Appendix A
Matrix Forms and Relationships

The following matrix forms, properties, and relationships are useful in the derivation of state estimators [18,52]. Vectors are depicted with small letters as a, x, … and matrices with capital letters as X, Y, … The matrix forms and relationships are united in groups depending on properties and applications.

A.1 Derivatives

The following derivatives of matrix and vectors products and traces of the products allow deriving state estimators in a shorter way.

(A.1)StartFraction partial-differential x Superscript upper T Baseline a Over partial-differential x EndFraction equals StartFraction partial-differential a Superscript upper T Baseline x Over partial-differential x EndFraction equals a comma
(A.2)StartFraction partial-differential x Superscript upper T Baseline upper B x Over partial-differential x EndFraction equals left-parenthesis upper B plus upper B Superscript upper T Baseline right-parenthesis x comma
(A.3)StartFraction partial-differential Over partial-differential upper X EndFraction trace left-parenthesis upper X upper A right-parenthesis equals upper A Superscript upper T Baseline comma
(A.4)StartFraction partial-differential Over partial-differential upper X EndFraction trace left-parenthesis upper X Superscript upper T Baseline upper A right-parenthesis equals upper A comma
(A.5)StartFraction partial-differential Over partial-differential upper X EndFraction trace left-parenthesis upper X Superscript upper T Baseline upper B upper X right-parenthesis equals upper B upper X plus upper B Superscript upper T Baseline upper X comma
(A.6)StartFraction partial-differential Over partial-differential upper X EndFraction trace left-parenthesis upper X upper B upper X Superscript upper T Baseline right-parenthesis equals upper X upper B Superscript upper T Baseline plus upper X upper B period

A.2 Matrix Identities

There are several matrix identities that are useful in the representation of the inverse of the sum of matrices.

The Woodbury identities [59]:

(A.7)left-parenthesis upper A plus upper C upper B upper C Superscript upper T Baseline right-parenthesis Superscript negative 1 Baseline equals upper A Superscript negative 1 Baseline minus upper A Superscript negative 1 Baseline upper C left-parenthesis upper B Superscript negative 1 Baseline plus upper C Superscript upper T Baseline upper A Superscript negative 1 Baseline upper C right-parenthesis Superscript negative 1 Baseline upper C Superscript upper T Baseline upper A Superscript negative 1 Baseline comma
(A.8)left-parenthesis upper A plus upper U upper C upper V right-parenthesis Superscript negative 1 Baseline equals upper A Superscript negative 1 Baseline minus upper A Superscript negative 1 Baseline upper U left-parenthesis upper C Superscript negative 1 Baseline plus upper V upper A Superscript negative 1 Baseline upper U right-parenthesis Superscript negative 1 Baseline upper V upper A Superscript negative 1 Baseline period

For positive definite matrices upper P and upper R, there is

(A.9)left-parenthesis upper P Superscript negative 1 Baseline plus upper B Superscript upper T Baseline upper R Superscript negative 1 Baseline upper B right-parenthesis Superscript negative 1 Baseline upper B Superscript upper T Baseline upper R Superscript negative 1 Baseline equals upper P upper B Superscript upper T Baseline left-parenthesis upper B upper P upper B Superscript upper T Baseline plus upper R right-parenthesis Superscript negative 1 Baseline period

The Kailath variant:

(A.10)left-parenthesis upper A plus upper B upper C right-parenthesis Superscript negative 1 Baseline equals upper A Superscript negative 1 Baseline minus upper A Superscript negative 1 Baseline upper B left-parenthesis upper I plus upper C upper A Superscript negative 1 Baseline upper B right-parenthesis Superscript negative 1 Baseline upper C upper A Superscript negative 1 Baseline period

Special cases:

(A.11)left-parenthesis upper A plus upper B right-parenthesis Superscript negative 1 Baseline equals upper A Superscript negative 1 Baseline minus upper A Superscript negative 1 Baseline left-parenthesis upper I plus upper B upper A Superscript negative 1 Baseline right-parenthesis Superscript negative 1 Baseline upper B upper A Superscript negative 1 Baseline comma
(A.12)left-parenthesis upper A Superscript negative 1 Baseline plus upper B Superscript negative 1 Baseline right-parenthesis Superscript negative 1 Baseline equals upper A left-parenthesis upper A plus upper B right-parenthesis Superscript negative 1 Baseline upper B equals upper B left-parenthesis upper A plus upper B right-parenthesis Superscript negative 1 Baseline upper A comma
(A.13)left-parenthesis upper I plus upper A Superscript negative 1 Baseline right-parenthesis Superscript negative 1 Baseline equals upper A left-parenthesis upper A plus upper I right-parenthesis Superscript negative 1 Baseline comma
(A.14)left-parenthesis upper A plus upper B upper B Superscript upper T Baseline right-parenthesis Superscript negative 1 Baseline upper B equals upper A Superscript negative 1 Baseline upper B left-parenthesis upper I plus upper B Superscript upper T Baseline upper A Superscript negative 1 Baseline upper B right-parenthesis Superscript negative 1 Baseline comma
(A.15)upper A minus upper A left-parenthesis upper A plus upper B right-parenthesis Superscript negative 1 Baseline upper A equals upper B minus upper B left-parenthesis upper A plus upper B right-parenthesis Superscript negative 1 Baseline upper B comma
(A.16)upper A Superscript negative 1 Baseline plus upper B Superscript negative 1 Baseline equals upper A Superscript negative 1 Baseline left-parenthesis upper A plus upper B right-parenthesis upper B Superscript negative 1 Baseline comma
(A.17)left-parenthesis upper I plus upper A upper B right-parenthesis Superscript negative 1 Baseline equals upper I minus upper A left-parenthesis upper I plus upper B upper A right-parenthesis Superscript negative 1 Baseline upper B comma
(A.18)left-parenthesis upper I plus upper A upper B right-parenthesis Superscript negative 1 Baseline upper A equals upper A left-parenthesis upper I plus upper B upper A right-parenthesis Superscript negative 1 Baseline period

A.3 Special Matrices

The Vandermonde matrix: This is an m times n matrix with the terms of a geometrical progression in each row,

(A.19)upper V equals Start 5 By 5 Matrix 1st Row 1st Column 1 2nd Column alpha 1 3rd Column alpha 1 squared 4th Column ellipsis 5th Column alpha 1 Superscript n minus 1 Baseline 2nd Row 1st Column 1 2nd Column alpha 2 3rd Column alpha 2 squared 4th Column ellipsis 5th Column alpha 2 Superscript n minus 1 Baseline 3rd Row 1st Column 1 2nd Column alpha 3 3rd Column alpha 3 squared 4th Column ellipsis 5th Column alpha 3 Superscript n minus 1 Baseline 4th Row 1st Column vertical-ellipsis 2nd Column vertical-ellipsis 3rd Column vertical-ellipsis 4th Column down-right-diagonal-ellipsis 5th Column vertical-ellipsis 5th Row 1st Column 1 2nd Column alpha Subscript m Baseline 3rd Column alpha Subscript m Superscript 2 Baseline 4th Column ellipsis 5th Column alpha Subscript m Superscript n minus 1 Baseline EndMatrix period

The Jacobian matrix: For f left-parenthesis x right-parenthesis element-of double-struck upper R Superscript m and x element-of double-struck upper R Superscript n,

(A.20)upper J left-parenthesis x right-parenthesis equals StartFraction partial-differential f left-parenthesis x right-parenthesis Over partial-differential x EndFraction equals Start 4 By 1 Matrix 1st Row StartFraction partial-differential f 1 Over partial-differential x EndFraction 2nd Row StartFraction partial-differential f 2 Over partial-differential x EndFraction 3rd Row vertical-ellipsis 4th Row StartFraction partial-differential f Subscript m Baseline Over partial-differential x EndFraction EndMatrix equals Start 4 By 4 Matrix 1st Row 1st Column StartFraction partial-differential f 1 Over partial-differential x 1 EndFraction 2nd Column StartFraction partial-differential f 1 Over partial-differential x 2 EndFraction 3rd Column ellipsis 4th Column StartFraction partial-differential f 1 Over partial-differential x Subscript n Baseline EndFraction 2nd Row 1st Column StartFraction partial-differential f 2 Over partial-differential x 1 EndFraction 2nd Column StartFraction partial-differential f 2 Over partial-differential x 2 EndFraction 3rd Column ellipsis 4th Column StartFraction partial-differential f 2 Over partial-differential x Subscript n Baseline EndFraction 3rd Row 1st Column vertical-ellipsis 2nd Column vertical-ellipsis 3rd Column down-right-diagonal-ellipsis 4th Column vertical-ellipsis 4th Row 1st Column StartFraction partial-differential f Subscript m Baseline Over partial-differential x 1 EndFraction 2nd Column StartFraction partial-differential f Subscript m Baseline Over partial-differential x 2 EndFraction 3rd Column ellipsis 4th Column StartFraction partial-differential f Subscript m Baseline Over partial-differential x Subscript n Baseline EndFraction EndMatrix period

The Hessian matrix: For f left-parenthesis x right-parenthesis element-of double-struck upper R Superscript m and x element-of double-struck upper R Superscript n,

(A.21)script upper H left-parenthesis x right-parenthesis equals StartFraction partial-differential Over partial-differential x EndFraction left-bracket StartFraction partial-differential f left-parenthesis x right-parenthesis Over partial-differential x EndFraction right-bracket Superscript upper T Baseline equals Start 4 By 4 Matrix 1st Row 1st Column StartFraction partial-differential squared f Over partial-differential x 1 squared EndFraction 2nd Column StartFraction partial-differential squared f Over partial-differential x 2 partial-differential x 1 EndFraction 3rd Column ellipsis 4th Column StartFraction partial-differential squared f Over partial-differential x Subscript n Baseline partial-differential x 1 EndFraction 2nd Row 1st Column StartFraction partial-differential squared f Over partial-differential x 1 partial-differential x 2 EndFraction 2nd Column StartFraction partial-differential squared f Over partial-differential x 2 squared EndFraction 3rd Column ellipsis 4th Column StartFraction partial-differential squared f Over partial-differential x Subscript n Baseline partial-differential x 2 EndFraction 3rd Row 1st Column vertical-ellipsis 2nd Column vertical-ellipsis 3rd Column down-right-diagonal-ellipsis 4th Column vertical-ellipsis 4th Row 1st Column StartFraction partial-differential squared f Over partial-differential x 1 partial-differential x Subscript n Baseline EndFraction 2nd Column StartFraction partial-differential squared f Over partial-differential x 2 partial-differential x Subscript n Baseline EndFraction 3rd Column ellipsis 4th Column StartFraction partial-differential squared f Over partial-differential x Subscript n Superscript 2 Baseline EndFraction EndMatrix equals script upper H Superscript upper T Baseline left-parenthesis x right-parenthesis period

Schur complement:

Given upper A element-of double-struck upper R Superscript p times p, upper B element-of double-struck upper R Superscript p times q, upper C element-of double-struck upper R Superscript q times p, upper D element-of double-struck upper R Superscript q times q, and a nonsingular block matrix

(A.22)upper M equals Start 2 By 2 Matrix 1st Row 1st Column upper A 2nd Column upper B 2nd Row 1st Column upper C 2nd Column upper D EndMatrix element-of double-struck upper R Superscript left-parenthesis p plus q right-parenthesis times left-parenthesis p plus q right-parenthesis Baseline period

If upper A is nonsingular, then the Schur complement of upper A is upper M slash upper A equals upper D minus upper C upper A Superscript negative 1 Baseline upper B, and the inverse of upper M is computed as

(A.23)upper M Superscript negative 1 Baseline equals Start 2 By 2 Matrix 1st Row 1st Column upper A Superscript negative 1 Baseline plus upper A Superscript negative 1 Baseline upper B left-parenthesis upper M slash upper A right-parenthesis Superscript negative 1 Baseline upper C upper A Superscript negative 1 Baseline 2nd Column minus upper A Superscript negative 1 Baseline upper B left-parenthesis upper M slash upper A right-parenthesis Superscript negative 1 Baseline 2nd Row 1st Column minus left-parenthesis upper M slash upper A right-parenthesis Superscript negative 1 Baseline upper C upper A Superscript negative 1 Baseline 2nd Column left-parenthesis upper M slash upper A right-parenthesis Superscript negative 1 Baseline EndMatrix period

If upper D is nonsingular, then the Schur complement of upper D is upper M slash upper D equals upper A minus upper B upper D Superscript negative 1 Baseline upper C, and the inverse of upper M can be computed by

(A.24)upper M Superscript negative 1 Baseline equals Start 2 By 2 Matrix 1st Row 1st Column left-parenthesis upper M slash upper D right-parenthesis Superscript negative 1 Baseline 2nd Column minus left-parenthesis upper M slash upper D right-parenthesis Superscript negative 1 Baseline upper B upper D Superscript negative 1 Baseline 2nd Row 1st Column minus upper D Superscript negative 1 Baseline upper C left-parenthesis upper M slash upper D right-parenthesis Superscript negative 1 Baseline 2nd Column upper D Superscript negative 1 Baseline plus upper D Superscript negative 1 Baseline upper C left-parenthesis upper M slash upper D right-parenthesis Superscript negative 1 Baseline upper B upper D Superscript negative 1 Baseline EndMatrix period

A.4 Equations and Inequalities

Several equations and inequalities are used to guarantee the stability of state estimators.

The Riccati differential equation (RDE):

(A.25)StartFraction normal d Over normal d t EndFraction upper P delta-equals upper P prime equals upper P upper A Superscript upper T Baseline plus upper A upper P minus upper P upper C upper P plus upper S period

A solution to (A.12) can be found if we assign

upper P equals upper V upper U Superscript negative 1

and choose matrices upper V and upper U such that

StartBinomialOrMatrix upper U Superscript prime Baseline Choose upper V Superscript prime Baseline EndBinomialOrMatrix equals Start 2 By 2 Matrix 1st Row 1st Column upper F 11 2nd Column upper F 12 2nd Row 1st Column upper F 21 2nd Column upper F 22 EndMatrix StartBinomialOrMatrix upper U Choose upper V EndBinomialOrMatrix period

Next, the derivative upper P prime can be transformed as

StartLayout 1st Row 1st Column upper P prime 2nd Column equals 3rd Column left-parenthesis upper V upper U Superscript negative 1 Baseline right-parenthesis prime 2nd Row 1st Column equals 2nd Column upper V prime upper U Superscript negative 1 plus upper V left-parenthesis upper U Superscript negative 1 Baseline right-parenthesis prime 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper V prime upper U Superscript negative 1 plus upper V left-parenthesis minus upper U Superscript negative 1 Baseline upper U prime upper U Superscript negative 1 Baseline right-parenthesis 4th Row 1st Column equals 2nd Column left-parenthesis upper F 21 upper U plus upper F 22 upper V right-parenthesis upper U Superscript negative 1 minus upper V upper U Superscript negative 1 Baseline left-parenthesis upper F 11 upper U plus upper F 12 upper V right-parenthesis upper U Superscript negative 1 5th Row 1st Column Blank 2nd Column equals 3rd Column upper F 21 plus upper F 22 upper P minus upper P upper F 11 minus upper P upper F 12 upper P EndLayout

that gives an equation

StartBinomialOrMatrix upper U Superscript prime Baseline Choose upper V Superscript prime Baseline EndBinomialOrMatrix equals Start 2 By 2 Matrix 1st Row 1st Column minus upper A Superscript upper T Baseline 2nd Column upper C 2nd Row 1st Column upper S 2nd Column upper A EndMatrix StartBinomialOrMatrix upper U Choose upper V EndBinomialOrMatrix equals upper F StartBinomialOrMatrix upper U Choose upper V EndBinomialOrMatrix comma

for which the solution

StartBinomialOrMatrix upper U left-parenthesis t right-parenthesis Choose upper V left-parenthesis t right-parenthesis EndBinomialOrMatrix equals e Superscript upper A left-parenthesis t minus t 0 right-parenthesis Baseline StartBinomialOrMatrix upper U left-parenthesis t 0 right-parenthesis Choose upper V left-parenthesis t 0 right-parenthesis EndBinomialOrMatrix equals Start 2 By 2 Matrix 1st Row 1st Column normal upper Phi 11 left-parenthesis t minus t 0 right-parenthesis 2nd Column normal upper Phi 12 left-parenthesis t minus t 0 right-parenthesis 2nd Row 1st Column normal upper Phi 21 left-parenthesis t minus t 0 right-parenthesis 2nd Column normal upper Phi 22 left-parenthesis t minus t 0 right-parenthesis EndMatrix StartBinomialOrMatrix upper U left-parenthesis t 0 right-parenthesis Choose upper V left-parenthesis t 0 right-parenthesis EndBinomialOrMatrix

yields a solution to (A.25),

(A.26)StartLayout 1st Row 1st Column upper P left-parenthesis t right-parenthesis 2nd Column equals 3rd Column left-bracket normal upper Phi 21 left-parenthesis t minus t 0 right-parenthesis upper U left-parenthesis t 0 right-parenthesis plus normal upper Phi 22 left-parenthesis t minus t 0 right-parenthesis upper V left-parenthesis t 0 right-parenthesis right-bracket 2nd Row 1st Column Blank 2nd Column Blank 3rd Column times left-bracket normal upper Phi 11 left-parenthesis t minus t 0 right-parenthesis upper U left-parenthesis t 0 right-parenthesis plus normal upper Phi 12 left-parenthesis t minus t 0 right-parenthesis upper V left-parenthesis t 0 right-parenthesis right-bracket Superscript negative 1 Baseline period EndLayout

The continuous‐time algebraic Riccati equation (CARE):

(A.27)upper A Superscript upper T Baseline upper P plus upper P upper A minus upper P upper B upper R Superscript negative 1 Baseline upper B Superscript upper T Baseline upper P plus upper Q equals 0 comma

where upper P is the unknown symmetric matrix and upper A, upper B, upper Q, and upper R are known real matrices.

The discrete‐time algebraic Riccati equation (DARE):

(A.28)upper P equals upper A Superscript upper T Baseline upper P upper A minus upper A Superscript upper T Baseline upper P upper B left-parenthesis upper R plus upper B Superscript upper T Baseline upper P upper B right-parenthesis Superscript negative 1 Baseline upper B Superscript upper T Baseline upper P upper A plus upper Q comma

where upper P is the unknown symmetric matrix and upper A, upper B, upper Q, and upper R are known real matrices.

The discrete dynamic (difference) Riccati equation (DDRE):

(A.29)upper P Subscript k minus 1 Baseline equals upper Q plus upper A Superscript upper T Baseline upper P Subscript k Baseline upper A minus upper A Superscript upper T Baseline upper P Subscript k Baseline upper B left-parenthesis upper B Superscript upper T Baseline upper P Subscript k Baseline upper B plus upper R right-parenthesis Superscript negative 1 Baseline upper B Superscript upper T Baseline upper P Subscript k Baseline upper A comma

where upper Q is a symmetric positive semi‐definite matrix and upper R is a symmetric positive definite matrix.

The discrete‐time algebraic Riccati inequality (DARI):

(A.30)upper A Superscript upper T Baseline upper P upper A minus upper A Superscript upper T Baseline upper P upper B left-parenthesis upper R plus upper B Superscript upper T Baseline upper P upper B right-parenthesis Superscript negative 1 Baseline upper B Superscript upper T Baseline upper P upper A plus upper Q minus upper P greater-than-or-equal-to 0 comma

where upper P is the unknown symmetric matrix and upper A, upper B, upper Q, and upper R are known real matrices; upper P greater-than 0, upper Q greater-than-or-equal-to 0, and upper R greater-than 0.

The nonsymmetric algebraic Riccati equation (NARE):

(A.31)upper X upper C upper X minus upper A upper X minus upper X upper D plus upper B equals 0 comma

where upper X is the unknown nonsymmetric matrix and upper A, upper B, and upper C are known matrices; upper P greater-than 0, upper Q greater-than-or-equal-to 0, and upper R greater-than 0. The NARE is a quadratic matrix equation.

The continuous Lyapunov equation:

(A.32)upper A upper X plus upper X upper A Superscript upper H Baseline plus upper Q equals 0 comma

where upper Q is a Hermitian matrix and upper A Superscript upper H is the conjugate transpose of upper A. The solution to (A.31) is given by

(A.33)upper X equals integral Subscript 0 Superscript infinity Baseline e Superscript upper A tau Baseline upper Q e Superscript upper A Super Superscript upper H Superscript tau Baseline normal d tau period

The discrete Lyapunov equation:

(A.34)upper A upper X upper A Superscript upper H Baseline minus upper X plus upper Q equals 0 comma

where upper Q is a Hermitian matrix and upper A Superscript upper H is the conjugate transpose of upper A. The solution to (A.33) is given by an infinite sum as

(A.35)upper X equals sigma-summation Underscript i equals 0 Overscript infinity Endscripts upper A Superscript i Baseline upper Q left-parenthesis upper A Superscript upper H Baseline right-parenthesis Superscript i Baseline period

A.5 Linear Matrix Inequalities

The LMI has the form of [22]

(A.36)upper F left-parenthesis x right-parenthesis equals upper F 0 plus sigma-summation Underscript i equals 1 Overscript m Endscripts x Subscript i Baseline upper F Subscript i Baseline greater-than 0 comma

where matrix upper F left-parenthesis x right-parenthesis is positive definite, x element-of double-struck upper R Superscript m is the variable, and the symmetric matrices upper F Subscript i Baseline equals upper F Subscript i Superscript upper T Baseline element-of double-struck upper R Superscript n times n, i element-of left-bracket 0 comma m right-bracket, are known. The following fundamental properties of the LMI (A.36) are recognized:

  • It is equivalent to a set of n polynomial inequalities in x; i.e., the leading principal minors of upper F left-parenthesis x right-parenthesis must be positive.
  • It is a convex constraint on x; i.e., the set StartSet x vertical-bar upper F left-parenthesis x right-parenthesis greater-than 0 EndSet is convex.

The LMI (A.36) can represent a wide variety of convex constraints on x. In particular, this includes linear inequalities, (convex) quadratic inequalities, and matrix norm inequalities. The Riccati and Lyapunov matrix inequalities can also be cast in the form of an LMI.

When the matrices upper F Subscript i are diagonal, the LMI upper F left-parenthesis x right-parenthesis greater-than 0 is a set of linear inequalities. Nonlinear (convex) inequalities are converted to LMI form using Schur complements (A.22)–(A.24). The basic idea associated with the matrix (A.22) is as follows: the LMI

(A.37)Start 2 By 2 Matrix 1st Row 1st Column upper Q left-parenthesis x right-parenthesis 2nd Column upper S left-parenthesis x right-parenthesis 2nd Row 1st Column upper S Superscript upper T Baseline left-parenthesis x right-parenthesis 2nd Column upper R left-parenthesis x right-parenthesis EndMatrix greater-than 0 comma

where upper Q left-parenthesis x right-parenthesis equals upper Q Superscript upper T Baseline left-parenthesis x right-parenthesis, upper R left-parenthesis x right-parenthesis equals upper R Superscript upper T Baseline left-parenthesis x right-parenthesis, and upper S left-parenthesis x right-parenthesis depend affinely on x, is equivalent to

(A.38)upper Q left-parenthesis x right-parenthesis minus upper S left-parenthesis x right-parenthesis upper R Superscript negative 1 Baseline left-parenthesis x right-parenthesis upper S Superscript upper T Baseline left-parenthesis x right-parenthesis greater-than 0 comma upper R left-parenthesis x right-parenthesis greater-than 0 period

It then follows that the set of nonlinear inequalities (A.38) can be represented as the LMI (A.36).

If the Riccati, Lyapunov, and similar equations are written as inequalities, then they can readily be represented as the LMI.

A numerical solution to the LMI considered as the convex optimization problem can be found using the interior‐point methods.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset