st Row left-parenthesis script upper F Subscript k minus 1 Superscript k minus upper N Baseline right-parenthesis Superscript negative 1 Baseline 2nd Row left-parenthesis script upper F Subscript k minus 1 Superscript k minus upper N plus 1 Baseline right-parenthesis Superscript negative 1 Baseline 3rd Row vertical-ellipsis 4th Row upper F Subscript k minus 1 Superscript negative 1 Baseline EndMatrix comma
(7.68)StartLayout 1st Row 1st Column upper L Subscript k minus 1 2nd Column equals 3rd Column upper H overbar Subscript k minus 1 Baseline Start 5 By 5 Matrix 1st Row 1st Column upper F Subscript k minus upper N Superscript negative 1 Baseline upper E Subscript k minus upper N Baseline 2nd Column script upper F Subscript m Superscript k minus upper N Super Superscript negative 1 Superscript Baseline upper E Subscript m Baseline 3rd Column ellipsis 4th Column script upper F Subscript k minus 2 Superscript k minus upper N Super Superscript negative 1 Superscript Baseline upper E Subscript k minus 2 Baseline 5th Column script upper F Subscript k minus 1 Superscript k minus upper N Super Superscript negative 1 Superscript Baseline upper E Subscript k minus 1 Baseline 2nd Row 1st Column 0 2nd Column upper F Subscript m Superscript negative 1 Baseline upper E Subscript m Baseline 3rd Column ellipsis 4th Column script upper F Subscript k minus 2 Superscript m Super Superscript negative 1 Superscript Baseline upper E Subscript k minus 2 Baseline 5th Column script upper F Subscript k minus 1 Superscript m Super Superscript negative 1 Superscript Baseline upper E Subscript k minus 1 Baseline 3rd Row 1st Column vertical-ellipsis 2nd Column vertical-ellipsis 3rd Column down-right-diagonal-ellipsis 4th Column vertical-ellipsis 5th Column vertical-ellipsis 4th Row 1st Column 0 2nd Column 0 3rd Column ellipsis 4th Column upper F Subscript k minus 2 Superscript negative 1 Baseline upper E Subscript k minus 2 Baseline 5th Column script upper F Subscript k minus 1 Superscript k minus 2 Super Superscript negative 1 Superscript Baseline upper E Subscript k minus 1 Baseline 5th Row 1st Column 0 2nd Column 0 3rd Column ellipsis 4th Column 0 5th Column upper F Subscript k minus 1 Superscript negative 1 Baseline upper E Subscript k minus 1 Baseline EndMatrix comma EndLayout
(7.69)upper H overbar Subscript k minus 1 Baseline equals diag left-parenthesis upper H Subscript k minus upper N Baseline upper H Subscript k minus upper N plus 1 Baseline ellipsis upper H Subscript k minus 1 Baseline right-parenthesis period

Note that matrix upper G Subscript k minus 1 becomes equal to matrix upper L Subscript k minus 1 if we replace upper E Subscript k by upper B Subscript k.

We can now define the RH FIR filtering estimate as

provide the averaging of both sides of (7.71), and obtain two unbiasedness constraints,

Now, substituting (7.72) and (7.73) into (7.71) gives

x overTilde Subscript k Baseline equals x Subscript k Baseline minus script upper H Subscript k minus 1 Baseline left-parenthesis upper G Subscript k minus 1 Baseline upper W Subscript k minus 1 Baseline minus upper V Subscript k minus 1 Baseline right-parenthesis comma

the estimation error becomes

epsilon Subscript k Baseline equals x Subscript k Baseline minus x overTilde Subscript k Baseline equals script upper H Subscript k minus 1 Baseline left-parenthesis upper G Subscript k minus 1 Baseline upper W Subscript k minus 1 Baseline minus upper V Subscript k minus 1 Baseline right-parenthesis comma

and the error covariance upper P Subscript k Baseline equals script upper E left-brace epsilon Subscript k Baseline epsilon Subscript k Superscript upper T Baseline right-brace can be written as

(7.74a)upper P Subscript k Baseline equals script upper H Subscript k minus 1 Baseline left-parenthesis upper G Subscript k minus 1 Baseline script í’¬ Subscript k minus 1 Baseline upper G Subscript k minus 1 Superscript upper T Baseline plus script upper R Subscript k minus 1 Baseline right-parenthesis script upper H Subscript k minus 1 Superscript upper T

where script í’² Subscript k Baseline equals script upper H Subscript k Baseline upper G Subscript k and script í’± Subscript k Baseline equals script upper H Subscript k are the error residual matrices.

To find the gain script upper H Subscript k minus 1 subject to constraint (7.72), the trace of upper P Subscript k can be minimized with script upper H Subscript k minus 1 using the Lagrange multiplier method as

StartLayout 1st Row 1st Column StartFraction partial-differential Over partial-differential script upper H Subscript k minus 1 Baseline EndFraction trace left-bracket script upper H Subscript k minus 1 Baseline left-parenthesis upper G Subscript k minus 1 Baseline script í’¬ Subscript k minus 1 Baseline upper G Subscript k minus 1 Superscript upper T Baseline plus script upper R Subscript k minus 1 Baseline right-parenthesis script upper H Subscript k minus 1 Superscript upper T Baseline 2nd Column Blank 3rd Column Blank 2nd Row 1st Column plus upper Lamda left-parenthesis upper I minus script upper H Subscript k minus 1 Baseline upper C Subscript k minus 1 Baseline right-parenthesis right-bracket equals 0 2nd Column Blank 3rd Column Blank EndLayout

that, if we introduce upper Omega Subscript k minus 1 Baseline equals upper G Subscript k minus 1 Baseline script í’¬ Subscript k minus 1 Baseline upper G Subscript k minus 1 Superscript upper T Baseline plus script upper R Subscript k minus 1, gives

Multiplying both sides of (7.75) by the nonzero upper C Subscript k minus 1 Superscript upper T Baseline upper Omega Subscript k minus 1 Superscript negative 1 from the left‐hand side and using (7.72), we obtain the Lagrange multiplier as

StartLayout 1st Row 1st Column upper Lamda 2nd Column equals 3rd Column 2 left-parenthesis upper C Subscript k minus 1 Superscript upper T Baseline upper Omega Subscript k minus 1 Superscript negative 1 Baseline upper C Subscript k minus 1 Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript k minus 1 Superscript upper T Baseline script upper H Subscript k minus 1 Superscript upper T 2nd Row 1st Column Blank 2nd Column equals 3rd Column 2 left-parenthesis upper C Subscript k minus 1 Superscript upper T Baseline upper Omega Subscript k minus 1 Superscript negative 1 Baseline upper C Subscript k minus 1 Baseline right-parenthesis Superscript negative 1 Baseline comma EndLayout

and then the substitution of upper Lamda in (7.75) gives the gain [105]

We finally represent the MVF‐I filter (7.70) with

(7.77a)x overTilde Subscript k Baseline equals script upper H Subscript k minus 1 Baseline left-parenthesis upper Y Subscript k minus 1 Baseline minus upper L Subscript k minus 1 Baseline upper U Subscript k minus 1 Baseline right-parenthesis

and notice that the error covariance for (7.77b) is defined by (7.74b).

It can be seen that the MVF‐I filter has the form of the ML‐I FIR filter (4.98a) and thus belongs to the family of ML state estimators. The difference is that the error residual matrix script í’² Subscript k in (7.74b) does not include the matrix upper D overbar containing information of the process dynamics. Therefore, the MVF‐I filter is most suitable for stationary and quasistationary processes. For LTI systems, recursive computation of (7.77b) is provided in [105,106]. In the general case of LTV systems, recursions can be found using the OUFIR‐II filter derivation procedure, and we postpone it to “Problems.”

7.6.2 MVF‐II Filter for Nonstationary Processes

A more general MVF‐II filter was derived in [106] using a similar procedure as for the OUFIR‐II filter. However, to obtain an estimate at k, the MVF‐II filter takes data from left-bracket k minus upper N comma k minus 1 right-bracket, while the OUFIR‐II filter from left-bracket m comma k right-bracket.

The MVF‐II filter can be obtained using the model in (7.14) and (7.15), if we keep the definitions for MVF‐I, introduce a time shift, and write

where the extended matrices are given by

(7.80)upper H Subscript k minus 1 Baseline equals upper H overbar Subscript k minus 1 Baseline upper F Subscript m minus 1 comma k minus 1 Baseline upper F Subscript k minus upper N Baseline comma
(7.81)upper L Subscript k minus 1 Baseline equals upper H overbar Subscript k minus 1 Baseline upper S Subscript k minus 1 Baseline comma
(7.82)upper G Subscript k minus 1 Baseline equals upper H overbar Subscript k minus 1 Baseline upper D Subscript k minus 1 Baseline comma
(7.83)upper S Subscript k minus 1 Baseline equals Start 5 By 5 Matrix 1st Row 1st Column 0 2nd Column 0 3rd Column ellipsis 4th Column 0 5th Column 0 2nd Row 1st Column upper E Subscript k minus upper N Baseline 2nd Column 0 3rd Column ellipsis 4th Column 0 5th Column 0 3rd Row 1st Column vertical-ellipsis 2nd Column vertical-ellipsis 3rd Column down-right-diagonal-ellipsis 4th Column vertical-ellipsis 5th Column vertical-ellipsis 4th Row 1st Column script upper F Subscript k minus 3 Superscript m Baseline upper E Subscript k minus upper N Baseline 2nd Column script upper F Subscript k minus 3 Superscript m plus 1 Baseline upper E Subscript m Baseline 3rd Column ellipsis 4th Column 0 5th Column 0 5th Row 1st Column script upper F Subscript k minus 2 Superscript m Baseline upper E Subscript k minus upper N Baseline 2nd Column script upper F Subscript k minus 2 Superscript m plus 1 Baseline upper E Subscript m Baseline 3rd Column ellipsis 4th Column upper E Subscript k minus 2 Baseline 5th Column 0 EndMatrix comma

matrix upper D Subscript k minus 1 is equal to matrix upper S Subscript k minus 1 by replacing upper E Subscript k with upper B Subscript k, upper S overbar Subscript k minus 1 is the last row vector in upper S Subscript k minus 1 and so is upper D overbar Subscript m comma k in upper D Subscript m comma k, and matrix upper H overbar Subscript m comma k Baseline equals diag left-parenthesis upper H Subscript k minus upper N Baseline upper H Subscript k minus upper N plus 1 Baseline ellipsis upper H Subscript k minus 1 Baseline right-parenthesis is diagonal.

We can now define the MVF‐II estimate and transform using (7.79) as

Introducing upper C Subscript k minus 1 Baseline equals upper H Subscript k minus 1 Baseline left-parenthesis script upper F Subscript k minus 1 Superscript k minus upper N Baseline right-parenthesis Superscript negative 1 and applying the unbiasedness conditions to (7.85) and (7.78), we next obtain the unbiasedness constraints

define the estimation error as epsilon Subscript k minus 1 Baseline equals x Subscript k minus 1 Baseline minus x overTilde Subscript k minus 1, use the constraints (7.86) and (7.87), transform epsilon Subscript k minus 1 to

(7.88)epsilon Subscript k minus 1 Baseline equals left-parenthesis upper D overbar Subscript k minus 1 Baseline minus script upper H Subscript k minus 1 Baseline upper G Subscript k minus 1 Baseline right-parenthesis upper W Subscript k minus 1 Baseline minus script upper H Subscript k minus 1 Baseline upper V Subscript k minus 1 Baseline comma

and find the error covariance

To embed the unbiasedness, we solve the optimization problem

(7.90)upper J equals arg min Underscript script upper H Subscript k minus 1 Baseline comma upper Lamda Endscripts trace left-bracket upper P Subscript k Baseline plus upper Lamda left-parenthesis upper I minus script upper H Subscript k minus 1 Baseline upper C Subscript k minus 1 Baseline right-parenthesis right-bracket

by putting to zero the derivatives of the trace of the matrix function with respect to script upper H Subscript k minus 1 and upper Lamda, and obtain

Then multiplying both sides of (7.91) from the left‐hand side with upper C Subscript k minus 1 Superscript upper T Baseline upper Omega Subscript k minus 1 Superscript negative 1 and using (7.86) gives the Lagrange multiplier

We finally substitute (7.92) into (7.91), find the gain script upper H Subscript k minus 1 in the form

represent the MVF‐II filtering estimate (7.84) as

(7.94)x overTilde Subscript k Baseline equals script upper H Subscript k minus 1 Baseline upper Y Subscript k minus 1 Baseline plus left-parenthesis upper S overbar Subscript k minus 1 Baseline minus script upper H Subscript k minus 1 Baseline upper L Subscript k minus 1 Baseline right-parenthesis upper U Subscript k minus 1 Baseline comma

where script upper H Subscript k minus 1 is given by (7.93), and write the error covariance (7.89) in the standard form

(7.95)upper P Subscript k Baseline equals script í’² Subscript k minus 1 Baseline script í’¬ Subscript k minus 1 Baseline script í’² Subscript k minus 1 Superscript upper T Baseline plus script í’± Subscript k minus 1 Baseline script upper R Subscript k minus 1 Baseline script í’± Subscript k minus 1 Superscript upper T Baseline comma

where the error residual matrices are defined by

(7.96)script í’² Subscript k minus 1 Baseline equals upper D overbar Subscript k minus 1 Baseline minus script upper H Subscript k minus 1 Baseline upper G Subscript k minus 1 Baseline comma
(7.97)script í’± Subscript k minus 1 Baseline equals script upper H Subscript k minus 1 Baseline period

It can now be shown that for LTI systems the gain (7.93) is equivalent to the gain (4.69a) of the OUFIR‐II filter. Since the OUFIR‐II gain is identical to the ML‐I FIR gain (4.113b), it follows that the MVF‐II filter also belongs to the class of ML estimators. Therefore, the recursions for the MVF‐II filter can be taken from Algorithm 8, not forgetting that this algorithm has the following disadvantages: 1) exact initial values are required to initialize iterations, 2) it is less accurate than the OFIR algorithm, and 3) it is more complex than the OFIR algorithm. All of this means that optimal unbiased recursions persisting for an MVF‐II filter will have limited advantages over Kalman recursions. Finally, the recursive forms found in [106] for the MVF‐II filter are much more complex than those in Algorithm 8.

7.7 Maximum Likelihood FIR Predictor

Like the standard ML FIR filter, the ML FIR predictor has two possible algorithmic implementations. We can obtain the ML FIR prediction at k plus 1 on the horizon left-bracket m comma k right-bracket in what we will call the ML‐I FIR predictor. We can also first obtain the ML FIR backward estimate at the start point m over left-bracket m comma k right-bracket and then project it unbiasedly onto k plus 1 in what we will call the ML‐II FIR predictor. Because the ML approach is unbiased, the unbiased projection in the ML‐II FIR predictor is justified for practical purposes.

7.7.1 ML‐I FIR Predictor

To derive the ML‐I FIR predictor, we consider the state‐space model

extend it as (7.14) and (7.15), extract x Subscript k plus 1, and obtain

The ML‐I FIR predicted estimate can now be determined for data taken from left-bracket m comma k right-bracket by maximizing the likelihood p left-parenthesis upper Y Subscript m comma k Baseline vertical-bar x Subscript k plus 1 Baseline right-parenthesis of x Subscript k plus 1 as

The solution to the maximization problem (7.102) can be found if we extract x Subscript m from (7.100) as x Subscript m Baseline equals script upper F Subscript k Superscript m Super Superscript negative 1 Baseline x Subscript k plus 1 Baseline minus script upper F Subscript k Superscript m Super Superscript negative 1 Baseline upper D overbar Subscript m comma k Baseline upper W Subscript m comma k, substitute into (7.101), and then represent (7.101) as

(7.103)upper Y Subscript m comma k Baseline minus upper C Subscript m comma k Superscript p Baseline x Subscript k plus 1 Baseline equals script í’© Subscript m comma k Superscript p Baseline comma

where upper C Subscript m comma k Superscript p Baseline equals upper H Subscript m comma k Superscript p Baseline left-parenthesis script upper F Subscript k Superscript m Baseline right-parenthesis Superscript negative 1 and all random components are combined in

For a multivariate normal distribution, the likelihood of x Subscript k plus 1 is given by

(7.105)p left-parenthesis upper Y Subscript m comma k Baseline vertical-bar x Subscript k plus 1 Baseline right-parenthesis proportional-to exp left-brace minus one half left-parenthesis upper Y Subscript m comma k Baseline minus upper C Subscript m comma k Superscript p Baseline x Subscript k plus 1 Baseline right-parenthesis Superscript upper T Baseline upper Sigma Subscript m comma k Superscript p Super Superscript negative 1 Superscript Baseline left-parenthesis ellipsis right-parenthesis right-brace comma

where the covariance matrix is defined as

(7.106a)upper Sigma Subscript m comma k Superscript p Baseline equals script upper E left-brace script í’© Subscript m comma k Superscript p Baseline script í’© Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline right-brace

The maximization problem (7.102) can now be equivalently replaced by the minimization problem

which assumes minimization of the quadratic form. Referring to (7.106b), we find a solution to (7.107) in the form

and write the error covariance using (7.104) as

(7.109)upper P Subscript k plus 1 Baseline equals left-parenthesis upper G Subscript m comma k Superscript p Baseline minus upper C Subscript m comma k Superscript p Baseline upper D overbar Subscript m comma k Baseline right-parenthesis script í’¬ Subscript m comma k Baseline left-parenthesis upper G Subscript m comma k Superscript p Baseline minus upper C Subscript m comma k Superscript p Baseline upper D overbar Subscript m comma k Baseline right-parenthesis Superscript upper T Baseline plus script upper R Subscript m comma k Baseline period

What finally comes is that the prediction (7.108) differs from the previously obtained ML‐I FIR filtering estimate (4.98a) only in the modified matrices upper C Subscript m comma k Superscript p and upper Sigma Subscript m comma k Superscript p, which reflect the features of the state model (7.98) and the predictive estimate (7.102).

7.7.2 ML‐II FIR Predictor

As mentioned earlier, the ML‐II FIR prediction appears if we first estimate the initial state at m over left-bracket m comma k right-bracket and then project it forward to k plus 1. The first part of this procedure has already been supported by (4.114)–(4.119). Applied to the model in (7.98) and (7.99), this gives the a posteriori ML FIR estimate

In turn, the unbiased projection of (7.110) onto k plus 1 can be obtained as

to be an ML‐II FIR predictive estimate, the error covariance of which is given by

It is now easy to show that the ML‐II FIR predictor (7.111) has the same structure of the error covariance (7.112) as the structure (7.74b) of the MVF‐I filter (7.77b), and we conclude that these estimates can be converted to each other by introducing a time shift.

7.8 Extended OFIR Prediction

When state feedback control is required for nonlinear systems, then linear estimators generally cannot serve, and extended predictive filtering or prediction is used. To develop an EOFIR predictor, we assume that the process and its observation are both nonlinear and represent them with the following state and observation equations

Now the EOFIR predictor can be obtained similarly to the EOFIR filter if we expand the nonlinear functions with the Taylor series. Assuming that the functions f Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis and h Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis are sufficiently smooth, we expand them around the available estimate ModifyingAbove x With caret Subscript k using the second‐order Taylor series as

(7.115)f Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis approximately-equals f Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k Baseline right-parenthesis plus ModifyingAbove upper F With dot Subscript k Baseline epsilon Subscript k Baseline plus one half alpha Subscript k Baseline comma
(7.116)h Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis approximately-equals h Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k Baseline right-parenthesis plus ModifyingAbove upper H With dot Subscript k Baseline epsilon Subscript k Baseline plus one half beta Subscript k Baseline comma

where the increment epsilon Subscript k Baseline equals x Subscript k Baseline minus ModifyingAbove x With caret Subscript k is equivalent to the estimation error, the Jacobian matrices are given by

(7.117)ModifyingAbove upper F With dot Subscript k Baseline equals StartFraction partial-differential f Subscript k Baseline Over partial-differential x EndFraction vertical-bar Subscript x equals ModifyingAbove x With caret Sub Subscript k Subscript Baseline comma
(7.118)ModifyingAbove upper H With dot Subscript k Baseline equals StartFraction partial-differential h Subscript k Baseline Over partial-differential x EndFraction vertical-bar Subscript x equals ModifyingAbove x With caret Sub Subscript k Subscript Baseline comma

the second‐order terms are determined as [15]

(7.119)alpha Subscript k Baseline equals sigma-summation Underscript i equals 1 Overscript upper K Endscripts e Subscript i Superscript upper K Baseline epsilon Subscript k Superscript upper T Baseline ModifyingAbove upper F With two-dots Subscript i k Baseline epsilon Subscript k Baseline comma
(7.120)beta Subscript k Baseline equals sigma-summation Underscript j equals 1 Overscript upper M Endscripts e Subscript j Superscript upper M Baseline epsilon Subscript k Superscript upper T Baseline ModifyingAbove upper H With two-dots Subscript j k Baseline epsilon Subscript k Baseline comma

and the Hessian matrices are defined by

(7.121)ModifyingAbove upper F With two-dots Subscript i k Baseline equals StartFraction partial-differential squared f Subscript i k Baseline Over partial-differential x squared EndFraction vertical-bar Subscript x equals ModifyingAbove x With caret Sub Subscript k Subscript Baseline comma
(7.122)ModifyingAbove upper H With two-dots Subscript j k Baseline equals StartFraction partial-differential squared h Subscript j k Baseline Over partial-differential x squared EndFraction vertical-bar Subscript x equals ModifyingAbove x With caret Sub Subscript k Subscript Baseline comma

where f Subscript i k, i element-of left-bracket 1 comma upper K right-bracket, and h Subscript j k, j element-of left-bracket 1 comma upper M right-bracket, are the ith and jth components of f Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis and h Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis, respectively. Also, e Subscript i Superscript upper K Baseline element-of double-struck upper R Superscript upper K and e Subscript j Superscript upper M Baseline element-of double-struck upper R Superscript upper M are Cartesian basis vectors with ones in the ith and jth components and zeros elsewhere.

The nonlinear model in (7.113) and (7.114) can thus be linearized as

(7.123)x Subscript k plus 1 Baseline equals ModifyingAbove upper F With dot Subscript k Baseline x Subscript k Baseline plus eta Subscript k Baseline plus w Subscript k Baseline comma
(7.124)y overTilde Subscript k Baseline equals ModifyingAbove upper H With dot Subscript k Baseline x Subscript k Baseline plus v Subscript k Baseline comma

where y overTilde Subscript k Baseline equals y Subscript k Baseline minus psi Subscript k is the modified observation, in which

is a correction vector, and eta Subscript k given by

(7.126)eta Subscript k Baseline equals f Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k Baseline right-parenthesis minus ModifyingAbove upper F With dot Subscript k Baseline ModifyingAbove x With caret Subscript k Baseline plus one half alpha Subscript k

plays the role of an input signal.

It follows from this model that the second‐order additions alpha Subscript k and beta Subscript k affect only eta Subscript k and psi Subscript k. If alpha Subscript k and beta Subscript k have little effect on the prediction, they can be omitted as in the EOFIR‐1 predictor. Otherwise, one should use the EOFIR‐II predictor.

The pseudocode of the EOFIR prediction algorithm serving both options is listed as Algorithm 18, where the matrix psi Subscript k is computed by (7.125) using the Taylor series expansions. It can be seen that the nonlinear functions f Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis and h Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis are only used here to update the prediction, while the error covariance matrix is updated using the extended matrices. Another feature is that Algorithm 18 is universal for both EOFIR‐I and EOFIR‐II predictors. Indeed, in the case of the EOFIR‐I predictor, the terms beta Subscript k and alpha Subscript k vanish in the matrix psi Subscript k, and for the EOFIR‐II predictor they must be preserved. It should also be noted that the more sophisticated second‐order EOFIR‐II predictor does not demonstrate clear advantages over the EOFIR‐I predictor, although we have already noted this earlier.

7.9 Summary

Digital stochastic control requires predictive estimation to provide effective state feedback control, since filtering estimates may be too biased at the next time point. Prediction or predictive filtering can be organized using any of the available state estimation techniques. The requirement for such structure is that they must provide one‐step prediction with maximum accuracy. This allows for suboptimal state feedback control, even though the predicted estimate is less accurate than the filtering estimate. Next we summarize the most important properties of the FIR predictors and RH FIR filters.

To organize one‐step prediction at k, the RH FIR predictive filter can be used to obtain an estimate over the data FH left-bracket m minus 1 comma k minus 1 right-bracket. Alternatively, we can use any type of FIR predictor to obtain an estimate at k plus 1 over left-bracket m comma k right-bracket. If necessary, we can change the time variable to obtain an estimate at k over left-bracket m minus 1 comma k minus 1 right-bracket. We can also use the FIR filtering estimate available at k minus 1 and project it to k using the system matrix.

The iterative OFIR predictor uses the KP recursions. The difference between the OFIR predictor and OFIR filter estimates is poorly discernible when these structures fully fit the model. But in the presence of uncertainties, the predictor can be much less accurate than the filter. For LTI systems without input, the UFIR prediction is equivalent to a one‐step projected UFIR filtering estimate. The UFIR and OFIR predictors can be obtained in batch form and in an iterative form using recursions.

The MVF‐I filter and the ML‐II FIR predictor have the same batch form, and both these estimators belong to the family of ML state estimators. The MVF‐I filter is suitable for stationary and quasistationary stochastic processes, while the MVF‐II filter is suitable for nonstationary stochastic processes. The EOFIR predictor can be obtained similarly to the extended OFIR filter using first‐ or second‐order Taylor series expansions.

7.10 Problems

  1. Following the derivation of the KP algorithm (7.10)(7.13), obtain the LMP algorithm at k plus 1 over left-bracket m comma k right-bracket and at k over left-bracket m minus 1 comma k minus 1 right-bracket.
  2. Given the state‐space model in (7.1) and (7.2), using the Bayesian approach, derive the KP and show its equivalence to the algorithm (7.10)(7.13).
  3. The risk function of the RH FIR estimate x overTilde Subscript k vertical-bar k minus 1 is given by
    upper J Subscript k Baseline equals script upper E left-bracket left-parenthesis x Subscript k Baseline minus x overTilde Subscript k vertical-bar k minus 1 Baseline right-parenthesis Superscript upper T Baseline left-parenthesis x Subscript k Baseline minus x overTilde Subscript k vertical-bar k minus 1 Baseline right-parenthesis right-bracket period

    Show that the inequality upper J Subscript k plus 1 Baseline minus upper J Subscript k Baseline greater-than 0 holds if upper J Subscript k satisfies the cost function upper J Subscript k Baseline equals arg min Underscript upper N Endscripts left-bracket left-parenthesis x Subscript k Baseline minus x overTilde Subscript k vertical-bar k minus 1 Baseline right-parenthesis Superscript upper T Baseline left-parenthesis x Subscript k Baseline minus x overTilde Subscript k vertical-bar k minus 1 Baseline right-parenthesis right-bracket.

  4. A system is represented in state space with the following equations: x Subscript k plus 1 Baseline equals upper F x Subscript k Baseline plus upper E Subscript x Baseline u Subscript k Baseline plus w Subscript k and y Subscript k Baseline equals upper H x Subscript k Baseline plus upper D Subscript y Baseline u Subscript k Baseline plus v Subscript k. Extend this model on left-bracket m comma k right-bracket and derive the UFIR predictor.
  5. Consider the system described in item 4 and derive the OFIR predictor.
  6. Given the following harmonic two‐state space model
    StartLayout 1st Row 1st Column x Subscript k plus 1 2nd Column equals 3rd Column Start 2 By 2 Matrix 1st Row 1st Column cosine StartFraction pi Over 64 EndFraction plus delta Subscript k Baseline 2nd Column sine StartFraction pi Over 64 EndFraction 2nd Row 1st Column minus sine StartFraction pi Over 64 EndFraction 2nd Column cosine StartFraction pi Over 64 EndFraction plus delta Subscript k Baseline EndMatrix x Subscript k Baseline plus StartBinomialOrMatrix 0.3 Choose 0.1 EndBinomialOrMatrix u Subscript k Baseline plus StartBinomialOrMatrix 1 Choose 1 EndBinomialOrMatrix w Subscript k Baseline comma 2nd Row 1st Column y Subscript k 2nd Column equals 3rd Column left-bracket 1 0 right-bracket x Subscript k Baseline plus v Subscript k Baseline comma EndLayout

    where w Subscript k and v Subscript k are white Gaussian with the covariances sigma Subscript w Superscript 2 Baseline equals 1 and sigma Subscript v Superscript 2 Baseline equals 100 and the disturbance delta Subscript k Baseline equals 0.04 is induced from 350 to 400, simulate this process for the initial state x Subscript k Superscript upper T Baseline equals left-bracket 100 0.01 right-bracket and estimate x Subscript k plus 1 numerically using different FIR predictors. Select the most and less accurate predictors among the predictors OFIR, UFIR, ML‐I FIR, and ML‐II FIR.

  7. Consider the problem described in item 6, estimate x Subscript k using the MVF‐I and MVF‐II predictive filters, and compare the errors. Explain the difference between the predictive estimates.
  8. The error covariances upper P Subscript k Superscript left-parenthesis 1 right-parenthesis and upper P Subscript k Superscript left-parenthesis 2 right-parenthesis of two FIR predictors are given by the solutions of the following DDREs
    StartLayout 1st Row 1st Column upper P Subscript k plus 1 Superscript left-parenthesis 1 comma 2 right-parenthesis 2nd Column equals 3rd Column upper F upper P Subscript k Superscript left-parenthesis 1 comma 2 right-parenthesis Baseline upper F Superscript upper T minus upper F upper P Subscript k Superscript left-parenthesis 1 comma 2 right-parenthesis Baseline upper H Superscript upper T Baseline left-parenthesis upper H upper P Subscript k Superscript left-parenthesis 1 comma 2 right-parenthesis Baseline upper H Superscript upper T Baseline plus upper R right-parenthesis Superscript negative 1 2nd Row 1st Column Blank 2nd Column Blank 3rd Column times upper H upper P Subscript k Superscript left-parenthesis 1 comma 2 right-parenthesis Baseline upper F Superscript upper T Baseline plus upper Q Superscript left-parenthesis 1 comma 2 right-parenthesis Baseline period EndLayout

    Find the difference upper Delta upper P Subscript k Baseline equals upper P Subscript k Superscript left-parenthesis 2 right-parenthesis Baseline minus upper P Subscript k Superscript left-parenthesis 1 right-parenthesis and analyze the dependence of upper Delta upper P Subscript k on the system noise covariances upper Q Superscript left-parenthesis 1 right-parenthesis and upper Q Superscript left-parenthesis 2 right-parenthesis.

  9. Consider the error residual matrices script í’² Subscript m comma k Superscript p Baseline equals upper D overbar Subscript m comma k Baseline minus ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p Baseline upper G Subscript m comma k Superscript p and script í’± Subscript m comma k Superscript p Baseline equals ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p of the UFIR predictor (7.25) and explain why a decrease in GNPG equals ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p Baseline ModifyingAbove script upper H With Ì‚ Subscript m comma k Superscript p Super Superscript upper T improves measurement noise reduction.
  10. Explain why an FIR filter and an FIR predictor that satisfy the same cost function are equivalent in continuous time.
  11. Given the state‐space model, x Subscript k plus 1 Baseline equals upper F x Subscript k Baseline plus upper B Subscript k Baseline w Subscript k and y Subscript k Baseline equals upper H x Subscript k Baseline plus v Subscript k, and the KP and KF estimates, respectively,
    (7.127)StartLayout 1st Row 1st Column x overTilde Subscript k plus 1 2nd Column equals upper F x overTilde Subscript k Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H x overTilde Subscript k Baseline right-parenthesis comma 2nd Row 1st Column ModifyingAbove x With caret Subscript k 2nd Column equals upper F ModifyingAbove x With caret Subscript k minus 1 Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H upper F ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis period EndLayout

    under what conditions do these estimates 1) become equivalent and 2) cannot be converted into each other?

  12. Given the MVF‐I filter (7.77b), following the derivation of the OUFIR‐II filter, find recursive forms for the MVF‐I filter and design an iterative algorithm.
  13. The recursive form for the batch error covariance (7.26), which corresponds to the batch UFIR predictor (7.25), is given by (7.39) as
    StartLayout 1st Row 1st Column upper P Subscript k plus 1 2nd Column equals 3rd Column left-parenthesis upper F Subscript k Baseline minus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline right-parenthesis upper P Subscript k Baseline left-parenthesis upper F Subscript k Baseline minus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper H Subscript k Baseline right-parenthesis Superscript upper T 2nd Row 1st Column Blank 2nd Column Blank 3rd Column plus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Baseline upper H Subscript k Baseline upper F Subscript k Superscript negative 1 Baseline script í’¢ Subscript k Baseline plus upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline period EndLayout

    Obtain this recursion using the recursive UFIR predictor estimate

    x overTilde Subscript k plus 1 Baseline equals upper F Subscript k Baseline x overTilde Subscript k Baseline plus upper E Subscript k Baseline u Subscript k Baseline plus script í’¢ Subscript k Baseline upper F Subscript k Superscript negative upper T Baseline upper H Subscript k Superscript upper T Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline x overTilde Subscript k Baseline right-parenthesis period
  14. The MVF‐II filter is represented by the fundamental gain (7.93). Referring to the similarity with the OUFIR filter, find recursive forms and design an iterative algorithm for the MVF‐II filter.
  15. Consider the state‐space model x Subscript k plus 1 Baseline equals upper F x Subscript k Baseline plus upper E u Subscript k Baseline plus w Subscript k and y Subscript k Baseline equals upper H x Subscript k Baseline plus v Subscript k. Define the MVF predictive filtering estimate as
    x overTilde Subscript k Baseline equals sigma-summation Underscript i equals k minus upper N Overscript k minus 1 Endscripts script upper H Subscript k minus i Baseline y Subscript i Baseline plus sigma-summation Underscript i equals k minus upper N Overscript k minus 1 Endscripts script upper H Subscript k minus i Superscript normal f Baseline u Subscript i

    and obtain the gains script upper H Subscript k and script upper H Subscript k Superscript normal f for k element-of left-bracket 1 comma upper N right-bracket.

  16. The state of the LTI system without input is estimated using OFIR filtering as ModifyingAbove x With caret Subscript k (4.30b). Project this estimate to k plus 1 as ModifyingAbove x With caret Subscript k plus 1 Superscript pj Baseline equals upper F ModifyingAbove x With caret Subscript k. Also consider the OFIR predicted estimate x overTilde Subscript k plus 1 Superscript p r Baseline equals script upper H Subscript m comma k Superscript p Baseline upper Y Subscript m comma k. Under what conditions do the projected and predicted estimates 1) become identical and 2) cannot be converted into one another?
  17. The batch UFIR prediction is given by
    x overTilde Subscript k plus 1 Superscript p r Baseline equals upper F Superscript upper N Baseline left-parenthesis upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline upper H Subscript upper N Superscript p Baseline right-parenthesis Superscript negative 1 Baseline upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline upper Y Subscript m comma k Baseline period

    Compare this prediction with the LS prediction and highlight the differences.

  18. A nonlinear system is represented in state space with the equations x Subscript k plus 1 Baseline equals f Subscript k Baseline left-parenthesis x Subscript k Baseline comma u Subscript k Baseline comma w Subscript k Baseline right-parenthesis and y Subscript k Baseline equals h Subscript k Baseline left-parenthesis x Subscript k Baseline comma v Subscript k Baseline right-parenthesis. Suppose that the white Gaussian noise vectors w Subscript k and v Subscript k have low intensity components and that the input u Subscript k is known. Apply the first‐order Taylor series expansion and obtain an EOFIR predictor.
  19. Consider the previously described problem, apply the same conditions, and obtain a first‐order EFIR predictor and an RH EFIR filter.
  20. The gain of the RH MVF filter is specified by (7.76) as
    script upper H Subscript k minus 1 Baseline equals left-parenthesis upper C Subscript k minus 1 Superscript upper T Baseline upper Omega Subscript k minus 1 Superscript negative 1 Baseline upper C Subscript k minus 1 Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript k minus 1 Superscript upper T Baseline upper Omega Subscript k minus 1 Superscript negative 1 Baseline period

    Can this gain be applied when the system matrix upper F Subscript k is singular? If not, modify this gain to be applicable for a singular matrix upper F Subscript k.

  21. A wireless network is represented with the following state‐space model,
    StartLayout 1st Row 1st Column x Subscript k plus 1 2nd Column equals 3rd Column upper F Subscript k Baseline x Subscript k Baseline plus upper E Subscript k Baseline u Subscript k Baseline plus upper B Subscript k Baseline w Subscript k Baseline comma 2nd Row 1st Column y Subscript k 2nd Column equals 3rd Column upper H Subscript k Baseline x Subscript k Baseline plus v Subscript k Baseline comma EndLayout

    where y Subscript k Baseline equals left-bracket y Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline Superscript upper T Baseline ellipsis y Subscript k Superscript left-parenthesis n right-parenthesis Baseline Superscript upper T Baseline right-bracket Superscript upper T is the observation provided by n sensors and upper H Subscript k Baseline equals left-bracket upper H Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline Superscript upper T Baseline ellipsis upper H Subscript k Superscript left-parenthesis n right-parenthesis Baseline Superscript upper T Baseline right-bracket Superscript upper T. Zero mean mutually uncorrelated white Gaussian noise vectors w Subscript k and v Subscript k Baseline equals left-bracket v Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline Superscript upper T Baseline ellipsis v Subscript k Superscript left-parenthesis n right-parenthesis Baseline Superscript upper T Baseline right-bracket Superscript upper T have the covariances upper Q Subscript k and upper R Subscript k Baseline equals diag left-bracket upper R Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline Superscript upper T Baseline ellipsis upper R Subscript k Superscript left-parenthesis n right-parenthesis Baseline Superscript upper T Baseline right-bracket Superscript upper T, respectively. Think about how to obtain a UFIR predictor and an RH UFIR filter with some kind of consensus in measurements to simplify the algorithm.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset