3
State Estimation

Gauss's batch least squares is routinely used today, and it often gives accuracy that is superior to the best available EKF.

Fred Daum, [40], p. 65

Although SDEs provide accessible mathematical models and have become standard models in many areas of science and engineering, features extraction from high‐order processes is usually much more complex than from first‐order processes such as the Langevin equation. The state-space representation avoids many inconveniences by replacing high‐order SDEs with first‐order vector SDEs. Estimation performed using the state‐space model solves simultaneously two problems: 1) filtering measurement noise and, in some cases, process noise and thus filter, and 2) solving state‐space equations with respect to the process state and thus state estimator. For well‐defined linear models, state estimation is usually organized using optimal, optimal unbiased, and unbiased estimators. However, any uncertainty in the model, interference, and/or errors in the noise description may require a norm‐bounded state estimator to obtain better results. Methods of linear state estimation can be extended to nonlinear problems to obtain acceptable estimates in the case of smooth nonlinearities. Otherwise, special nonlinear estimators can be more successful in accuracy. In this chapter, we lay the foundations of state estimation and introduce the reader to the most widely used methods applied to linear and nonlinear stochastic systems and processes.

3.1 Lineal Stochastic Process in State Space

To introduce the state space approach, we consider a simple case of a single‐input, single‐output upper Kth order LTV system represented by the SDE

where a Subscript n Baseline left-parenthesis t right-parenthesis, b left-parenthesis t right-parenthesis, and c left-parenthesis t right-parenthesis are known time‐varying coefficients; z left-parenthesis t right-parenthesis is the output; u left-parenthesis t right-parenthesis is the input; and w left-parenthesis t right-parenthesis is WGN. To represent (3.1) in state space, let us assign z Superscript left-parenthesis n right-parenthesis Baseline left-parenthesis t right-parenthesis equals StartFraction normal d Superscript n Baseline Over normal d t Superscript n Baseline EndFraction z left-parenthesis t right-parenthesis, suppose that a Subscript upper K Baseline left-parenthesis t right-parenthesis equals 1, and rewrite (3.1) as

The nth‐order derivative in (3.2) can be viewed as the nth system state and the state variables x 1 left-parenthesis t right-parenthesis comma ellipsis comma x Subscript upper K Baseline left-parenthesis t right-parenthesis assigned as

StartLayout 1st Row 1st Column x 1 left-parenthesis t right-parenthesis 2nd Column equals 3rd Column z left-parenthesis t right-parenthesis comma 2nd Row 1st Column x 2 left-parenthesis t right-parenthesis equals z prime left-parenthesis t right-parenthesis 2nd Column equals 3rd Column x prime 1 left-parenthesis t right-parenthesis comma 3rd Row 1st Column vertical-ellipsis 2nd Column Blank 4th Row 1st Column x Subscript upper K Baseline left-parenthesis t right-parenthesis equals z Superscript left-parenthesis upper K minus 1 right-parenthesis Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column x prime Subscript upper K minus 1 Baseline left-parenthesis t right-parenthesis comma 5th Row 1st Column minus sigma-summation Underscript i equals 1 Overscript upper K Endscripts a Subscript i minus 1 Baseline left-parenthesis t right-parenthesis x Subscript i Baseline left-parenthesis t right-parenthesis plus b left-parenthesis t right-parenthesis u left-parenthesis t right-parenthesis plus c left-parenthesis t right-parenthesis w left-parenthesis t right-parenthesis equals z Superscript left-parenthesis upper K right-parenthesis Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column x prime Subscript upper K Baseline left-parenthesis t right-parenthesis comma EndLayout

to be further combined into compact matrix forms

Start 4 By 1 Matrix 1st Row x prime 1 2nd Row vertical-ellipsis 3rd Row x Subscript upper K minus 1 Superscript prime Baseline 4th Row x Subscript upper K Superscript prime Baseline EndMatrix equals Start 4 By 4 Matrix 1st Row 1st Column 0 2nd Column 1 3rd Column ellipsis 4th Column 0 2nd Row 1st Column vertical-ellipsis 2nd Column vertical-ellipsis 3rd Column down-right-diagonal-ellipsis 4th Column vertical-ellipsis 3rd Row 1st Column 0 2nd Column 0 3rd Column Blank 4th Column 1 4th Row 1st Column minus a 0 2nd Column minus a 1 3rd Column ellipsis 4th Column minus a Subscript upper K minus 1 Baseline EndMatrix Start 4 By 1 Matrix 1st Row x 1 2nd Row vertical-ellipsis 3rd Row x Subscript upper K minus 1 Baseline 4th Row x Subscript upper K Baseline EndMatrix plus Start 4 By 1 Matrix 1st Row 0 2nd Row vertical-ellipsis 3rd Row 0 4th Row b EndMatrix u plus Start 4 By 1 Matrix 1st Row 0 2nd Row vertical-ellipsis 3rd Row 0 4th Row c EndMatrix w comma
z equals Start 1 By 4 Matrix 1st Row 1st Column 1 2nd Column 0 3rd Column ellipsis 4th Column 0 EndMatrix Start 1 By 4 Matrix 1st Row 1st Column x 1 2nd Column x 2 3rd Column ellipsis 4th Column x Subscript upper K EndMatrix Superscript upper T

called state‐space equations, where time t is omitted for simplicity. In a similar manner, a multiple input multiple output (MIMO) system can be represented in state space.

In applications, the system output z left-parenthesis t right-parenthesis is typically measured in the presence of additive noise v left-parenthesis t right-parenthesis and observed as y left-parenthesis t right-parenthesis equals z left-parenthesis t right-parenthesis plus v left-parenthesis t right-parenthesis. Accordingly, a continuous‐time MIMO system can be represented in state space using the state equation and observation equation, respectively, as

where x left-parenthesis t right-parenthesis equals left-bracket x 1 ellipsis x Subscript upper K Baseline right-bracket Superscript upper T Baseline element-of double-struck upper R Superscript upper K is the state vector, x prime left-parenthesis t right-parenthesis equals StartFraction normal d Over normal d t EndFraction x left-parenthesis t right-parenthesis, y left-parenthesis t right-parenthesis equals left-bracket y 1 ellipsis y Subscript upper M Baseline right-bracket Superscript upper T Baseline element-of double-struck upper R Superscript upper M is the observation vector, u left-parenthesis t right-parenthesis element-of double-struck upper R Superscript upper L is the input (control) signal vector, w left-parenthesis t right-parenthesis tilde script í’© left-parenthesis 0 comma script upper R Subscript w Baseline right-parenthesis element-of double-struck upper R Superscript upper P is the process noise, and v left-parenthesis t right-parenthesis tilde script í’© left-parenthesis 0 comma script upper R Subscript v Baseline right-parenthesis element-of double-struck upper R Superscript upper M is the observation or measurement noise. Matrices upper A left-parenthesis t right-parenthesis element-of double-struck upper R Superscript upper K times upper K, upper L left-parenthesis t right-parenthesis element-of double-struck upper R Superscript upper K times upper P, upper C left-parenthesis t right-parenthesis element-of double-struck upper R Superscript upper M times upper K. upper D left-parenthesis t right-parenthesis element-of double-struck upper R Superscript upper M times upper L, and upper U left-parenthesis t right-parenthesis element-of double-struck upper R Superscript upper K times upper L are generally time‐varying. Note that the term upper D left-parenthesis t right-parenthesis u left-parenthesis t right-parenthesis appears in (3.4) only if the order of u left-parenthesis t right-parenthesis is the same as of the system, upper L equals upper K. Otherwise, this term must be omitted. Also, if a system has no input, then both terms consisting u left-parenthesis t right-parenthesis in (3.3) and (3.4) must be omitted. In what follows, we will refer to the following definition of the state space linear SDE.

Linear SDE in state‐space: The model in ((3.3)) and ((3.4)) is called linear if all its noise processes are Gaussian.

3.1.1 Continuous‐Time Model

Solutions to (3.3) and (3.4) can be found in state space in two different ways for LTI and LTV systems.

Time‐Invariant Case

When modeling LTI systems, all matrices are constant, and the solution to the state equation 3.3 can be found by multiplying both sides of (3.3) from the left‐hand side with an integration factor e Superscript minus upper A t,

StartLayout 1st Row 1st Column e Superscript minus upper A t Baseline x prime left-parenthesis t right-parenthesis minus e Superscript minus upper A t Baseline upper A x left-parenthesis t right-parenthesis 2nd Column equals 3rd Column e Superscript minus upper A t Baseline upper U u left-parenthesis t right-parenthesis plus e Superscript minus upper A t Baseline upper L w left-parenthesis t right-parenthesis comma 2nd Row 1st Column left-bracket e Superscript minus upper A t Baseline x left-parenthesis t right-parenthesis right-bracket prime 2nd Column equals 3rd Column e Superscript minus upper A t Baseline upper U u left-parenthesis t right-parenthesis plus e Superscript minus upper A t Baseline upper L w left-parenthesis t right-parenthesis period EndLayout

Further integration from t 0 to t gives

(3.5)e Superscript minus upper A t Baseline x left-parenthesis t right-parenthesis equals e Superscript minus upper A t 0 Baseline x left-parenthesis t 0 right-parenthesis plus integral Subscript t 0 Superscript t Baseline e Superscript minus upper A theta Baseline upper U u left-parenthesis theta right-parenthesis normal d theta plus integral Subscript t 0 Superscript t Baseline e Superscript minus upper A theta Baseline upper L w left-parenthesis theta right-parenthesis normal d theta

and the solution becomes

where the state transition matrix that projects the state from t 0 to t is

and upper Phi left-parenthesis t right-parenthesis equals e Superscript upper A t is called matrix exponential. Note that the stochastic integral in (3.6) can be computed either in the Itô sense or in the Stratonovich sense [193].

Substituting (3.6) into (3.4) transforms the observation equation to

where the matrix exponential upper Phi left-parenthesis t right-parenthesis has Maclaurin series

in which upper I equals upper A Superscript 0 is an identity matrix. The matrix exponential upper Phi left-parenthesis t right-parenthesis can also be transformed using the Cayley‐Hamilton theorem [167], which states that upper Phi left-parenthesis t right-parenthesis can be represented with a finite series of length upper K as

(3.10)upper Phi left-parenthesis t right-parenthesis equals e Superscript upper A t Baseline equals alpha 0 upper I plus alpha 1 upper A plus ellipsis plus alpha Subscript upper K minus 1 Baseline upper A Superscript upper K minus 1 Baseline comma

if a constant alpha Subscript i, i element-of left-bracket 0 comma upper K minus 1 right-bracket, is specified properly.

Time‐Varying Case

For equations 3.3 and (3.4) of the LTV system with time‐varying matrices, the proper integration factor cannot be found to obtain solutions like for (3.6) and (3.8) [167]. Instead, one can start with a homogenous ordinary differential equation (ODE) [28]

Matrix theory suggests that if upper A left-parenthesis t right-parenthesis is continuous for t greater-than-or-slanted-equals t 0, then the solution to (3.13) for a known initial x left-parenthesis t 0 right-parenthesis can be written as

where the fundamental matrix script í’¬ left-parenthesis t right-parenthesis that satisfies the differential equation

is nonsingular for all t and is not unique.

To determine script í’¬ left-parenthesis t right-parenthesis, we can consider upper K initial state vectors x 1 left-parenthesis t 0 right-parenthesis comma ellipsis comma x Subscript upper K Baseline left-parenthesis t 0 right-parenthesis, obtain from (3.13) upper K solutions x 1 left-parenthesis t right-parenthesis comma ellipsis comma x Subscript upper K Baseline left-parenthesis t right-parenthesis, and specify the fundamental matrix as script í’¬ left-parenthesis t right-parenthesis equals left-bracket x 1 left-parenthesis t right-parenthesis x 2 left-parenthesis t right-parenthesis ellipsis x Subscript upper K Baseline left-parenthesis t right-parenthesis right-bracket. Since each particular solution satisfies (3.13), it follows that matrix script í’¬ left-parenthesis t right-parenthesis defined in this way satisfies (3.14).

Provided script í’¬ left-parenthesis t right-parenthesis, the solution to (3.13) can be written as x left-parenthesis t right-parenthesis equals script í’¬ left-parenthesis t right-parenthesis s left-parenthesis t right-parenthesis, where script í’¬ left-parenthesis t right-parenthesis satisfies (3.15), and s left-parenthesis t right-parenthesis is some unknown function of the same class. Referring to (3.15), equation 3.3 can then be transformed to

and, from (3.16), we have

s prime left-parenthesis t right-parenthesis equals script í’¬ Superscript negative 1 Baseline left-parenthesis t right-parenthesis upper U left-parenthesis t right-parenthesis u left-parenthesis t right-parenthesis plus script í’¬ Superscript negative 1 Baseline left-parenthesis t right-parenthesis upper L left-parenthesis t right-parenthesis w left-parenthesis t right-parenthesis comma

which, by known s left-parenthesis t 0 right-parenthesis equals script í’¬ Superscript negative 1 Baseline left-parenthesis t 0 right-parenthesis x left-parenthesis t 0 right-parenthesis, specifies function s left-parenthesis t right-parenthesis as

The solution to (3.3), by x left-parenthesis t right-parenthesis equals script í’¬ left-parenthesis t right-parenthesis s left-parenthesis t right-parenthesis and (3.17), finally becomes

where the state transition matrix is given by

Referring to (3.18), the observation equation can finally be rewritten as

It should be noted that the solutions (3.6) and (3.19) are formally equivalent. The main difference lies in the definitions of the state transition matrix: (3.7) for LTI systems and (3.19) for LTV systems.

3.1.2 Discrete‐Time Model

The necessity of representing continuous‐time state‐space models in discrete time arises when numerical analysis is required or solutions are supposed to be obtained using digital blocks. In such cases, a solution to an SDE is considered at two discrete points t Subscript k Baseline equals t and t Subscript k minus 1 Baseline equals t 0 with a time step tau equals t Subscript k Baseline minus t Subscript k minus 1, where k is a discrete time index. It is also supposed that a digital x Subscript k represents accurately a discrete‐time x left-parenthesis t Subscript k Baseline right-parenthesis. Further, the FE or BE methods are used [26].

The FE method, also called the standard Euler method or Euler‐Maruyama method, relates the numerically computed stochastic integrals to t Subscript k minus 1 and is associated with Itô calculus. The relevant discrete‐time state‐space model x Subscript k Baseline equals upper F x Subscript k minus 1 Baseline plus w Subscript k minus 1, sometimes called a prediction model, is basic in control. A contradiction here is with the noise term w Subscript k minus 1 that exists even though the initial state x Subscript k minus 1 is supposed to be known and thus already affected by w Subscript k minus 1.

The BE method, also known as an implicit method, relates all integrals to the current time t Subscript k that yields x Subscript k Baseline equals upper F x Subscript k minus 1 Baseline plus w Subscript k. This state equation is sometimes called a real‐time model and is free of the contradiction inherent to the FE‐based state equation.

The FE and BE methods are uniquely used to convert continuous‐time differential equations to discrete time, and in the sequel we will use both of them. It is also worth noting that predictive state estimators fit better with the FE method and filters with the BE method.

Time‐Invariant Case

Consider the solution (3.6) and the observation (3.4), substitute t with t Subscript k, t 0 with t Subscript k minus 1, and write

StartLayout 1st Row 1st Column x left-parenthesis t Subscript k Baseline right-parenthesis 2nd Column equals 3rd Column e Superscript upper A tau Baseline x left-parenthesis t Subscript k minus 1 Baseline right-parenthesis plus integral Subscript t Subscript k minus 1 Baseline Superscript t Subscript k Baseline e Superscript upper A left-parenthesis t Super Subscript k Superscript minus theta right-parenthesis Baseline upper U u left-parenthesis theta right-parenthesis normal d theta 2nd Row 1st Column Blank 2nd Column plus integral Subscript t Subscript k minus 1 Baseline Superscript t Subscript k Baseline Baseline e Superscript upper A left-parenthesis t Super Subscript k Superscript minus theta right-parenthesis Baseline upper L w left-parenthesis theta right-parenthesis normal d theta comma 3rd Row 1st Column y left-parenthesis t Subscript k Baseline right-parenthesis 2nd Column equals 3rd Column upper C x left-parenthesis t Subscript k Baseline right-parenthesis plus upper D u left-parenthesis t Subscript k Baseline right-parenthesis plus v left-parenthesis t Subscript k Baseline right-parenthesis period EndLayout

Because input u left-parenthesis t right-parenthesis is supposed to be known, assume that it is also piecewise constant on each time step and put u Subscript k Baseline approximately-equals u left-parenthesis t Subscript k Baseline right-parenthesis outside the first integral. Next, substitute x Subscript k Baseline approximately-equals x left-parenthesis t Subscript k Baseline right-parenthesis, y Subscript k Baseline approximately-equals y left-parenthesis t Subscript k Baseline right-parenthesis, and v Subscript k Baseline approximately-equals v left-parenthesis t Subscript k Baseline right-parenthesis, and write

(3.22)y Subscript k Baseline equals upper H x Subscript k Baseline plus upper D u Subscript k Baseline plus v Subscript k Baseline comma

where upper H equals upper C, upper F equals e Superscript upper A tau, and

(3.23)upper E equals integral Subscript t Subscript k minus 1 Baseline Superscript t Subscript k Baseline Baseline e Superscript upper A left-parenthesis t Super Subscript k Superscript minus theta right-parenthesis Baseline upper U normal d theta equals integral Subscript 0 Superscript tau Baseline e Superscript upper A theta Baseline upper U normal d theta comma

The discrete process noise w Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q right-parenthesis given by (3.24) has zero mean, script upper E left-brace w Subscript k Baseline right-brace equals 0, and the covariance upper Q equals script upper E left-brace w Subscript k Baseline w Subscript k Superscript upper T Baseline right-brace specified using the continuous WGN covariance (2.91) by

Observe that gamma left-parenthesis tau Superscript i Baseline right-parenthesis is a matrix of the same class as upper Q, which is a function of tau Superscript i, i greater-than 1. If tau is small enough, then this term can be set to zero. If also upper L equals upper I in (3.3), then upper Q equals tau script upper S Subscript w establishes a rule of thumb relationship between the discrete and continuous process noise covariances.

The zero mean discrete observation noise v Subscript k Baseline equals StartFraction 1 Over tau EndFraction integral Subscript t Subscript k minus 1 Baseline Superscript t Subscript k Baseline Baseline v left-parenthesis t right-parenthesis normal d t tilde script í’© left-parenthesis 0 comma upper R right-parenthesis (2.93) has the covariance upper R equals script upper E left-brace v Subscript k Baseline v Subscript k Superscript upper T Baseline right-brace defined as

where upper N Subscript i j Baseline slash 2, StartSet i comma j EndSet element-of left-bracket 1 comma upper K right-bracket, is a component of the PSD matrix script upper S Subscript v.

Time‐Varying Case

For LTV systems, solutions in state space are given by (3.18) and (3.20). Substituting t with t Subscript k and t 0 with t Subscript k minus 1 yields

StartLayout 1st Row 1st Column x left-parenthesis t Subscript k Baseline right-parenthesis 2nd Column equals 3rd Column script í’¬ left-parenthesis t Subscript k Baseline right-parenthesis script í’¬ Superscript negative 1 Baseline left-parenthesis t Subscript k minus 1 Baseline right-parenthesis x left-parenthesis t Subscript k minus 1 Baseline right-parenthesis plus script í’¬ left-parenthesis t Subscript k Baseline right-parenthesis integral Subscript t Subscript k minus 1 Baseline Superscript t Subscript k Baseline script í’¬ Superscript negative 1 Baseline left-parenthesis theta right-parenthesis upper U left-parenthesis theta right-parenthesis u left-parenthesis theta right-parenthesis normal d theta 2nd Row 1st Column Blank 2nd Column plus script í’¬ left-parenthesis t Subscript k Baseline right-parenthesis integral Subscript t Subscript k minus 1 Baseline Superscript t Subscript k Baseline Baseline script í’¬ Superscript negative 1 Baseline left-parenthesis theta right-parenthesis upper L left-parenthesis theta right-parenthesis w left-parenthesis theta right-parenthesis normal d theta comma 3rd Row 1st Column y left-parenthesis t Subscript k Baseline right-parenthesis 2nd Column equals 3rd Column upper C left-parenthesis t Subscript k Baseline right-parenthesis x left-parenthesis t Subscript k Baseline right-parenthesis plus upper D left-parenthesis t Subscript k Baseline right-parenthesis u left-parenthesis t Subscript k Baseline right-parenthesis plus v left-parenthesis t Subscript k Baseline right-parenthesis comma EndLayout

where the fundamental matrix script í’¬ left-parenthesis t right-parenthesis must be assigned individually for each model. Reasoning along similar lines as for LTI systems, these equations can be represented in discrete‐time as

(3.27)x Subscript k Baseline equals upper F Subscript k Baseline x Subscript k minus 1 Baseline plus upper E Subscript k Baseline u Subscript k Baseline plus w Subscript k Baseline comma
(3.28)y Subscript k Baseline equals upper H Subscript k Baseline x Subscript k Baseline plus upper D Subscript k Baseline u Subscript k Baseline plus v Subscript k Baseline comma

where upper H Subscript k Baseline equals upper C left-parenthesis t Subscript k Baseline right-parenthesis and the time‐varying matrices are given by

(3.30)upper E Subscript k Baseline equals script í’¬ left-parenthesis t Subscript k Baseline right-parenthesis integral Subscript t Subscript k minus 1 Baseline Superscript t Subscript k Baseline Baseline script í’¬ Superscript negative 1 Baseline left-parenthesis theta right-parenthesis upper U left-parenthesis theta right-parenthesis normal d theta comma
(3.31)w Subscript k Baseline equals script í’¬ left-parenthesis t Subscript k Baseline right-parenthesis integral Subscript t Subscript k minus 1 Baseline Superscript t Subscript k Baseline Baseline script í’¬ Superscript negative 1 Baseline left-parenthesis theta right-parenthesis upper L left-parenthesis theta right-parenthesis w left-parenthesis theta right-parenthesis normal d theta comma

and noise w Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q Subscript k Baseline right-parenthesis has zero mean, script upper E left-brace w Subscript k Baseline right-brace equals 0, and generally a time‐varying covariance upper Q Subscript k Baseline equals script upper E left-brace w Subscript k Baseline w Subscript k Superscript upper T Baseline right-brace. Noise v Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper R Subscript k Baseline right-parenthesis also has zero mean, script upper E left-brace v Subscript k Baseline right-brace equals 0, and generally a time‐varying covariance upper R Subscript k Baseline equals script upper E left-brace v Subscript k Baseline v Subscript k Superscript upper T Baseline right-brace.

3.2 Methods of Linear State Estimation

Provided adequate modeling of a real linear physical process in discrete‐time state space, state estimation can be carried out using methods of optimal linear filtering based on the following state‐space equations,

where x Subscript k Baseline element-of double-struck upper R Superscript upper K is the state vector, u Subscript k Baseline element-of double-struck upper R Superscript upper L is the input (or control) signal vector, y Subscript k Baseline element-of double-struck upper R Superscript upper P is the observation (or measurement) vector, upper F Subscript k Baseline element-of double-struck upper R Superscript upper K times upper K is the system (process) matrix, upper H Subscript k Baseline element-of double-struck upper R Superscript upper P times upper K is the observation matrix, upper E Subscript k Baseline element-of double-struck upper R Superscript upper K times upper L is the control (or input) matrix, upper D Subscript k Baseline element-of double-struck upper R Superscript upper P times upper L is the disturbance matrix, and upper B Subscript k Baseline element-of double-struck upper R Superscript upper K times upper M is the system (or process) noise matrix. The term with u Subscript k is usually omitted in (3.33), assuming that the order of u Subscript k is less than the order of y Subscript k. At the other extreme, when the input disturbance appears to be severe, the noise components are often omitted in (3.32) and (3.33).

In many cases, system or process noise is assumed to be zero mean and white Gaussian w Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q Subscript k Baseline right-parenthesis element-of double-struck upper R Superscript upper M with known covariance upper Q Subscript k Baseline equals script upper E left-brace w Subscript k Baseline w Subscript n Superscript upper T Baseline right-brace delta left-parenthesis k minus n right-parenthesis. Measurement or observation noise v Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper R Subscript k Baseline right-parenthesis element-of double-struck upper R Superscript upper P is also often modeled as zero mean and white Gaussian with covariance upper R Subscript k Baseline equals script upper E left-brace v Subscript k Baseline v Subscript n Superscript upper T Baseline right-brace delta left-parenthesis k minus n right-parenthesis. Moreover, many problems suggest that w Subscript k and v Subscript k can be viewed as physically uncorrelated and independent processes. However, there are other cases when w Subscript k and v Subscript k are correlated with each other and exhibit different kinds of coloredness.

Filters of two classes can be designed to provide state estimation based on (3.32) and (3.33). Estimators of the first class ignore the process dynamics described by the state equation 3.32. Instead, they require multiple measurements of the quantity in question to approach the true value through statistical averaging. Such estimators have batch forms, but recursive forms may also be available. An example is the LS estimator. Estimators of the second class require both state‐space equations, so they are more flexible and universal. The recursive KF algorithm belongs to this class of estimators, but its batch form is highly inefficient in view of growing memory due to IIR. The batch FIR filter and LMF, both operating on finite horizons, are more efficient in this sense, but they cause computational problems when the batch is very large.

Regardless of the estimator structure, the notation ModifyingAbove x With caret Subscript k bar r means an estimate of the state x Subscript k at time index k, given observations of x Subscript k up to and including at time index r. The state x Subscript k to be estimated at the time index k is represented by the following standard variables:

bullet ModifyingAbove x With caret Subscript k Superscript minus Baseline delta-equals ModifyingAbove x With caret Subscript k bar k minus 1 is the a priori (or prior) state estimate at k given observations up to and including at time index k minus 1;

bullet ModifyingAbove x With caret Subscript k Baseline delta-equals ModifyingAbove x With caret Subscript k bar k is the a posteriori (or posterior) state estimate at k given observations up to and including at k;

bullet The a priori estimation error is defined by

bullet The a posteriori estimation error is defined by

bullet The a priori error covariance is defined by

bullet The a posteriori error covariance is defined by

In what follows, we will refer to these definitions in the derivation and study of various types of state estimators.

3.2.1 Bayesian Estimator

Suppose there is some discrete stochastic process upper X Subscript k, k equals 0 comma 1 comma ellipsis measured as y Subscript k and assigned a set of measurements y 0 Superscript k Baseline equals StartSet y 0 comma y 1 comma ellipsis comma y Subscript k Baseline EndSet. We may also assume that the a posteriori density p left-parenthesis x Subscript k minus 1 Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis is known at the past time index k minus 1. Of course, our interest is to obtain the a posteriori density p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k Baseline right-parenthesis at k. Provided p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k Baseline right-parenthesis, the estimate ModifyingAbove x With caret Subscript k can be found as the first‐order initial moment (2.10) and the estimation error as the second‐order central moment (2.14). To this end, we use Bayes' rule (2.43) and obtain p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k Baseline right-parenthesis as follows.

Consider the join density p left-parenthesis x Subscript k Baseline comma y Subscript k Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis and represent it as

(3.38)StartLayout 1st Row 1st Column p left-parenthesis x Subscript k Baseline comma y Subscript k Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis 2nd Column equals 3rd Column p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis p left-parenthesis y Subscript k Baseline vertical-bar x Subscript k Baseline comma y 0 Superscript k minus 1 Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column equals 3rd Column p left-parenthesis y Subscript k Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis p left-parenthesis x Subscript k Baseline vertical-bar y Subscript k Baseline comma y 0 Superscript k minus 1 Baseline right-parenthesis period EndLayout

Note that y Subscript k is independent of past measurements and write p left-parenthesis y Subscript k Baseline vertical-bar x Subscript k Baseline comma y 0 Superscript k minus 1 Baseline right-parenthesis equals p left-parenthesis y Subscript k Baseline vertical-bar x Subscript k Baseline right-parenthesis. Also, the desirable a posteriori pdf can be written as p left-parenthesis x Subscript k Baseline vertical-bar y Subscript k Baseline comma y 0 Superscript k minus 1 Baseline right-parenthesis equals p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k Baseline right-parenthesis. Then use Bayesian inference (2.47) and obtain

where alpha is a normalizing constant, the conditional density p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis represents the prior distribution of x Subscript k, and p left-parenthesis y Subscript k Baseline vertical-bar x Subscript k Baseline right-parenthesis is the likelihood function of y Subscript k given the outcome x Subscript k. Note that the conditional pdf p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis can be expressed via known p left-parenthesis x Subscript k minus 1 Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis using the rule (2.53) as

Provided p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k Baseline right-parenthesis, the Bayesian estimate is obtained by (2.10) as

and the estimation error is obtained by (2.14) as

From the previous, it follows that the Bayesian estimate (3.41) is universal regardless of system models and noise distributions.

Bayesian estimator: Bayesian estimation can be universally applied to linear and nonlinear models with Gaussian and non‐Gaussian noise.

It is worth noting that for linear models the Bayesian approach leads to the optimal KF algorithm, which will be shown next.

Linear Model

Let us look at an important special case and show how the Bayesian approach can be applied to a linear Gaussian model (3.32) and (3.33) with upper D Subscript k Baseline equals 0. For clarity, consider a first‐order stochastic process. The goal is to obtain the a posteriori density p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k Baseline right-parenthesis in terms of the known a posteriori density p left-parenthesis x Subscript k minus 1 Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis and arrive at a computational algorithm.

To obtain the desired p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k Baseline right-parenthesis using (3.39), we need to specify p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis using (3.40) and define the likelihood function p left-parenthesis y Subscript k Baseline vertical-bar x Subscript k Baseline right-parenthesis. Noting that all distributions are Gaussian, we can represent p left-parenthesis x Subscript k minus 1 Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis as

where ModifyingAbove x With caret Subscript k minus 1 is the known a posteriori estimate of x Subscript k minus 1 and upper P Subscript k minus 1 is the variance of the estimation error. Hereinafter, we will use alpha Subscript i as the normalizing coefficient.

Referring to (3.32), the conditional density p left-parenthesis x Subscript k Baseline vertical-bar x Subscript k minus 1 Baseline right-parenthesis can be written as

where sigma Subscript w Superscript 2 is the variance of the process noise w Subscript k.

Now, the a priori density p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis can be transformed using (3.40) as

By substituting (3.43) and (3.44) and equating to unity the integral of the normally distributed x Subscript k minus 1, (3.45) can be transformed to

Likewise, the likelihood function p left-parenthesis y Subscript k Baseline vertical-bar x Subscript k Baseline right-parenthesis can be written using (3.33) as

where sigma Subscript v Superscript 2 is the variance of the observation noise v Subscript k. Then the required density p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k Baseline right-parenthesis can be represented by (3.39) using (3.46) and (3.47) as

(3.48)StartLayout 1st Row 1st Column p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k Baseline right-parenthesis 2nd Column equals 3rd Column alpha 5 exp left-bracket minus StartFraction left-parenthesis x Subscript k Baseline minus upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline minus upper E Subscript k Baseline u Subscript k Baseline right-parenthesis squared Over 2 left-parenthesis sigma Subscript w Superscript 2 Baseline plus upper P Subscript k minus 1 Baseline upper F Subscript k Superscript 2 Baseline right-parenthesis EndFraction minus StartFraction left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline x Subscript k Baseline right-parenthesis squared Over 2 sigma Subscript v Superscript 2 Baseline EndFraction right-bracket 2nd Row 1st Column Blank 2nd Column equals 3rd Column alpha 6 exp left-bracket minus StartFraction left-parenthesis x Subscript k Baseline minus ModifyingAbove x With caret Subscript k Baseline right-parenthesis squared Over 2 upper P Subscript k Baseline EndFraction right-bracket comma EndLayout

which holds if the following obvious relationship is satisfied

(3.49)StartFraction left-parenthesis x Subscript k Baseline minus upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline minus upper E Subscript k Baseline u Subscript k Baseline right-parenthesis squared Over sigma Subscript w Superscript 2 Baseline plus upper P Subscript k minus 1 Baseline upper F Subscript k Superscript 2 Baseline EndFraction plus StartFraction left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline x Subscript k Baseline right-parenthesis squared Over sigma Subscript v Superscript 2 Baseline EndFraction equals StartFraction left-parenthesis x Subscript k Baseline minus ModifyingAbove x With caret Subscript k Baseline right-parenthesis squared Over upper P Subscript k Baseline EndFraction period

By equating to zero the free term and terms with x Subscript k Superscript 2 and x Subscript k, we arrive at several conditions

(3.51)upper K Subscript k Baseline equals StartFraction upper P Subscript k Baseline upper H Subscript k Baseline Over sigma Subscript v Superscript 2 Baseline EndFraction comma

which establish a recursive computational algorithm to compute the estimate ModifyingAbove x With caret Subscript k (3.53) and the estimation error upper P Subscript k (3.50) starting with the initial ModifyingAbove x With caret Subscript 0 and upper P 0 for known sigma Subscript w Superscript 2 and sigma Subscript v Superscript 2. This is a one‐state KF algorithm. What comes from its derivation is that the estimate (3.53) is obtained without using (3.41) and (3.42). Therefore, it is not a Bayesian estimator. Later, we will derive the upper K‐state KF algorithm and discuss it in detail.

3.2.2 Maximum Likelihood Estimator

From (3.39) it follows that the a posteriori density p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k Baseline right-parenthesis is given in terms of the a priori density p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis and the likelihood function p left-parenthesis y Subscript k Baseline vertical-bar x Subscript k Baseline right-parenthesis. It is also worth knowing that the likelihood function plays a special role in the estimation theory, and its use leads to the ML state estimator. For the first‐order Gaussian stochastic process, the likelihood function is given by the expression (3.47). This function is maximized by minimizing the exponent power, and we see that the only solution following from y Subscript k Baseline minus upper H Subscript k Baseline x Subscript k Baseline equals 0 is inefficient due to noise.

An efficient ML estimate can be obtained if we combine n measurement samples of the fully observed vector x delta-equals x Subscript k Baseline element-of double-struck upper R Superscript upper K into an extended observation vector upper Y delta-equals upper Y Subscript k Baseline equals left-bracket y Subscript 1 k Superscript upper T Baseline ellipsis y Subscript n k Superscript upper T Baseline right-bracket Superscript upper T Baseline element-of double-struck upper R Superscript n upper K with a measurement noise upper V delta-equals upper V Subscript k Baseline equals left-bracket v Subscript 1 k Superscript upper T Baseline ellipsis v Subscript n k Superscript upper T Baseline right-bracket Superscript upper T Baseline element-of double-struck upper R Superscript n upper K and write the observation equation as

where upper M delta-equals upper M Subscript k Baseline equals left-bracket upper H 1 Superscript upper T Baseline ellipsis upper H Subscript n Superscript upper T Baseline right-bracket Superscript upper T Baseline element-of double-struck upper R Superscript n upper K times upper K is the extended observation matrix. A relevant example can be found in sensor networks, where the desired quantity is simultaneously measured by n sensors. Using (3.54), the ML estimate of x can be found by maximizing the likelihood function p left-parenthesis upper Y vertical-bar x right-parenthesis as

For Gaussian processes, the likelihood function becomes

where upper R delta-equals upper R Subscript k Baseline element-of double-struck upper R Superscript n upper K times n upper K is the extended covariance matrix of the measurement noise upper V. Since maximizing (3.56) with (3.55) means minimizing the power of the exponent, the ML estimate can equivalently be obtained from

By equating the derivative with respect to x to zero,

StartFraction partial-differential Over partial-differential x EndFraction left-parenthesis upper Y minus upper M x right-parenthesis Superscript upper T Baseline upper R Superscript negative 1 Baseline left-parenthesis upper Y minus upper M x right-parenthesis equals 0 comma

using the identities (A.4) and (A.5), and assuming that upper M Superscript upper T Baseline upper R Superscript negative 1 Baseline upper M is nonsingular, the ML estimate can be found as

which demonstrates several important properties when the number n of measurement samples grows without bound [125]:

  • It converges to the true value of x.
  • It is asymptotically optimal unbiased, normally distributed, and efficient.

Maximum likelihood estimate [125]: There is no other unbiased estimate whose covariance is smaller than the finite covariance of the ML estimate as a number of measurement samples grows without bounds.

It follows from the previous that as n increases, the ML estimate (3.58) converges to the Bayesian estimate (3.41). Thus, the ML estimate has the property of unbiased optimality when n grows unboundedly, and is inefficient when n is small.

3.2.3 Least Squares Estimator

Another approach to estimate x from (3.54) is known as Gauss' least squares (LS) [54,185] or LS estimator,1 which is widely used in practice. In the LS method, the estimate ModifyingAbove x With caret Subscript k is chosen such that the sum of the squares of the residuals upper Y minus upper M x minimizes the cost function upper J equals left-parenthesis upper Y minus upper M x right-parenthesis Superscript upper T Baseline left-parenthesis upper Y minus upper M x right-parenthesis over all n to obtain

(3.59)ModifyingAbove x With caret equals arg min Underscript x Endscripts left-parenthesis upper Y minus upper M x right-parenthesis Superscript upper T Baseline left-parenthesis upper Y minus upper M x right-parenthesis period

Reasoning similarly to (3.57), the estimate can be found to be

To improve (3.60), we can consider the weighted cost function upper J equals left-parenthesis upper Y minus upper M x right-parenthesis Superscript upper T Baseline upper R overbar Superscript negative 1 Baseline left-parenthesis upper Y minus upper M x right-parenthesis, in which upper R overbar is a symmetric positive definite weight matrix. Minimizing of this cost yields the weighted LS (WLS) estimate

and we infer that the ML estimate (3.58) is a special case of WLS estimate (3.61), in which upper R overbar is chosen to be the measurement noise covariance upper R.

3.2.4 Unbiased Estimator

If someone wants an unbiased estimator, whose average estimate is equal to the constant x, then the only performance criterion will be

To obtain an unbiased estimate, one can think of an estimate ModifyingAbove x With caret as the product of some gain script upper H and the measurement vector upper Y given by (3.54),

ModifyingAbove x With caret equals script upper H upper Y equals script upper H left-parenthesis upper M x plus upper V right-parenthesis period

Since upper V has zero mean, the unbiasedness condition (3.62) gives the unbiasedness constraint

script upper H upper M equals upper I period

By multiplying the constraint by the identity left-parenthesis upper M Superscript upper T Baseline upper M right-parenthesis Superscript negative 1 Baseline upper M Superscript upper T Baseline upper M from the right‐hand side and discarding the nonzero upper M on both sides, we obtain script upper H equals left-parenthesis upper M Superscript upper T Baseline upper M right-parenthesis Superscript negative 1 Baseline upper M Superscript upper T and arrive at the unbiased estimate

which is identical to the LS estimate (3.60). Since the product script upper H upper Y is associated with discrete convolution, the unbiased estimator (3.63) can be thought of as an unbiased FIR filter.

Recursive Unbiased (LS) Estimator

We have already mentioned that batch estimators (3.63) and (3.60) can be computationally inefficient and cause a delay when the number of data points n is large. To compute the batch estimate recursively, one can start with upper Y Subscript i Baseline delta-equals upper Y Subscript i k, i element-of left-bracket 1 comma n right-bracket, associated with matrix upper M Subscript i Baseline delta-equals upper M Subscript i k, and rewrite (3.63) as

where upper M Subscript i Baseline equals left-bracket upper H 1 Superscript upper T Baseline ellipsis upper H Subscript i Superscript upper T Baseline right-bracket Superscript upper T. Further, matrix upper G Subscript i Baseline equals left-parenthesis upper M Subscript i Superscript upper T Baseline upper M Subscript i Baseline right-parenthesis Superscript negative 1 can be represented using the forward and backward recursions as [179]

and upper M Subscript i Superscript upper T Baseline upper Y Subscript i rewritten similarly as

upper M Subscript i Superscript upper T Baseline upper Y Subscript i Baseline equals upper H Subscript i Superscript upper T Baseline y Subscript i Baseline plus upper M Subscript i minus 1 Superscript upper T Baseline upper Y Subscript i minus 1 Baseline period

Combining this recursive form with (3.64), we obtain

ModifyingAbove x With caret Subscript i Baseline equals upper G Subscript i Baseline left-parenthesis upper H Subscript i Superscript upper T Baseline y Subscript i Baseline plus upper M Subscript i minus 1 Superscript upper T Baseline upper Y Subscript i minus 1 Baseline right-parenthesis period

Next, substituting upper M Subscript i minus 1 Superscript upper T Baseline upper Y Subscript i minus 1 Baseline equals upper G Subscript i minus 1 Superscript negative 1 Baseline ModifyingAbove x With caret Subscript k minus 1 taken from (3.64), combining with (3.66), and providing some transformations gives the recursive form

in which upper G Subscript i can be computed recursively by (3.65). To run the recursions, the variable i must range as upper K plus 1 less-than-or-slanted-equals i less-than-or-slanted-equals n for the inverse in (3.64) to exist and the initial values calculated at i equals upper K using the original batch forms.

3.2.5 Kalman Filtering Algorithm

We now look again at the recursive algorithm in (3.50)(3.53) associated with one‐state linear models. The approach can easily be extended to the upper K‐state linear model

where the noise vectors w Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q Subscript k Baseline right-parenthesis and v Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper R Subscript k Baseline right-parenthesis are uncorrelated. The corresponding algorithm was derived by Kalman in his seminal paper [84] and is now commonly known as the Kalman filter.2

The KF algorithm operates in two phases: 1) in the prediction phase, the a priori estimate and error covariance are predicted at k using measurements at k minus 1, and 2) in the update phase, the a priori values are updated at k to the a posteriori estimate and error covariance using measurements at k. This strategy assumes two available algorithmic options: the a posteriori KF algorithm and the a priori KF algorithm. It is worth noting that the original KF algorithm is a posteriori.

The a posteriori Kalman Filter

Consider a upper K‐state space model as in (3.68) and (3.69). The Bayesian approach can be applied similarly to the one‐state case, as was done by Kalman in [84], although there are several other ways to arrive at the KF algorithm. Let us show the simplest one.

The first thing to note is that the most reasonable prior estimate can be taken from (3.68) for the known estimate ModifyingAbove x With caret Subscript k minus 1 and input u Subscript k if we ignore the zero mean noise w Subscript k. This gives

which is also the prior estimate (3.52).

To update ModifyingAbove x With caret Subscript k Superscript minus, we need to involve the observation (3.69). This can be done if we take into account the measurement residual

(3.71)s Subscript k Baseline equals y Subscript k Baseline minus upper H Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline comma

which is the difference between data y Subscript k and the predicted data upper H Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus. The measurement residual covariance upper S Subscript k Baseline equals upper S Subscript k Superscript upper T Baseline equals script upper E left-brace s Subscript k Baseline s Subscript k Superscript upper T Baseline right-brace can then be written as

Since s Subscript k is generally biased, because ModifyingAbove x With caret Subscript k Superscript minus is generally biased, the prior estimate can be updated as

where the matrix upper K Subscript k is introduced to correct the bias in ModifyingAbove x With caret Subscript k Superscript minus. Therefore, upper K Subscript k plays the role of the bias correction gain.

As can be seen, the relations (3.70) and (3.73), which are reasonably extracted from the state‐space model, are exactly the relations (3.52) and (3.53). Now notice that the estimate (3.73) will be optimal if we will find upper K Subscript k such that the MSE is minimized. To do this, let us refer to (3.68) and (3.69) and define errors (3.34)(3.37) involving (3.70)(3.73).

The prior estimation error epsilon Subscript k Superscript minus Baseline equals x Subscript k Baseline minus x Subscript k Superscript minus (3.34) can be transformed as

and, for mutually uncorrelated epsilon Subscript k minus 1 and w Subscript k, the prior error covariance (3.36) can be transformed to

Next, the estimation error epsilon Subscript k Baseline equals x Subscript k Baseline minus ModifyingAbove x With caret Subscript k (3.35) can be represented by

and, for mutually uncorrelated epsilon Subscript k minus 1, w Subscript k, and v Subscript k, the a posteriori error covariance (3.37) can be transformed to

What is left behind is to find the optimal bias correction gain upper K Subscript k that minimizes MSE. This can be done by minimizing the trace of upper P Subscript k, which is a convex function with a minimum corresponding to the optimal upper K. Using the matrix identities (A.3) and (A.6), the minimization of trace upper P Subscript k Baseline by upper K Subscript k can be carried out if we rewrite the equation StartFraction partial-differential Over partial-differential upper K Subscript k Baseline EndFraction trace upper P Subscript k Baseline equals 0 as

StartFraction partial-differential Over partial-differential upper K Subscript k Baseline EndFraction trace upper P Subscript k Baseline equals 2 upper K Subscript k Baseline upper S Subscript k Baseline minus 2 upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline equals 0 period

This gives the optimal bias correction gain

The gain upper K Subscript k (3.78) is known as the Kalman gain, and its substitution on the left‐hand side of the last term in (3.77) transforms the error covariance upper P Subscript k into

Another useful form of upper P Subscript k appears when we first refer to (3.78) and (3.72) and transform (3.77) as

StartLayout 1st Row 1st Column upper P Subscript k 2nd Column equals 3rd Column upper P Subscript k Superscript minus Baseline minus 2 upper K Subscript k Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus plus upper K Subscript k Baseline left-parenthesis upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline right-parenthesis upper K Subscript k Superscript upper T 2nd Row 1st Column equals 2nd Column upper P Subscript k Superscript minus Baseline minus 2 upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper S Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus plus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper S Subscript k Superscript negative 1 Baseline upper S Subscript k Baseline upper S Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper P Subscript k Superscript minus Baseline minus 2 upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper S Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus plus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper S Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus 4th Row 1st Column equals 2nd Column upper P Subscript k Superscript minus Baseline minus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper S Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus 5th Row 1st Column Blank 2nd Column equals 3rd Column upper P Subscript k Superscript minus Baseline minus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline left-parenthesis upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline right-parenthesis Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline period EndLayout

Next, inverting the both sides of upper P Subscript k and applying (A.7) gives [185]

StartLayout 1st Row 1st Column upper P Subscript k Superscript negative 1 2nd Column equals 3rd Column left-bracket upper P Subscript k Superscript minus Baseline minus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline left-parenthesis upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline right-parenthesis Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline right-bracket Superscript negative 1 2nd Row 1st Column Blank 2nd Column equals 3rd Column left-parenthesis upper P Subscript k Superscript minus Baseline right-parenthesis Superscript negative 1 Baseline plus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k EndLayout

and another form of upper P Subscript k appears as

Using (3.80), the Kalman gain (3.78) can also be modified as [185]

(3.81)StartLayout 1st Row 1st Column upper K Subscript k 2nd Column equals 3rd Column upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline left-parenthesis upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline right-parenthesis Superscript negative 1 2nd Row 1st Column equals 2nd Column left-parenthesis upper P Subscript k Baseline upper P Subscript k Superscript negative 1 Baseline right-parenthesis upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline left-parenthesis upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline right-parenthesis Superscript negative 1 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper P Subscript k Baseline left-bracket left-parenthesis upper P Subscript k Superscript minus Baseline right-parenthesis Superscript negative 1 Baseline plus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline right-bracket upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline left-parenthesis upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline right-parenthesis Superscript negative 1 4th Row 1st Column equals 2nd Column upper P Subscript k Baseline left-parenthesis upper H Subscript k Superscript upper T Baseline plus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline right-parenthesis left-parenthesis upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline right-parenthesis Superscript negative 1 5th Row 1st Column Blank 2nd Column equals 3rd Column upper P Subscript k Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline left-parenthesis upper R Subscript k Baseline plus upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline right-parenthesis left-parenthesis upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline right-parenthesis Superscript negative 1 6th Row 1st Column Blank 2nd Column equals 3rd Column upper P Subscript k Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline period EndLayout

The previous derived standard KF algorithm gives an estimate at k utilizing data from zero to k. Therefore, it is also known as the a posteriori KF algorithm, the pseudocode of which is listed as Algorithm 1. The algorithm requires initial values ModifyingAbove x With caret Subscript 0 and upper P 0, as well as noise covariances upper Q Subscript k and upper R Subscript k to update the estimates starting at k equals 1. Its operation is quite transparent, and recursions are easy to program, are fast to compute, and require little memory, making the KF algorithm suitable for many applications.

The a priori Kalman Filter

Unlike the a posteriori KF, the a priori KF gives an estimate at k plus 1 using data y Subscript k from k. The corresponding algorithm emerges from Algorithm 1 if we first substitute (3.79) in (3.74) and go to the discrete difference Riccati equation (DDRE)

StartLayout 1st Row 1st Column upper P Subscript k plus 1 Superscript minus 2nd Column equals 3rd Column upper F Subscript k plus 1 Baseline upper P Subscript k Baseline upper F Subscript k plus 1 Superscript upper T Baseline plus upper B Subscript k plus 1 Baseline upper Q Subscript k plus 1 Baseline upper B Subscript k plus 1 Superscript upper T Baseline comma 2nd Row 1st Column equals 2nd Column upper F Subscript k plus 1 Baseline left-parenthesis upper I minus upper K Subscript k Baseline upper H Subscript k Baseline right-parenthesis upper P Subscript k Superscript minus Baseline upper F Subscript k plus 1 Superscript upper T Baseline plus upper B Subscript k plus 1 Baseline upper Q Subscript k plus 1 Baseline upper B Subscript k plus 1 Superscript upper T Baseline comma 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper F Subscript k plus 1 Baseline upper P Subscript k Superscript minus Baseline upper F Subscript k plus 1 Superscript upper T minus upper F Subscript k plus 1 Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline left-parenthesis upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline right-parenthesis Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper F Subscript k plus 1 Superscript upper T 4th Row 1st Column Blank 2nd Column Blank 3rd Column plus upper B Subscript k plus 1 Baseline upper Q Subscript k plus 1 Baseline upper B Subscript k plus 1 Superscript upper T Baseline comma EndLayout

which gives recursion for the covariance of the prior estimation error. Then the a priori estimate ModifyingAbove x With caret Subscript k plus 1 Superscript minus can be obtained by the transformations

StartLayout 1st Row 1st Column ModifyingAbove x With caret Subscript k 2nd Column equals 3rd Column ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper K Subscript k Baseline s Subscript k Baseline comma 2nd Row 1st Column upper F Subscript k plus 1 Baseline ModifyingAbove x With caret Subscript k plus upper E Subscript k plus 1 Baseline u Subscript k plus 1 2nd Column equals 3rd Column upper F Subscript k plus 1 Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper E Subscript k plus 1 Baseline u Subscript k plus 1 Baseline plus upper F Subscript k plus 1 Baseline upper K Subscript k Baseline s Subscript k Baseline comma 3rd Row 1st Column ModifyingAbove x With caret Subscript k plus 1 Superscript minus 2nd Column equals 3rd Column upper F Subscript k plus 1 Baseline left-parenthesis ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper K Subscript k Baseline s Subscript k Baseline right-parenthesis plus upper E Subscript k plus 1 Baseline u Subscript k plus 1 Baseline comma EndLayout

and the a priori KF formalized with the pseudocode specified in Algorithm 2. As can be seen, this algorithm does not require data y Subscript k plus 1 to produce an estimate at k plus 1. However, it requires future values u Subscript k plus 1 and upper Q Subscript k plus 1 and is thus most suitable for LTI systems without input.

Optimality and Unbiasedness of the Kalman Filter

From the derivation of the Kalman gain (3.78) it follows that, by minimizing the MSE, the KF becomes optimal [36,220]. In Chapter, the optimality of KF will be supported by the batch OFIR filter, whose recursions are exactly the KF recursions. On the other hand, the KF originates from the Bayesian approach. Therefore, many authors also call it optimal unbiased, and the corresponding proof given in [54] has been mentioned in many works [9,58,185]. However, in Chapter it will be shown that the batch OUFIR filter has other recursions, which contradicts the proof given in [54].

To ensure that the KF is optimal, let us look at the explanation given in [54]. So let us consider the model (3.68) with upper B Subscript k Baseline equals upper I and define an estimate ModifyingAbove x With caret Subscript k as [54]

where ModifyingAbove x With caret Subscript k Superscript minus Baseline equals upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 and the gain upper K Subscript k Superscript prime still needs to be determined. Next, let us examine the a priori error epsilon Subscript k Superscript minus Baseline equals x Subscript k Baseline minus ModifyingAbove x With caret Subscript k Superscript minus and the a posteriori error

StartLayout 1st Row 1st Column epsilon Subscript k 2nd Column equals 3rd Column x Subscript k Baseline minus ModifyingAbove x With caret Subscript k 2nd Row 1st Column equals 2nd Column x Subscript k Baseline minus upper K prime Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus minus upper K Subscript k Baseline y Subscript k 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper K prime Subscript k Baseline epsilon Subscript k Superscript minus Baseline minus left-parenthesis upper K prime Subscript k Baseline plus upper K Subscript k Baseline upper H Subscript k Baseline minus upper I right-parenthesis x Subscript k Baseline minus upper K Subscript k Baseline v Subscript k Baseline period EndLayout

Estimate (3.82) was stated in [54], p. 107, to be unbiased if script upper E left-brace epsilon Subscript k Baseline right-brace equals 0 and script upper E left-brace epsilon Subscript k Superscript minus Baseline right-brace equals 0. By satisfying these conditions using the previous relations, we obtain upper K Subscript k Superscript prime Baseline equals upper I minus upper K Subscript k Baseline upper H Subscript k and the KF estimate becomes (3.73). This fact was used in [54] as proof that the KF is optimal unbiased.

Now, notice that the prior error epsilon Subscript k Superscript minus is always biased in dynamic systems, so script upper E left-brace epsilon Subscript k Superscript minus Baseline right-brace not-equals 0. Otherwise, there would be no need to adjust the bias by upper K Subscript k. Then we redefine the prior estimate as

and average the estimation error as

StartLayout 1st Row 1st Column script upper E left-brace epsilon Subscript k Baseline right-brace 2nd Column equals 3rd Column upper K prime Subscript k Baseline script upper E left-brace epsilon Subscript k Superscript minus Baseline right-brace minus left-parenthesis upper K prime Subscript k Baseline plus upper K Subscript k Baseline upper H Subscript k Baseline minus upper I right-parenthesis script upper E left-brace x Subscript k Baseline right-brace 2nd Row 1st Column Blank 2nd Column equals 3rd Column upper K prime Subscript k Baseline script upper E left-brace ModifyingAbove x With caret Subscript k Superscript minus Baseline right-brace plus left-parenthesis upper K Subscript k Baseline upper H Subscript k Baseline minus upper I right-parenthesis script upper E left-brace x Subscript k Baseline right-brace period EndLayout

The filter will be unbiased if script upper E left-brace epsilon Subscript k Baseline right-brace is equal to zero that gives

Substituting (3.84) into (3.82) gives the same estimate (3.73) with, however, different ModifyingAbove x With caret Subscript k Superscript minus defined by (3.83). The latter means that KF will be 1) optimal, if script upper E left-brace x Subscript k minus 1 Baseline right-brace is optimally biased, and 2) optimal unbiased, if script upper E left-brace x Subscript k minus 1 Baseline right-brace has no bias. Now note that the Kalman gain upper K Subscript k makes an estimate optimal, and therefore there is always a small bias to be found in script upper E left-brace x Subscript k minus 1 Baseline right-brace, which contradicts the property of unbiased optimality and the claim that KF is unbiased.

Intrinsic Errors of Kalman Filtering

Looking at Algorithm 1 and assuming that the model matches the process, we notice that the required ModifyingAbove x With caret Subscript 0, upper P 0, upper Q Subscript k, and upper R Subscript k must be exactly known in order for KF to be optimal. However, due to the practical impossibility of doing this at every k and prior to running the filter, these values are commonly estimated approximately, and the question arises about the practical optimality of KF. Accordingly, we can distinguish two intrinsic errors caused by incorrectly specified initial conditions and poorly known covariance matrices.

Figure 3.1 shows what happens to the KF estimate when ModifyingAbove x With caret Subscript 0 and upper P 0 are set incorrectly. With correct initial values, the KF estimate ranges close to the actual behavior over all k. Otherwise, incorrectly set initial values can cause large initial errors and long transients. Although the KF estimate approaches an actual state asymptotically, it can take a long time. Such errors also occur when the process undergoes temporary changes associated, for example, with jumps in velocity, phase, and frequency. The estimator inability to track temporary uncertain behaviors causes transients that can last for a long time, especially in harmonic models [179].

Now, suppose the error covariances are not known exactly and introduce the worst‐case scaling factor beta as upper Q slash beta squared or beta squared upper R. Figure 3.2 shows the typical root MSEs (RMSEs) produced by KF as functions of beta, and we notice that beta less-than 1 makes the estimate noisy and beta greater-than 1 makes it biased with respect to the optimal case of beta equals 1. Although the most favorable case of beta squared upper Q and beta squared upper R assumes that the effects will be mutually exclusive, in practice this rarely happens due to the different nature of the process and measurement noise. We add that the intrinsic errors considered earlier appear at the KF output regardless of the model and differ only in values.

Schematic illustration of typical errors in the KF caused by incorrectly specified initial conditions. Transients can last for a long time, especially in a harmonic state-space model.

Figure 3.1 Typical errors in the KF caused by incorrectly specified initial conditions. Transients can last for a long time, especially in a harmonic state‐space model.

Schematic illustration of effect of errors in noise covariances, Q/β2 and β2R, on the RMSEs produced by KF in the worst case: β=1 corresponds to the optimal estimate, βltltlt1 makes the estimate more noisy, and βgtgtgt1 makes it more biased.

Figure 3.2 Effect of errors in noise covariances, upper Q slash beta squared and beta squared upper R, on the RMSEs produced by KF in the worst case: beta equals 1 corresponds to the optimal estimate, beta less-than 1 makes the estimate more noisy, and beta greater-than 1 makes it more biased.

3.2.6 Backward Kalman Filter

Some applications require estimating the past state of a process or retrieving information about the initial state and error covariance. For example, multi‐pass filtering (forward‐backward‐forward‐...) [231] updates the initial values using a backward filter, which improves accuracy.

The backward a posteriori KF can be obtained similarly to the standard KF if we represent the state equation 3.68 backward in time as

x Subscript k minus 1 Baseline equals upper F Subscript k Superscript negative 1 Baseline left-parenthesis x Subscript k Baseline minus upper E Subscript k Baseline u Subscript k Baseline minus upper B Subscript k Baseline w Subscript k Baseline right-parenthesis

and then, reasoning along similar lines as for the a posteriori KF, define the a priori state estimate at k minus 1,

x overTilde Subscript k minus 1 Superscript minus Baseline equals upper F Subscript k Superscript negative 1 Baseline left-parenthesis x overTilde Subscript k Baseline minus upper E Subscript k Baseline u Subscript k Baseline right-parenthesis comma

the measurement residual s Subscript k minus 1 Baseline equals y Subscript k minus 1 Baseline minus upper H Subscript k minus 1 Baseline x overTilde Subscript k minus 1 Superscript minus, the measurement residual covariance

upper S Subscript k minus 1 Baseline equals upper H Subscript k minus 1 Baseline upper P Subscript k minus 1 Superscript minus Baseline upper H Subscript k minus 1 Superscript upper T Baseline plus upper R Subscript k minus 1 Baseline comma

the backward estimate

x overTilde Subscript k minus 1 Baseline equals x overTilde Subscript k minus 1 Superscript minus Baseline plus upper K Subscript k minus 1 Baseline s Subscript k minus 1 Baseline comma

the a priori error covariance

upper P Subscript k minus 1 Superscript minus Baseline equals upper F Subscript k Superscript negative 1 Baseline left-parenthesis upper P Subscript k Baseline plus upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline right-parenthesis upper F Subscript k Superscript negative upper T Baseline comma

and the a posteriori error covariance

upper P Subscript k minus 1 Baseline equals upper P Subscript k minus 1 Superscript minus Baseline minus 2 upper K Subscript k minus 1 Baseline upper H Subscript k minus 1 Baseline upper P Subscript k minus 1 Superscript minus Baseline plus upper K Subscript k minus 1 Baseline upper S Subscript k minus 1 Baseline upper K Subscript k minus 1 Superscript upper T Baseline period

Further minimizing upper P Subscript k minus 1 by upper K Subscript k minus 1 gives the optimal gain

upper K Subscript k minus 1 Baseline equals upper P Subscript k minus 1 Superscript minus Baseline upper H Subscript k minus 1 Superscript upper T Baseline upper S Subscript k minus 1 Superscript negative 1

and the modified error covariance

upper P Subscript k minus 1 Baseline equals left-parenthesis upper I minus upper K Subscript k minus 1 Baseline upper H Subscript k minus 1 Baseline right-parenthesis upper P Subscript k minus 1 Superscript minus Baseline period

Finally, the pseudocode of the backward a posteriori KF, which updates the estimates from k to 0, becomes as listed in Algorithm 3. The algorithm requires initial values ModifyingAbove x With caret Subscript k and upper P Subscript k at k and updates the estimates back in time from k minus 1 to zero to obtain estimates of the initial state x overTilde Subscript 0 and error covariance upper P 0.

3.2.7 Alternative Forms of the Kalman Filter

Although the KF Algorithm 1 is the most widely used, other available forms of KF may be more efficient in some applications. Collections of such algorithms can be found in [9,58,185] and some other works. To illustrate the flexibility and versatility of KF in various forms, next we present two versions known as the information filter and alternate KF form. Noticing that these modifications were shown in [185] for the FE‐based model, we develop them here for the BE‐based model. Some other versions of the KF can be found in the section “Problems”.

Information Filter

When minimal information loss is required instead of minimal MSE, the information matrix script upper I Subscript k, which is the inverse of the covariance matrix upper P Subscript k, can be used. Since upper P Subscript k is symmetric and positive definite, it follows that the inverse of upper P Subscript k is unique and KF can be modified accordingly.

By introducing script upper I Subscript k Baseline equals upper P Subscript k Superscript negative 1 and script upper I Subscript k Superscript minus Baseline equals left-parenthesis upper P Subscript k Superscript minus Baseline right-parenthesis Superscript negative 1, the error covariance (3.80) can be transformed to

(3.85)script upper I Subscript k Baseline equals script upper I Subscript k Superscript minus Baseline plus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline comma

where, by (3.75) and upper Q overbar Subscript k Baseline equals upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T, matrix script upper I Subscript k Superscript minus becomes

Using the Woodbury identity (A.7), one can further rewrite (3.86) as

script upper I Subscript k Superscript minus Baseline equals upper Q overbar Subscript k Superscript negative 1 Baseline minus upper Q overbar Subscript k Superscript negative 1 Baseline upper F Subscript k Baseline left-parenthesis script upper I Subscript k minus 1 Baseline plus upper F Subscript k Superscript upper T Baseline upper Q overbar Subscript k Superscript negative 1 Baseline upper F Subscript k Baseline right-parenthesis Superscript negative 1 Baseline upper F Subscript k Superscript upper T Baseline upper Q overbar Subscript k Superscript negative 1

and arrive at the information KF [185]. Given y Subscript k, ModifyingAbove x With caret Subscript 0, script upper I 0, upper Q Subscript k, and upper R Subscript k, the algorithm predicts and updates the estimates as

(3.87)script upper I Subscript k Superscript minus Baseline equals upper Q overbar Subscript k Superscript negative 1 Baseline minus upper Q overbar Subscript k Superscript negative 1 Baseline upper F Subscript k Baseline left-parenthesis script upper I Subscript k minus 1 Baseline plus upper F Subscript k Superscript upper T Baseline upper Q overbar Subscript k Superscript negative 1 Baseline upper F Subscript k Baseline right-parenthesis Superscript negative 1 Baseline upper F Subscript k Superscript upper T Baseline upper Q overbar Subscript k Superscript negative 1 Baseline comma
(3.88)script upper I Subscript k Baseline equals script upper I Subscript k Superscript minus Baseline plus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline comma
(3.89)upper K Subscript k Baseline equals script upper I Subscript k Superscript negative 1 Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline comma
(3.90)ModifyingAbove x With caret Subscript k Superscript minus Baseline equals upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline plus upper E Subscript k Baseline u Subscript k Baseline comma
(3.91)ModifyingAbove x With caret Subscript k Baseline equals ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline ModifyingAbove x With caret Subscript n Superscript minus Baseline right-parenthesis period

It is worth noting that the information KF is mathematically equivalent to the standard KF for linear models. However, its computational load is greater because more inversions are required in the covariance propagation.

Alternate Form of the KF

Another form of KF, called alternate KF form, has been proposed in [185] to felicitate obtaining optimal smoothing. The advantage is that this form is compatible with the game theory‐based upper H Subscript infinity filter [185]. The modification is provided by inverting the residual covariance (3.77) through the information matrix using (A.7). KF recursions modified in this way for a BE‐based model lead to the algorithm

StartLayout 1st Row 1st Column ModifyingAbove x With caret Subscript k Superscript minus 2nd Column equals 3rd Column upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline plus upper E Subscript k Baseline u Subscript k Baseline comma 2nd Row 1st Column upper K Subscript k 2nd Column equals 3rd Column upper P Subscript k Superscript minus Baseline left-parenthesis upper I plus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline right-parenthesis Superscript negative 1 Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline comma 3rd Row 1st Column ModifyingAbove x With caret Subscript k 2nd Column equals 3rd Column ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis comma 4th Row 1st Column upper P Subscript k plus 1 Superscript minus 2nd Column equals 3rd Column upper F Subscript k Baseline upper P Subscript k Superscript minus Baseline left-parenthesis upper I plus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline right-parenthesis Superscript negative 1 Baseline upper F Subscript k Superscript upper T Baseline plus upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline period EndLayout

It follows from [185] that matrix upper P Subscript k Superscript minus Baseline left-parenthesis upper I plus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline right-parenthesis Superscript negative 1 is equal to upper P Subscript k. Therefore, this algorithm can be written in a more compact form. Given y Subscript k, ModifyingAbove x With caret Subscript 0, upper P 0, upper Q Subscript k, and upper R Subscript k, the initial prior error covariance is computed by upper P 1 Superscript minus Baseline equals upper A 1 upper P 0 upper A 1 Superscript upper T Baseline plus upper B 1 upper Q 1 upper B 1 Superscript upper T and the update equations for k equals 1 comma 2 ellipsis become

(3.93)upper K Subscript k Baseline equals upper P Subscript k Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline comma
(3.94)ModifyingAbove x With caret Subscript k Superscript minus Baseline equals upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline plus upper E Subscript k Baseline u Subscript k Baseline comma
(3.95)ModifyingAbove x With caret Subscript k Baseline equals ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis comma

The proof of the equivalence of matrices (3.92) and (3.77) is postponed to the section “Problems”.

3.2.8 General Kalman Filter

Looking into the KF derivation procedure, it can be concluded that the assumptions regarding the whiteness and uncorrelatedness of Gaussian noise are too strict and that the algorithm is thus “ideal,” since white noise does not exist in real life. More realistically, one can think of system noise and measurement noise as color processes and approximate them by a Gauss‐Markov process driven by white noise.

To make sure that such modifications are in demand in real life, consider a few examples. When noise passes through bandlimited and narrowband channels, it inevitably becomes colored and correlated. Any person traveling along a certain trajectory follows a control signal generated by the brain. Since this signal cannot be accurately modeled, deviations from its mean appear as system colored noise. A visual camera catches and tracks objects asymptotically, which makes the measurement noise colored.

In Fig. 3.3a, we give an example of the colored measurement noise (CMN) noise, and its simulation as the Gauss‐Markov process is illustrated in Fig. 3.3b. An example (Fig. 3.3a) shows the signal strength colored noise discovered in the GPS receiver [210]. The noise here was extracted by removing the antenna gain attenuation from the signal strength measurements and then normalizing to zero relative to the mean. The simulated colored noise shown in Fig. 3.3b comes from the Gauss‐Markov sequence x Subscript n Baseline equals 0.9 x Subscript n minus 1 Baseline plus w Subscript n with white Gaussian driving noise w Subscript n Baseline tilde script í’© left-parenthesis 0 comma 16 right-parenthesis. Even a quick glance at the drawing (Fig. 3.3) allows us to think that both processes most likely belong to the same class and, therefore, colored noise can be of Markov origin.

Schematic illustration of examples of CMN in electronic channels: (a) signal strength CMN in a GPS receiver [210] and (c) Gauss-Markov noise simulated by vn=0.9vn-1+ξn with ξn∼(0,16).

Figure 3.3 Examples of CMN in electronic channels: (a) signal strength CMN in a GPS receiver Based on [210] and (b) Gauss‐Markov noise simulated by v Subscript n Baseline equals 0.9 v Subscript n minus 1 Baseline plus xi Subscript n with xi Subscript n Baseline tilde script í’© left-parenthesis 0 comma 16 right-parenthesis.

Now that we understand the need to modify the KF for colored and correlated noise, we can do it from a more general point of view than for the standard KF and come up with a universal linear algorithm called general Kalman filter (GKF) [185], which can have various forms. Evidence for the better performance of the GKF, even a minor improvement, can be found in many works, since white noise is unrealistic.

In many cases, the dynamics of CMN v Subscript k and colored process noise (CPN) w Subscript k can be viewed as Gauss‐Markov processes, which complement the state‐space model as

where upper Q Subscript mu k Baseline equals upper E left-brace mu Subscript k Baseline mu Subscript k Superscript upper T Baseline right-brace and upper R Subscript xi k Baseline equals upper E left-brace xi Subscript k Baseline xi Subscript k Superscript upper T Baseline right-brace are the covariances of white Gaussian noise vectors mu Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q Subscript mu k Baseline right-parenthesis and xi Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper R Subscript xi k Baseline right-parenthesis and cross‐covariances upper L Subscript k Baseline equals upper E left-brace mu Subscript k Baseline xi Subscript k Superscript upper T Baseline right-brace and upper L Subscript k Superscript upper T Baseline equals upper E left-brace xi Subscript k Baseline mu Subscript k Superscript upper T Baseline right-brace represent the time‐correlation between mu Subscript k and xi Subscript k. Equations 3.98 and (3.99) suggest that the coloredness factors upper Theta Subscript k and upper Psi Subscript k should be chosen so that w Subscript k and v Subscript k remain stationary. Since the model (3.97)(3.100) is still linear with white Gaussian mu Subscript k and xi Subscript k, the Kalman approach can be applied and the GKF derived in the same way as KF.

Two approaches have been developed for applying KF to (3.97)(3.100). The first augmented states approach was proposed by A. E. Bryson et al. in [24,25] and is the most straightforward. It proposes to combine the dynamic equations 3.97(3.99) into a single augmented state equation and represent the model as

where upper E left-brace StartBinomialOrMatrix mu Subscript k Baseline Choose xi Subscript k Baseline EndBinomialOrMatrix Start 1 By 2 Matrix 1st Row 1st Column mu Subscript k Superscript upper T Baseline 2nd Column xi Subscript k Superscript upper T Baseline EndMatrix right-brace equals Start 2 By 2 Matrix 1st Row 1st Column upper Q Subscript mu k Baseline 2nd Column upper L Subscript k Baseline 2nd Row 1st Column upper L Subscript k Superscript upper T Baseline 2nd Column upper R Subscript xi k EndMatrix. Obviously, the augmented equations 3.101 and (3.102) can be easily simplified to address only CPN, CMN, or noise correlation problems. An easily seen drawback is that the observation equation 3.102 has zero measurement noise. This makes it impossible to apply some KF versions that require inversion of the covariance matrix upper R Subscript k, such as information KF and alternate KF form. Therefore, the KF is said to be ill conditioned for state augmentation [25].

The second approach, which avoids the state augmentation, was proposed and developed by A. E. Bryson et al. in [24,25] and is now known as Bryson's algorithm. This algorithm was later improved in [147] to what is now referred to as the Petovello algorithm. The idea was to use measurement differencing to convert the model with CMN to a standard model with new matrices, but with white noise. The same idea was adopted in [182] for systems with CPN using state differencing. Next, we show several GKF algorithms for time‐correlated and colored noise sources.

Time‐Correlated Noise

If noise has a very short correlation time compared to time intervals of interest, it is typically considered as white and its coloredness can be neglected. Otherwise, system may experience a great noise interference [58].

When the noise sources are white, w Subscript k Baseline equals mu Subscript k and v Subscript k Baseline equals xi Subscript k, but time correlated with upper L Subscript k Baseline not-equals 0, equations 3.98 and (3.99) can be ignored, and (3.101) and (3.102) return to their original forms (3.32) and (3.33) with time‐correlated w Subscript k and v Subscript k. There are two ways to apply KF for time‐correlated w Subscript k and v Subscript k. We can either de‐correlate w Subscript k and v Subscript k or derive a new bias correction gain (Kalman gain) to guarantee the filter optimality.

Noise de‐correlation. To de‐correlate w Subscript n and v Subscript n and thereby make it possible to apply KF, one can use the Lagrange method [15] and combine (3.32) with the term upper Lamda Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline x Subscript k Baseline minus v Subscript k Baseline right-parenthesis, where y Subscript k is a data vector and the Lagrange multiplier upper Lamda Subscript k is yet to be determined. This transforms the state equation to

where we assign

(3.106)w overbar Subscript k Baseline equals left-parenthesis upper I minus upper Lamda Subscript k Baseline upper H Subscript k Baseline right-parenthesis upper B Subscript k Baseline w Subscript k Baseline minus upper Lamda Subscript k Baseline v Subscript k Baseline comma

and white noise w overbar Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q overbar Subscript k Baseline right-parenthesis element-of double-struck upper R Superscript upper K has the covariance upper Q overbar Subscript k Baseline equals upper E left-brace w overbar Subscript k Baseline w overbar Subscript k Superscript upper T Baseline right-brace,

To find a matrix upper Lamda Subscript k such that w overbar Subscript n and v Subscript n become uncorrelated, the natural statement upper E left-brace w overbar Subscript k Baseline v Subscript k Superscript upper T Baseline right-brace equals 0 leads to

and the Lagrange multiplier can be found as

Finally, replacing in (3.107) the product upper Lamda Subscript k Baseline upper R Subscript k taken from (3.108) removes upper R Subscript k, and (3.107) becomes

Given y Subscript n, ModifyingAbove x With caret Subscript 0, upper P 0, upper Q overbar Subscript n, upper R Subscript n, and upper L Subscript k, the GKF estimates can be updated using Algorithm 1, in which upper Q Subscript k should be substituted with upper Q overbar Subscript k (3.110) using upper Lamda Subscript k given by (3.109) and upper E Subscript k Baseline u Subscript k with u overbar Subscript k (3.105). We thus have

(3.112)upper S Subscript k Baseline equals upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline comma
(3.113)upper K Subscript k Baseline equals upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper S Subscript k Superscript negative 1 Baseline comma
(3.114)ModifyingAbove x With caret Subscript k Superscript minus Baseline equals upper F overbar Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline plus u overbar Subscript k Baseline comma
(3.115)ModifyingAbove x With caret Subscript k Baseline equals ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis comma

where upper F overbar Subscript k is given by (3.104).

New Kalman gain. Another possibility to apply KF to models with time‐correlated w Subscript n and v Subscript n implies obtaining a new Kalman gain upper K Subscript k. In this case, first it is necessary to change the error covariance (3.76) for correlated w Subscript n and v Subscript n as

where upper P Subscript k Superscript minus is given by (3.74) and upper S Subscript k by (3.77). Using (A.3) and (A.6), the derivative of the trace of upper P Subscript k with respect to upper K Subscript k can be found as

StartFraction partial-differential Over partial-differential upper K Subscript k Baseline EndFraction trace upper P Subscript k Baseline equals 2 upper K Subscript k Baseline left-parenthesis upper S Subscript k Baseline plus upper H Subscript k Baseline upper B Subscript k Baseline upper L Subscript k Baseline plus upper L Subscript k Superscript upper T Baseline upper B Subscript k Superscript upper T Baseline upper H Subscript k Superscript upper T Baseline right-parenthesis minus 2 left-parenthesis upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper B Subscript k Baseline upper L Subscript k Baseline right-parenthesis period

By equating the derivative to zero, StartFraction partial-differential Over partial-differential upper K Subscript k Baseline EndFraction trace upper P Subscript k Baseline equals 0, we can find the optimal Kalman gain as

and notice that it becomes the original gain (3.78) for uncorrelated noise, upper L Subscript k Baseline equals 0. Finally, (3.118) simplifies the error covariance (3.117) to

(3.119)upper P Subscript k Baseline equals left-parenthesis upper I minus upper K Subscript k Baseline upper H Subscript k Baseline right-parenthesis upper P Subscript k Superscript minus Baseline minus 2 upper K Subscript k Baseline upper L Subscript k Superscript upper T Baseline upper B Subscript k Superscript upper T Baseline plus upper B Subscript k Baseline upper L Subscript k Baseline upper K Subscript k Superscript upper T
(3.120)equals left-parenthesis upper I minus upper K Subscript k Baseline upper H Subscript k Baseline right-parenthesis upper P Subscript k Superscript minus Baseline minus upper K Subscript k Baseline upper L Subscript k Superscript upper T Baseline upper B Subscript k Superscript upper T Baseline period

Given y Subscript k, ModifyingAbove x With caret Subscript 0, upper P 0, upper Q Subscript k, upper R Subscript k, and upper L Subscript k, the GKF algorithm for time‐correlated w Subscript k and v Subscript k becomes

(3.121)upper S Subscript k Baseline equals upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline comma
(3.122)upper K Subscript k Baseline equals left-parenthesis upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper B Subscript k Baseline upper L Subscript k Baseline right-parenthesis left-parenthesis upper S Subscript k Baseline plus upper H Subscript k Baseline upper B Subscript k Baseline upper L Subscript k Baseline plus upper L Subscript k Superscript upper T Baseline upper B Subscript k Superscript upper T Baseline upper H Subscript k Superscript upper T Baseline right-parenthesis Superscript negative 1 Baseline comma
(3.123)ModifyingAbove x With caret Subscript k Superscript minus Baseline equals upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline plus upper E Subscript k Baseline u Subscript k Baseline comma
(3.124)ModifyingAbove x With caret Subscript n Baseline equals ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis comma

As can be seen, when the correlation is removed by upper L Subscript k Baseline equals 0, the algorithm (3.120)(3.125) becomes the standard KF Algorithm 1. It is also worth noting that the algorithms (3.111)(3.116) and (3.120)(3.125) produce equal estimates and, thus, they are identical with no obvious advantages over each other. We will see shortly that the corresponding algorithms for CMN are also identical.

Colored Measurement Noise

The suggestion that CMN may be of Markov origin was originally made by Bryson et al. in [24] for continuous‐time and in [25] for discrete‐time tracking systems. Two fundamental approaches have also been proposed in [25] for obtaining GKF for CMN: state augmentation and measurement differencing. The first approach involves reassigning the state vector so that the white sources are combined in an augmented system noise vector. This allows using KF directly, but makes it ill‐conditioned, as shown earlier. Even so, state augmentation is considered to be the main solution to the problem caused by CMN [54,58,185].

For CMN, the state‐space equations can be written as

(3.128)y Subscript k Baseline equals upper H Subscript k Baseline x Subscript k Baseline plus v Subscript k Baseline comma

where xi Subscript k and w Subscript k are zero mean white Gaussian with the covariances upper Q Subscript k Baseline equals upper E left-brace w Subscript k Baseline w Subscript k Superscript upper T Baseline right-brace and upper R Subscript xi k Baseline equals upper E left-brace xi Subscript k Baseline xi Subscript k Superscript upper T Baseline right-brace and the property upper E left-brace w Subscript k Baseline xi Subscript n Superscript upper T Baseline right-brace equals 0 for all n and k. Augmenting the state vector gives

StartLayout 1st Row 1st Column StartBinomialOrMatrix x Subscript k Choose v Subscript k EndBinomialOrMatrix 2nd Column equals 3rd Column Start 2 By 2 Matrix 1st Row 1st Column upper F Subscript k Baseline 2nd Column 0 2nd Row 1st Column 0 2nd Column upper Psi Subscript k Baseline EndMatrix StartBinomialOrMatrix x Subscript k minus 1 Baseline Choose v Subscript k minus 1 Baseline EndBinomialOrMatrix plus StartBinomialOrMatrix upper E Subscript k Baseline Choose 0 EndBinomialOrMatrix u Subscript k Baseline plus Start 2 By 2 Matrix 1st Row 1st Column upper B Subscript k Baseline 2nd Column 0 2nd Row 1st Column 0 2nd Column upper I EndMatrix StartBinomialOrMatrix w Subscript k Baseline Choose xi Subscript k Baseline EndBinomialOrMatrix comma 2nd Row 1st Column y Subscript k 2nd Column equals 3rd Column Start 1 By 2 Matrix 1st Row 1st Column upper H Subscript k Baseline 2nd Column upper I EndMatrix StartBinomialOrMatrix x Subscript k Baseline Choose v Subscript k Baseline EndBinomialOrMatrix plus 0 comma EndLayout

where, as in (3.101), zero observation noise makes KF ill‐conditioned.

To avoid increasing the state vector, one can apply the measurement differencing approach [25] and define a new observation z Subscript n as

By substituting x Subscript k minus 1 taken from (3.126) and v Subscript k minus 1 taken from (3.127), the observation equation 3.129 becomes

where we introduced

(3.132)upper E overbar Subscript k Baseline equals upper Gamma Subscript k Baseline upper E Subscript k Baseline comma
(3.133)v overbar Subscript k Baseline equals upper Gamma Subscript k Baseline upper B Subscript k Baseline w Subscript k Baseline plus xi Subscript k Baseline comma

upper Gamma Subscript k Baseline equals upper Psi Subscript k Baseline upper H Subscript k minus 1 Baseline upper F Subscript k Superscript negative 1, and white noise v overbar Subscript k with the properties

(3.134)upper E left-brace v overbar Subscript k Baseline v overbar Subscript k Superscript upper T Baseline right-brace equals upper Gamma Subscript k Baseline upper Phi Subscript k Baseline plus upper R Subscript k Baseline comma
(3.135)upper E left-brace v overbar Subscript k Baseline w Subscript k Superscript upper T Baseline right-brace equals upper Gamma Subscript k Baseline upper B Subscript k Baseline upper Q Subscript k Baseline comma
(3.136)upper E left-brace w Subscript k Baseline v overbar Subscript k Superscript upper T Baseline right-brace equals upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline upper Gamma Subscript k Superscript upper T Baseline comma

where

(3.137)upper Phi Subscript k Baseline equals upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline upper Gamma Subscript k Superscript upper T Baseline period

Now the modified model (3.126) and (3.130) contains white and time‐correlated noise sources w Subscript k and v overbar Subscript k, for which the prior estimate ModifyingAbove x With caret Subscript k Superscript minus is defined by (3.70) and the prior error covariance upper P Subscript k Superscript minus by (3.74).

For (3.130), the measurement residual can be written as

(3.138)StartLayout 1st Row 1st Column s Subscript k 2nd Column equals 3rd Column z overbar Subscript k Baseline minus upper H overbar Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus 2nd Row 1st Column Blank 2nd Column equals 3rd Column upper H overbar Subscript k Baseline left-parenthesis upper F Subscript k Baseline x Subscript k minus 1 Baseline plus upper E Subscript k Baseline u Subscript k Baseline plus upper B Subscript k Baseline w Subscript k Baseline right-parenthesis plus v overbar Subscript k minus upper H overbar Subscript k Baseline left-parenthesis upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline plus upper E Subscript k Baseline u Subscript k Baseline right-parenthesis 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper H overbar Subscript k Baseline upper F Subscript k Baseline epsilon Subscript n minus 1 plus upper H overbar Subscript k Baseline upper B Subscript k Baseline w Subscript k plus v overbar Subscript k EndLayout

and the innovation covariance upper S Subscript k Baseline equals upper E left-brace s Subscript k Baseline s Subscript k Superscript upper T Baseline right-brace can be transformed as

The recursive GKF estimate can thus be written as

(3.140)StartLayout 1st Row 1st Column ModifyingAbove x With caret Subscript k 2nd Column equals 3rd Column ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper K Subscript k Baseline s Subscript k 2nd Row 1st Column Blank 2nd Column equals 3rd Column ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper K Subscript k Baseline left-parenthesis z overbar Subscript k Baseline minus upper H overbar Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis comma EndLayout

where the Kalman gain upper K Subscript k should be found for either time‐correlated or de‐correlated w Subscript k and v overbar Subscript k. Thereby, one can come up with two different, although mathematically equivalent, algorithms as discussed next.

Correlated noise. For time‐correlated w Subscript k and v overbar Subscript k, KF can be applied if we find the Kalman gain upper K Subscript k by minimizing the trace of the error covariance upper P Subscript k. Representing the estimation error epsilon Subscript k Baseline equals x Subscript k Baseline minus ModifyingAbove x With caret Subscript k with

(3.141)epsilon Subscript k Baseline equals left-parenthesis upper I minus upper K Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis left-parenthesis upper F Subscript k Baseline epsilon Subscript k minus 1 Baseline plus upper B Subscript k Baseline w Subscript k Baseline right-parenthesis minus upper K Subscript k Baseline v overbar Subscript k

and noticing that epsilon Subscript k minus 1 does not correlate w Subscript k and v overbar Subscript k, we obtain the error covariance upper P Subscript k Baseline equals upper E left-brace epsilon Subscript k Baseline epsilon Subscript k Superscript upper T Baseline right-brace as

(3.142a)StartLayout 1st Row 1st Column upper P Subscript k 2nd Column equals left-parenthesis upper I minus upper K Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis upper P Subscript k Superscript minus Baseline left-parenthesis upper I minus upper K Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis Superscript upper T Baseline 2nd Row 1st Column Blank 2nd Column plus upper K Subscript k Baseline left-parenthesis upper Gamma Subscript k Baseline upper Phi Subscript k Baseline plus upper R Subscript k Baseline right-parenthesis upper K Subscript k Superscript upper T minus left-parenthesis upper I minus upper K Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis upper Phi Subscript k Baseline upper K Subscript k Superscript upper T 3rd Row 1st Column Blank 2nd Column minus upper K Subscript k Baseline upper Phi Subscript k Superscript upper T Baseline left-parenthesis upper I minus upper K Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis Superscript upper T EndLayout

where upper P Subscript k Superscript minus is given by (3.120) and upper S Subscript k by (3.139).

Now the optimal Kalman gain upper K Subscript k can be found by minimizing trace left-parenthesis upper P Subscript k Baseline right-parenthesis using (A.3), (A.4), and (A.6). Equating to zero the derivative of trace left-parenthesis upper P Subscript k Baseline right-parenthesis with respect to upper K Subscript k gives

(3.143)StartFraction partial-differential trace upper P Subscript k Baseline Over partial-differential upper K Subscript k Baseline EndFraction equals minus 2 left-parenthesis upper P Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T Baseline plus upper Phi Subscript k Baseline right-parenthesis plus 2 upper K Subscript k Baseline upper S Subscript k Baseline equals 0

and we obtain

Finally, replacing the first component in the last term in (3.142b) with (3.144) gives

(3.145)upper P Subscript k Baseline equals upper P Subscript k Superscript minus Baseline minus upper K Subscript k Baseline left-parenthesis upper H overbar Subscript k Baseline upper P Subscript k Superscript minus Baseline plus upper Phi Subscript k Superscript upper T Baseline right-parenthesis period

Given y Subscript k, ModifyingAbove x With caret Subscript 0, upper P 0, upper Q Subscript k, upper R Subscript k, and upper Psi Subscript k, the GKF equations become [183]

(3.147)upper S Subscript k Baseline equals upper H overbar Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline plus upper H Subscript k Baseline upper Phi Subscript k Baseline plus upper Phi Subscript k Superscript upper T Baseline upper H overbar Subscript k Superscript upper T Baseline comma
(3.148)upper K Subscript k Baseline equals left-parenthesis upper P Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T Baseline plus upper Phi Subscript k Baseline right-parenthesis upper S Subscript k Superscript negative 1 Baseline comma

and we notice that upper Psi Subscript k Baseline equals 0 causes upper Gamma Subscript k Baseline equals 0, upper H overbar Subscript k Baseline equals upper H Subscript k, upper E overbar Subscript k Baseline equals 0, and upper Phi Subscript k Baseline equals 0, and this algorithm converts to the standard KF Algorithm 1.

De‐correlated noise. Alternatively, efforts can be made to de‐correlate w Subscript n and v overbar Subscript n by repeating steps (3.103)(3.110) as shown next. Similarly to (3.103), rewrite the state equation as

(3.152)StartLayout 1st Row 1st Column x Subscript k 2nd Column equals 3rd Column upper F Subscript k Baseline x Subscript k minus 1 plus upper E Subscript k Baseline u Subscript k plus upper B Subscript k Baseline w Subscript k plus upper Lamda Subscript k Baseline left-parenthesis z overbar Subscript k Baseline minus upper H overbar Subscript k Baseline x Subscript k Baseline minus v overbar Subscript k Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column equals 3rd Column upper F overbar Subscript k Baseline x Subscript k minus 1 Baseline plus u overbar Subscript k Baseline plus w overbar Subscript k Baseline comma EndLayout

where the following variables are assigned

(3.154)u overbar Subscript k Baseline equals left-parenthesis upper I minus upper Lamda Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis upper E Subscript k Baseline u Subscript k Baseline plus upper Lamda Subscript k Baseline z overbar Subscript k Baseline comma
(3.155)w overbar Subscript k Baseline equals left-parenthesis upper I minus upper Lamda Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis upper B Subscript k Baseline w Subscript k Baseline minus upper Lamda Subscript k Baseline v overbar Subscript k Baseline comma

and require that noise w overbar Subscript k be white with the covariance

Matrix upper Lamda Subscript k that makes zeta Subscript k and v overbar Subscript k uncorrelated can be found by representing upper E left-brace zeta Subscript k Baseline v overbar Subscript k Superscript upper T Baseline right-brace equals 0 with

that gives the following Lagrange multiplier

(3.158)upper Lamda Subscript k Baseline equals upper Phi Subscript k Baseline left-parenthesis upper H Subscript k Baseline upper Phi Subscript k Baseline plus upper R Subscript k Baseline right-parenthesis Superscript negative 1 Baseline period

Substituting upper Lamda Subscript k Baseline upper R Subscript k taken from (3.157) into the last term in (3.156) removes upper R Subscript k and (3.156) takes the form

(3.159)upper Q overbar Subscript k Baseline equals left-parenthesis upper I minus upper Lamda Subscript k Baseline upper H Subscript k Baseline right-parenthesis upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline left-parenthesis upper I minus upper Lamda Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis Superscript upper T Baseline period

Given y Subscript k, ModifyingAbove x With caret Subscript 0, upper P 0, upper Q Subscript k, upper R Subscript k, and upper Psi Subscript k, the GKF equations become [183]

(3.161)upper S overbar Subscript k Baseline equals upper H overbar Subscript k Baseline upper P overbar Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T Baseline plus upper Gamma Subscript k Baseline upper Phi Subscript k Baseline plus upper R Subscript k Baseline comma
(3.162)upper K overbar Subscript k Baseline equals upper P overbar Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T Baseline upper S overbar Subscript k Superscript negative 1 Baseline comma

Again we notice that upper Psi Subscript k Baseline equals 0 makes upper Gamma Subscript k Baseline equals 0, upper Phi Subscript k Baseline equals 0, upper F overbar Subscript k Baseline equals upper A Subscript k, upper H overbar Subscript k Baseline equals upper H Subscript k, upper Q overbar Subscript k Baseline equals upper Q Subscript k, and upper E overbar Subscript k Baseline equals 0, and this algorithm transforms to KF Algorithm 1. Next, we will show that algorithms (3.146)(3.151) and (3.160)(3.165) give identical estimates and therefore are equivalent.

Equivalence of GKF Algorithms for CMN

The equivalence of the Bryson and Petovello algorithms for CMN was shown in [33], assuming time‐invariant noise covariances that do not distinguish between FE‐ and BE‐based models. We will now show that the GKF algorithms (3.146)(3.151) and (3.160)(3.165) are also equivalent [183]. Note that the algorithms can be said to be equivalent in the MSE sense if they give the same estimates for the same input; that is, for the given ModifyingAbove x With caret Subscript 0 and upper P 0, the outputs ModifyingAbove x With caret Subscript n and upper P Subscript n in both algorithms are identical.

First, we represent the prior estimate ModifyingAbove Above x overbar With Ì‚ Subscript k Superscript minus (3.163) via the prior estimate ModifyingAbove x With caret Subscript k Superscript minus (3.149) and the prior error covariance upper P overbar Subscript k Superscript minus (3.160) via upper P Subscript k Superscript minus (3.146) as

where upper M Subscript k Baseline equals upper I minus upper Lamda Subscript k Baseline upper H overbar Subscript k. We now equate estimates (3.150) and (3.164),

ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper K Subscript k Baseline left-parenthesis z overbar Subscript k Baseline minus upper H overbar Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis equals ModifyingAbove Above x overbar With Ì‚ Subscript k Superscript minus Baseline plus upper K overbar Subscript k Baseline left-parenthesis z overbar Subscript k Baseline minus upper H overbar Subscript k Baseline ModifyingAbove Above x overbar With Ì‚ Subscript k Superscript minus Baseline right-parenthesis comma

substitute (3.166), combine with (3.153), transform as

StartLayout 1st Row 1st Column upper K Subscript n Baseline left-parenthesis z Subscript k Baseline minus upper H overbar Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis 2nd Column equals 3rd Column upper Lamda Subscript k Baseline left-parenthesis z Subscript k Baseline minus upper H overbar Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis plus upper K overbar Subscript k Baseline left-bracket left-parenthesis upper I minus upper H overbar Subscript k Baseline upper Lamda Subscript k Baseline right-parenthesis z Subscript k Baseline 2nd Row 1st Column Blank 2nd Column minus left-parenthesis upper I minus upper H overbar Subscript k Baseline upper Lamda Subscript k Baseline right-parenthesis upper H overbar Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis right-bracket comma 3rd Row 1st Column left-parenthesis upper K Subscript k Baseline minus upper Lamda Subscript k Baseline right-parenthesis left-parenthesis z Subscript k Baseline minus upper H overbar Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis 2nd Column equals 3rd Column upper K overbar Subscript k Baseline left-parenthesis upper I minus upper H overbar Subscript k Baseline upper Lamda Subscript k Baseline right-parenthesis left-parenthesis z Subscript k Baseline minus upper H overbar Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis comma EndLayout

and skip the nonzero equal terms from the both sides. This relates the gains upper K Subscript k and upper K overbar Subscript k as

which is the main condition for both estimates to be identical.

If also (3.168) makes the error covariances identical, then the algorithms can be said to be equivalent. To make sure that this is the case, we equate (3.151) and (3.165) as

substitute (3.168) and (3.167), rewrite (3.169) as

StartLayout 1st Row 1st Column upper P Subscript k Superscript minus 2nd Column minus 3rd Column left-bracket upper K overbar Subscript k Baseline left-parenthesis upper I minus upper H overbar Subscript k Baseline upper Lamda Subscript k Baseline right-parenthesis plus upper Lamda Subscript k Baseline right-bracket left-parenthesis upper H overbar Subscript k Baseline upper P Subscript k Superscript minus Baseline plus upper Phi Subscript k Superscript upper T Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column equals 3rd Column left-parenthesis upper I minus upper K overbar Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis left-parenthesis upper M Subscript k Baseline upper P Subscript k Superscript minus Baseline upper M Subscript k Superscript upper T Baseline minus upper Lamda Subscript k Baseline upper Phi Subscript k Superscript upper T Baseline upper M Subscript k Superscript upper T Baseline right-parenthesis comma EndLayout

introduce Ï’ Subscript k Baseline equals left-parenthesis upper I minus upper M Subscript k Superscript upper T Baseline right-parenthesis, and arrive at

StartLayout 1st Row 1st Column left-parenthesis upper I minus upper K overbar Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis upper M Subscript k Baseline upper P Subscript k Superscript minus Baseline Ï’ Subscript k 2nd Column equals 3rd Column upper K overbar Subscript k Baseline left-parenthesis upper H overbar Subscript k Baseline upper Lamda Subscript k Baseline upper Phi Subscript k Superscript upper T Baseline upper M Subscript k Superscript upper T Baseline plus upper Phi Subscript k Superscript upper T Baseline 2nd Row 1st Column Blank 2nd Column Blank 3rd Column minus upper H overbar Subscript k Baseline upper Lamda Subscript k Baseline upper Phi Subscript k Superscript upper T Baseline right-parenthesis plus upper Lamda Subscript k Baseline upper Phi Subscript k Superscript upper T Baseline Ï’ Subscript k Baseline period EndLayout

By rearranging the terms, this relationship can be transformed into

(3.170)StartLayout 1st Row 1st Column left-parenthesis upper I minus upper K overbar Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis left-parenthesis upper M Subscript k Baseline upper P Subscript k Superscript minus Baseline minus upper Lamda Subscript k Baseline upper Phi Subscript k Superscript upper T Baseline right-parenthesis Ï’ Subscript k 2nd Column equals 3rd Column upper K overbar Subscript k Baseline upper Phi Subscript k Superscript upper T 2nd Row 1st Column left-parenthesis upper I minus upper K overbar Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis left-parenthesis upper M Subscript k Baseline upper P Subscript k Superscript minus Baseline minus upper Lamda Subscript k Baseline upper Phi Subscript k Superscript upper T Baseline right-parenthesis 2nd Column minus 3rd Column left-parenthesis upper I minus upper K overbar Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis upper P overbar Subscript k Superscript minus 3rd Row 1st Column equals 2nd Column upper K overbar Subscript k Baseline upper Phi Subscript k Superscript upper T 4th Row 1st Column left-parenthesis upper I minus upper K overbar Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis left-parenthesis upper M Subscript k Baseline upper P Subscript k Superscript minus Baseline minus upper Lamda Subscript k Baseline upper Phi Subscript k Superscript upper T Baseline right-parenthesis upper M Subscript k Superscript upper T 2nd Column minus 3rd Column left-parenthesis upper I minus upper K overbar Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis upper P overbar Subscript k Superscript minus Baseline upper M Subscript k Superscript upper T 5th Row 1st Column equals 2nd Column upper K overbar Subscript k Baseline upper Phi Subscript k Superscript upper T Baseline upper M Subscript k Superscript upper T 6th Row 1st Column left-parenthesis upper I minus upper K overbar Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis upper P overbar Subscript k Superscript minus 2nd Column minus 3rd Column left-parenthesis upper I minus upper K overbar Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis upper P overbar Subscript k Superscript minus Baseline upper M Subscript k Superscript upper T 7th Row 1st Column Blank 2nd Column equals 3rd Column upper K overbar Subscript k Baseline upper Phi Subscript k Superscript upper T Baseline upper M Subscript k Superscript upper T 8th Row 1st Column left-parenthesis upper I minus upper K overbar Subscript k Baseline upper H overbar Subscript k Baseline right-parenthesis upper P overbar Subscript k Superscript minus Baseline Ï’ Subscript k 2nd Column equals 3rd Column upper K overbar Subscript k Baseline upper Phi Subscript k Superscript upper T Baseline upper M Subscript k Superscript upper T EndLayout

and, by substituting upper K overbar Subscript k Baseline equals upper P overbar Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T Baseline upper S overbar Subscript k Superscript negative 1, represented with

left-parenthesis upper I minus upper P overbar Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T Baseline upper S overbar Subscript k Superscript negative 1 Baseline upper H overbar Subscript k Baseline right-parenthesis upper P overbar Subscript k Superscript minus Baseline left-parenthesis upper I minus upper M Subscript k Superscript upper T Baseline right-parenthesis equals upper P overbar Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T Baseline upper S overbar Subscript k Superscript negative 1 Baseline upper Phi Subscript k Superscript upper T Baseline upper M Subscript k Superscript upper T Baseline comma

which, after tedious manipulations with matrices, becomes

StartLayout 1st Row 1st Column upper Lamda Subscript k Superscript upper T 2nd Column equals 3rd Column upper S overbar Subscript k Superscript negative 1 Baseline left-parenthesis upper Phi Subscript k Superscript upper T Baseline plus upper H overbar Subscript k Baseline upper P overbar Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T Baseline upper Lamda Subscript k Superscript upper T Baseline minus upper Phi Subscript k Superscript upper T Baseline upper H overbar Subscript k Superscript upper T Baseline upper Lamda Subscript k Superscript upper T Baseline right-parenthesis comma 2nd Row 1st Column upper S overbar Subscript k Baseline upper Lamda Subscript k Superscript upper T 2nd Column equals 3rd Column upper Phi Subscript k Superscript upper T Baseline plus upper H overbar Subscript k Baseline upper P overbar Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T Baseline upper Lamda Subscript k Superscript upper T Baseline minus upper Phi Subscript k Superscript upper T Baseline upper H overbar Subscript k Superscript upper T Baseline upper Lamda Subscript k Superscript upper T Baseline period EndLayout

By substituting upper H overbar Subscript k Baseline upper P overbar Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T taken from upper S overbar Subscript k Baseline equals upper H overbar Subscript k Baseline upper P overbar Subscript k Superscript minus Baseline upper H overbar Subscript k Superscript upper T Baseline plus upper Gamma Subscript k Baseline upper Phi Subscript k Baseline plus upper R Subscript k, we finally end up with

Because upper Gamma Subscript k Baseline upper Phi Subscript k is symmetric, upper Phi Subscript k Superscript upper T Baseline upper Gamma Subscript k Superscript upper T Baseline equals upper Gamma Subscript k Baseline upper Phi Subscript k, and (3.131) means upper H overbar Subscript k Baseline equals upper H Subscript k Baseline minus upper Gamma Subscript k, then it follows that (3.171) is the equality upper H overbar Subscript k Baseline upper Phi Subscript k Baseline equals upper H overbar Subscript k Baseline upper Phi Subscript k, and we conclude that the algorithms (3.146)(3.151) and (3.160)(3.165) are equivalent. It can also be shown that they do not demonstrate significant advantages over each other.

Colored Process Noise

Process noise becomes colored for various reasons, often when the internal control mechanism is not reflected in the state equation and thus becomes the error component. For example, the IEEE Standard 1139‐2008 [75] states that, in addition to white noise, the oscillator phase PSD has four independent CPNs with slopes normal f Superscript negative 1, normal f Superscript negative 2, normal f Superscript negative 3, and normal f Superscript negative 4, where f is the Fourier frequency. Unlike CMN, which needs to be filtered out, slow CPN behavior can be tracked, as in localization and navigation. But when solving the identification problem, both the CMN and the CPN are commonly removed. This important feature distinguishes GKFs designed for CMN and CPN.

A linear process with CPN can be represented in state space in the standard formulation of the Gauss‐Markov model with the equations

(3.173)w Subscript k Baseline equals upper Theta Subscript k Baseline w Subscript k minus 1 Baseline plus mu Subscript k Baseline comma

where x Subscript k Baseline element-of double-struck upper R Superscript upper K, y Subscript k Baseline element-of double-struck upper R Superscript upper M, upper F Subscript k Baseline element-of double-struck upper R Superscript upper K times upper K, and upper H Subscript k Baseline element-of double-struck upper R Superscript upper M times upper K. To obtain GKF for CPN, we assign w Subscript k Baseline element-of double-struck upper R Superscript upper K, upper B Subscript k Baseline element-of double-struck upper R Superscript upper K times upper K, and upper Theta Subscript k Baseline element-of double-struck upper R Superscript upper K times upper K, and think that upper F Subscript k, upper B Subscript k, and upper Theta Subscript k are nonsingular. We also suppose that the noise vectors mu Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q Subscript k Baseline right-parenthesis element-of double-struck upper R Superscript upper K and v Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper R Subscript k Baseline right-parenthesis element-of double-struck upper R Superscript upper M are uncorrelated with the covariances upper E left-brace mu Subscript k Baseline mu Subscript k Superscript upper T Baseline right-brace equals upper Q Subscript k and upper E left-brace v Subscript k Baseline v Subscript k Superscript upper T Baseline right-brace equals upper R Subscript k, and choose the matrix upper Theta Subscript k so that CPN w Subscript k remains stationary.

The augmented state‐space model for CPN becomes

StartLayout 1st Row 1st Column StartBinomialOrMatrix x Subscript k Choose w Subscript k EndBinomialOrMatrix 2nd Column equals 3rd Column Start 2 By 2 Matrix 1st Row 1st Column upper F Subscript k Baseline 2nd Column upper B Subscript k Baseline upper Theta Subscript k Baseline 2nd Row 1st Column 0 2nd Column upper Theta Subscript k Baseline EndMatrix StartBinomialOrMatrix x Subscript k minus 1 Baseline Choose w Subscript k minus 1 Baseline EndBinomialOrMatrix plus StartBinomialOrMatrix upper E Subscript k Baseline Choose 0 EndBinomialOrMatrix u Subscript k Baseline plus StartBinomialOrMatrix upper B Subscript k Baseline Choose upper I EndBinomialOrMatrix mu Subscript k Baseline comma 2nd Row 1st Column y Subscript k 2nd Column equals 3rd Column Start 1 By 2 Matrix 1st Row 1st Column upper H Subscript k Baseline 2nd Column 0 EndMatrix StartBinomialOrMatrix x Subscript k Baseline Choose w Subscript k Baseline EndBinomialOrMatrix plus v Subscript k Baseline comma EndLayout

and we see that, unlike (3.101), this does not make the KF ill‐conditioned. On the other hand, colored noise w Subscript k repeated in the state x Subscript k can cause extra errors in the KF output under certain conditions.

To avoid the state augmentation, we now reason similarly to the measurement differencing approach [25] and derive the GKF for CPN based on the model (3.172)(3.174) using the state differencing approach [182].

Using the state differencing method, the new state chi Subscript k can be written as

where upper Pi Subscript k, upper F overTilde Subscript k, u overtilde Subscript k, and w overTilde Subscript k are still to be determined. The KF can be applied if we rewrite the new state equation as

and find the conditions under which the noise w overTilde Subscript k will be zero mean and white Gaussian, w overTilde Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q overTilde Subscript k Baseline right-parenthesis element-of double-struck upper R Superscript upper K. By referring to (3.176), unknown variables can be retrieved by putting to zero the remainder in (3.175b),

Then we replace chi Subscript k minus 1 taken from (3.175a) into (3.177), combine with x Subscript k minus 2 Baseline equals upper F Subscript k minus 1 Superscript negative 1 Baseline left-parenthesis x Subscript k minus 1 Baseline minus upper E Subscript k minus 1 Baseline u Subscript k minus 1 Baseline minus upper B Subscript k minus 1 Baseline w Subscript k minus 1 Baseline right-parenthesis taken from (3.172), and write

Although x 0 equals 0 may hold for some applications, the case x Subscript k minus 1 Baseline equals 0 for arbitrary k is isolated, and a solution to (3.178) can thus be found with simultaneous solution of four equations

(3.182)w overTilde Subscript k Baseline equals upper B Subscript k Baseline mu Subscript k Baseline comma

which suggest that the modified control signal u overtilde Subscript k is given by (3.180), and for nonsingular upper F Subscript k, upper F overTilde Subscript k, and upper Theta Subscript k (3.181) gives

where upper Theta overbar Subscript k Baseline equals upper B Subscript k Baseline upper Theta Subscript k Baseline upper B Subscript k minus 1 Superscript negative 1 is a weighted version of upper Theta Subscript k. Next, substituting (3.183) into (3.179) and providing some transformations give the backward and forward recursions for upper F overTilde Subscript k,

It can be seen that upper F overTilde Subscript k becomes upper F Subscript k for white noise if upper Pi Subscript k Baseline equals 0 and upper Theta overbar Subscript k Baseline equals 0, which follows from the backward recursion (3.184), but is not obvious from the forward recursion (3.185).

What follows is that the choice of the initial upper F overTilde Subscript 0 is critical to run (3.185). Indeed, if we assume that upper F overTilde Subscript 0 Baseline equals upper F 0, then (3.185) gives upper F overTilde Subscript 1 Baseline equals upper Theta overbar Subscript 1 Baseline upper F 0 upper Theta overbar Subscript 0 Superscript negative 1, which may go far beyond the proper matrix. But for the diagonal upper Theta overbar Subscript 1 with equal components upper F overTilde Subscript 0 Baseline equals upper F 0 is the only solution. On the other hand, upper F overTilde Subscript 0 Baseline equals upper Theta overbar Subscript 0 gives upper F overTilde Subscript 1 Baseline equals upper Theta overbar Subscript 1, which makes no sense. One way to specify upper F overTilde Subscript 0 is to assume that the process is time‐invariant up to k equals 0, convert (3.184) to the nonsymmetric algebraic Riccati equation (NARE) [107] or quadratic matrix equation

and solve (3.186) for upper F overTilde equals upper F overTilde Subscript 0. However, the solution to (3.186) is generally not unique [107], and efforts must be made to choose the proper one.

So the modified state equation 3.176 becomes

with white Gaussian mu Subscript k and matrix upper F overTilde Subscript k, which is obtained recursively using (3.185) for the properly chosen fit upper F overTilde Subscript 0 of (3.186). To specify the initial chi 0, we consider (3.175a) at k equals 0 and write chi 0 equals x 0 minus upper Pi 0 x Subscript negative 1. Since x Subscript negative 1 is not available, we set x Subscript negative 1 Baseline equals x 0 and take chi 0 equals left-parenthesis upper I minus upper Pi 0 right-parenthesis x 0 equals left-parenthesis upper I minus upper F overTilde Subscript 1 Superscript negative 1 Baseline upper Theta overbar Subscript 1 Baseline upper F 0 right-parenthesis x 0 as a reasonable initial state to run (3.187).

Finally, extracting x Subscript k Baseline equals chi Subscript k Baseline plus upper Pi Subscript k Baseline x Subscript k minus 1 from (3.175a), substituting it into the observation equation 3.174, and rearranging the terms, we obtain the modified observation equation

(3.188)y overTilde Subscript k Baseline equals upper H Subscript k Baseline chi Subscript k Baseline plus v Subscript k

with respect to y overTilde Subscript k Baseline equals y Subscript k Baseline minus upper H Subscript k Baseline upper Pi Subscript k Baseline x Subscript k minus 1, in which x Subscript k minus 1 can be replaced by the estimate ModifyingAbove x With caret Subscript k minus 1.

Given y Subscript k, ModifyingAbove x With caret Subscript 0, upper P 0, upper Q Subscript k, upper R Subscript k, and upper Theta Subscript k, the GKF equations for CPN become

(3.189)upper P Subscript k Superscript minus Baseline equals upper F overTilde Subscript k Baseline upper P Subscript k minus 1 Baseline upper F overTilde Subscript k Superscript upper T Baseline plus upper B Subscript k Baseline upper Q Subscript k Baseline upper B Subscript k Superscript upper T Baseline comma
(3.190)upper S Subscript k Baseline equals upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline comma
(3.191)upper K Subscript k Baseline equals upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper S Subscript k Superscript negative 1 Baseline comma
(3.192)ModifyingAbove chi With Ì‚ Subscript k Superscript minus Baseline equals upper F overTilde Subscript k Baseline ModifyingAbove chi With Ì‚ Subscript k minus 1 Baseline plus u overtilde Subscript k Baseline comma
(3.193)ModifyingAbove chi With Ì‚ Subscript k Baseline equals ModifyingAbove chi With Ì‚ Subscript k Superscript minus Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline upper F overTilde Subscript k plus 1 Superscript negative 1 Baseline upper B Subscript k plus 1 Baseline upper Theta Subscript k plus 1 Baseline upper B Subscript k Superscript negative 1 Baseline upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline minus upper H Subscript k Baseline ModifyingAbove chi With Ì‚ Subscript k Superscript minus Baseline right-parenthesis comma
(3.194)ModifyingAbove x With caret Subscript k Baseline equals ModifyingAbove chi With Ì‚ Subscript k Baseline plus upper F overTilde Subscript k plus 1 Superscript negative 1 Baseline upper B Subscript k plus 1 Baseline upper Theta Subscript k plus 1 Baseline upper B Subscript k Superscript negative 1 Baseline upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline comma
(3.195)upper P Subscript k Baseline equals left-parenthesis upper I minus upper K Subscript k Baseline upper H Subscript k Baseline right-parenthesis upper P Subscript k Superscript minus Baseline period

A specific feature of this algorithm is that the future values of upper B Subscript k and upper Theta Subscript k are required at k plus 1, which is obviously not a problem for LTI systems. It is also seen that upper Theta Subscript k Baseline equals 0 results in upper F overTilde Subscript k Baseline equals upper F Subscript k and u overtilde Subscript k Baseline equals upper E Subscript k Baseline u Subscript k, and the algorithm becomes the standard KF Algorithm 1.

3.2.9 Kalman‐Bucy Filter

The digital world today requires fast and accurate digital state estimators. But when the best sampling results in significant loss of information due to limitations in the operation frequency of digital devices, then there will be no choice but to design and implement filters physically in continuous time.

The optimal filter for continuous‐time stochastic linear systems was obtained in [85] by Kalman and Bucy and is called the Kalman‐Bucy filter (KBF). Obtaining KBF can be achieved in a standard way by minimizing MSE. Another way is to convert KF to continuous time as shown next.

Consider a stochastic LTV process represented in continuous‐time state space by the following equations

where the initial x left-parenthesis 0 right-parenthesis is supposed to be known.

For a sufficiently short time interval tau equals t Subscript k Baseline minus t Subscript k minus 1, we can assume that all matrices and input signal are piecewise constant when t Subscript k minus 1 Baseline less-than-or-slanted-equals t less-than-or-slanted-equals t Subscript k and take upper A left-parenthesis t right-parenthesis approximately-equals upper A left-parenthesis t Subscript k Baseline right-parenthesis, upper U left-parenthesis t right-parenthesis approximately-equals upper U left-parenthesis t Subscript k Baseline right-parenthesis, upper C left-parenthesis t right-parenthesis approximately-equals upper C left-parenthesis t Subscript k Baseline right-parenthesis, and u left-parenthesis t right-parenthesis approximately-equals u left-parenthesis t Subscript k Baseline right-parenthesis. Following (3.6) and assuming that tau is small, we can then approximate e Superscript upper A left-parenthesis t Super Subscript k Superscript right-parenthesis tau with e Superscript upper A left-parenthesis t Super Subscript k Superscript right-parenthesis tau Baseline approximately-equals upper I plus upper A left-parenthesis t Subscript k Baseline right-parenthesis tau and write the solution to (3.196) as

StartLayout 1st Row 1st Column x Subscript k 2nd Column equals 3rd Column e Superscript upper A left-parenthesis t Super Subscript k Superscript right-parenthesis tau Baseline x Subscript k minus 1 plus integral Subscript t Subscript k minus 1 Baseline Superscript t Subscript k Baseline e Superscript upper A left-parenthesis t Super Subscript k Superscript right-parenthesis left-parenthesis t Super Subscript k Superscript minus theta right-parenthesis Baseline normal d theta upper U left-parenthesis t Subscript k Baseline right-parenthesis u left-parenthesis t Subscript k Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column Blank 3rd Column plus integral Subscript t Subscript k minus 1 Baseline Superscript t Subscript k Baseline Baseline e Superscript upper A left-parenthesis t Super Subscript k Superscript right-parenthesis left-parenthesis t Super Subscript k Superscript minus theta right-parenthesis Baseline w left-parenthesis theta right-parenthesis normal d theta period EndLayout

Thus, the discrete analog of model (3.196) and (3.197) is

where we take upper H Subscript k Baseline equals upper C left-parenthesis t Subscript k Baseline right-parenthesis,

StartLayout 1st Row 1st Column upper F Subscript k 2nd Column equals 3rd Column e Superscript upper A left-parenthesis t Super Subscript k Superscript right-parenthesis tau Baseline approximately-equals upper I plus upper A left-parenthesis t Subscript k Baseline right-parenthesis tau 2nd Row 1st Column upper E Subscript k 2nd Column approximately-equals 3rd Column left-bracket upper I plus upper A left-parenthesis t Subscript k Baseline right-parenthesis StartFraction tau Over 2 EndFraction right-bracket tau upper U left-parenthesis t Subscript k Baseline right-parenthesis approximately-equals tau upper U left-parenthesis t Subscript k Baseline right-parenthesis comma 3rd Row 1st Column upper B Subscript k 2nd Column approximately-equals 3rd Column tau upper I comma EndLayout

refer to (3.25) and (3.26), and define the noise covariances as upper Q Subscript k Baseline equals upper E left-brace w Subscript k Baseline w Subscript k Superscript upper T Baseline right-brace equals tau script upper S Subscript w and upper R Subscript k Baseline equals upper E left-brace v Subscript k Baseline v Subscript k Superscript upper T Baseline right-brace equals StartFraction 1 Over tau EndFraction script upper S Subscript v, where script upper S Subscript w is the PSD of w left-parenthesis t right-parenthesis and script upper S Subscript v is the PSD of v left-parenthesis t right-parenthesis. Ensured correspondence between continuous‐time model (3.196) and (3.197) and discrete‐time model (3.198) and (3.199) for small tau, the KBF can be obtained as follows.

We first notice that the continuous time estimate does not distinguish between the prior and posterior estimation errors due to tau equals 0. Therefore, the optimal Kalman gain upper K Subscript k (3.78) for small tau can be transformed as

(3.200)StartLayout 1st Row 1st Column upper K Subscript k 2nd Column equals 3rd Column upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline left-parenthesis upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline right-parenthesis Superscript negative 1 Baseline comma 2nd Row 1st Column Blank 2nd Column equals 3rd Column upper P left-parenthesis t Subscript k Baseline right-parenthesis upper C Superscript upper T Baseline left-parenthesis t Subscript k Baseline right-parenthesis left-bracket upper C left-parenthesis t Subscript k Baseline right-parenthesis upper P left-parenthesis t Subscript k Baseline right-parenthesis upper C Superscript upper T Baseline left-parenthesis t Subscript k Baseline right-parenthesis plus StartFraction script upper S Subscript v Baseline Over tau EndFraction right-bracket Superscript negative 1 Baseline comma 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper P left-parenthesis t right-parenthesis upper C Superscript upper T Baseline left-parenthesis t right-parenthesis script upper S Subscript v Superscript negative 1 Baseline tau equals upper K left-parenthesis t right-parenthesis tau comma EndLayout

where upper K left-parenthesis t right-parenthesis is the optimal Kalman gain in continuous time.

The Kalman estimate (3.72) can now be transformed for small tau as

(3.202)StartLayout 1st Row 1st Column ModifyingAbove x With caret Subscript k 2nd Column equals 3rd Column upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline plus upper E Subscript k Baseline u Subscript k Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline minus upper H Subscript k Baseline upper E Subscript k Baseline u Subscript k Baseline right-parenthesis comma 2nd Row 1st Column StartFraction ModifyingAbove x With caret left-parenthesis t Subscript k Baseline right-parenthesis minus ModifyingAbove x With caret left-parenthesis t Subscript k minus 1 Baseline right-parenthesis Over tau EndFraction 2nd Column equals 3rd Column upper A left-parenthesis t Subscript k Baseline right-parenthesis ModifyingAbove x With caret left-parenthesis t Subscript k minus 1 Baseline right-parenthesis plus upper U left-parenthesis t Subscript k Baseline right-parenthesis u left-parenthesis t Subscript k Baseline right-parenthesis 3rd Row 1st Column Blank 2nd Column Blank 3rd Column plus upper K left-parenthesis t Subscript k Baseline right-parenthesis left-bracket y left-parenthesis t Subscript k Baseline right-parenthesis minus upper C left-parenthesis t Subscript k Baseline right-parenthesis ModifyingAbove x With caret left-parenthesis t Subscript k minus 1 Baseline right-parenthesis minus tau upper C left-parenthesis t Subscript k Baseline right-parenthesis upper U left-parenthesis t Subscript k Baseline right-parenthesis right-bracket comma 4th Row 1st Column ModifyingAbove x With caret prime left-parenthesis t right-parenthesis 2nd Column equals 3rd Column upper A left-parenthesis t right-parenthesis ModifyingAbove x With caret left-parenthesis t right-parenthesis plus upper U left-parenthesis t right-parenthesis u left-parenthesis t right-parenthesis plus upper K left-parenthesis t right-parenthesis left-bracket y left-parenthesis t right-parenthesis minus upper C left-parenthesis t right-parenthesis ModifyingAbove x With caret left-parenthesis t right-parenthesis right-bracket comma EndLayout

where upper K left-parenthesis t right-parenthesis is given by (3.201).

Reasoning along similar lines as for (3.201), error covariance upper P Subscript k (3.79) combined with upper P Subscript k Superscript minus, defined as (3.75), can also be transformed for small tau as

where (3.203) is the Riccati differential equation (RDE) (A.25).

Thus, the KBF can be represented by two differential equations

(3.204)StartLayout 1st Row 1st Column ModifyingAbove x With caret prime left-parenthesis t right-parenthesis 2nd Column equals 3rd Column upper A left-parenthesis t right-parenthesis ModifyingAbove x With caret left-parenthesis t right-parenthesis plus upper U left-parenthesis t right-parenthesis u left-parenthesis t right-parenthesis 2nd Row 1st Column Blank 2nd Column Blank 3rd Column plus upper P left-parenthesis t right-parenthesis upper C Superscript upper T Baseline left-parenthesis t right-parenthesis script upper S Subscript v Superscript negative 1 Baseline left-bracket y left-parenthesis t right-parenthesis minus upper C left-parenthesis t right-parenthesis ModifyingAbove x With caret left-parenthesis t right-parenthesis right-bracket comma EndLayout
(3.205)StartLayout 1st Row 1st Column upper P prime left-parenthesis t right-parenthesis 2nd Column equals 3rd Column upper P left-parenthesis t right-parenthesis upper A Superscript upper T Baseline left-parenthesis t right-parenthesis plus upper A left-parenthesis t right-parenthesis upper P left-parenthesis t right-parenthesis 2nd Row 1st Column Blank 2nd Column Blank 3rd Column minus upper P left-parenthesis t right-parenthesis upper C Superscript upper T Baseline left-parenthesis t right-parenthesis script upper S Subscript v Superscript negative 1 Baseline upper C left-parenthesis t right-parenthesis upper P left-parenthesis t right-parenthesis plus script upper S Subscript w Baseline comma EndLayout

given the initial state ModifyingAbove x With caret left-parenthesis 0 right-parenthesis and error covariance upper P left-parenthesis 0 right-parenthesis.

It is worth noting that although less attention is paid to the RBP in the modern digital world, its hardware implementation is required when the main spectral information is located above the operation frequency of the digital device.

3.3 Linear Recursive Smoothing

When better noise reduction is required than using optimal filtering, we think of optimal smoothing. The term smoothing comes from antiquity, and solutions to the smoothing problem can be found in the works of Gauss, Kolmogorov, and Wiener. Both optimal filtering and optimal smoothing minimize the MSE using data taken from the past up to the current time index k. What distinguishes the two approaches is that optimal filtering gives an estimate in the current time index k, while optimal smoothing refers the estimate to the past point k minus q with a lag q greater-than 0. Therefore, it is common to say that ModifyingAbove x With caret Subscript k vertical-bar k is the output of an optimal filter and ModifyingAbove x With caret Subscript k minus q vertical-bar k is the output of a q‐lag optimal smoother. Smoothing can also be organized at the current point k by involving q future data. In this case, it is said that the estimate ModifyingAbove x With caret Subscript k vertical-bar k plus q is produced by a q‐lag smoothing filter.

The following smoothing problems can be solved:

  • Fixed‐lag smoothing gives an estimate at m less-than k minus q less-than k with a fixed lag q over a horizon left-bracket m comma k right-bracket, where m can be zero.
  • Fixed‐interval smoothing gives an estimate at any point in a fixed interval left-bracket m comma k right-bracket with a lag q ranging from q equals 1 to q equals m.
  • Fixed‐point smoothing gives an estimate at a fixed point m less-than v less-than k in left-bracket m comma k right-bracket with variable lag q equals k minus v, where m can be zero.

The opposite problem to smoothing is called prediction. The prediction refers to an estimate of the future point with some step p greater-than 0, and it is said that ModifyingAbove x With caret Subscript k plus p vertical-bar k is the p‐step predictive estimate and ModifyingAbove x With caret Subscript k vertical-bar k minus p is the p‐step predictive filtering estimate.

Several two‐pass (forward‐backward) smoothers have been developed using Kalman recursions [9,83]. The idea behind each such solution is to provide forward filtering using KF and then arrange the backward pass to obtain a q‐lag smoothing estimate at k minus q. Next we will look at a few of the most widely used recursive smoothers.

3.3.1 Rauch‐Tung‐Striebel Algorithm

In the Rauch‐Tung‐Striebel (RTS) smoother developed for fixed intervals [154], the forward state estimates ModifyingAbove x With caret Subscript k and ModifyingAbove x With caret Subscript k Superscript minus and the error covariances upper P Subscript k and upper P Subscript k Superscript minus are taken at each k from KF, and then the q‐lag smoothed state estimate x overTilde Subscript k minus q vertical-bar k and error covariance upper P overTilde Subscript k minus q vertical-bar k are computed at r equals k minus q less-than k backward using backward recursions.

If we think of a smoothing estimate x overTilde Subscript r Baseline delta-equals x overTilde Subscript r vertical-bar k as an available filtering estimate ModifyingAbove x With caret Subscript r adjusted for the predicted residual x overTilde Subscript r plus 1 Baseline minus ModifyingAbove x With caret Subscript r plus 1 Superscript minus by the gain upper K overTilde Subscript r as

then the RTS smoother derivation can be provided as follows.

Define the smoother error epsilon overTilde Subscript r Baseline equals x Subscript r Baseline minus x overTilde Subscript r by

which gives the error covariance

(3.208)upper P overTilde Subscript r Baseline equals upper P Subscript r Baseline plus upper K overTilde Subscript r Baseline left-parenthesis upper P overTilde Subscript r plus 1 Baseline minus upper P Subscript r plus 1 Superscript minus Baseline right-parenthesis upper K overTilde Subscript r Superscript upper T Baseline period

To find the optimal smoother gain upper K overTilde Subscript r, substitute ModifyingAbove epsilon With Ì‚ Subscript r plus 1 Superscript minus Baseline equals upper F Subscript r plus 1 Baseline ModifyingAbove epsilon With Ì‚ Subscript r, represent (3.107) as

StartLayout 1st Row 1st Column epsilon overTilde Subscript r 2nd Column equals 3rd Column ModifyingAbove epsilon With Ì‚ Subscript r Baseline plus upper K overTilde Subscript r Baseline left-parenthesis epsilon overTilde Subscript r plus 1 Baseline minus upper F Subscript r plus 1 Baseline ModifyingAbove epsilon With Ì‚ Subscript r Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column equals 3rd Column left-parenthesis upper I minus upper K overTilde Subscript r Baseline upper F Subscript r plus 1 Baseline right-parenthesis ModifyingAbove epsilon With Ì‚ Subscript r Baseline plus upper K overTilde Subscript r Baseline epsilon overTilde Subscript r plus 1 Baseline comma EndLayout

and arrive at another form of the error covariance

upper P overTilde Subscript r Baseline equals left-parenthesis upper I minus upper K overTilde Subscript r Baseline upper F Subscript r plus 1 Baseline right-parenthesis upper P Subscript r Baseline left-parenthesis upper I minus upper K overTilde Subscript r Baseline upper F Subscript r plus 1 Baseline right-parenthesis Superscript upper T Baseline plus upper K overTilde Subscript r Baseline upper P overTilde Subscript r plus 1 Baseline upper K overTilde Subscript r Superscript upper T Baseline period

Now, apply the derivative with respect to upper K overTilde Subscript r to the trace of upper P overTilde Subscript r, consider upper P overTilde Subscript r plus 1 as the process noise covariance upper Q Subscript r plus 1, and obtain upper K overTilde Subscript r Baseline equals upper P Subscript r Baseline upper F Subscript r plus 1 Superscript upper T Baseline left-parenthesis upper P Subscript r plus 1 Superscript minus Baseline right-parenthesis Superscript negative 1. The RTS smoothing algorithm can then be formalized with the following steps,

(3.209)upper K overTilde Subscript r Baseline equals upper P Subscript r Baseline upper F Subscript r plus 1 Superscript upper T Baseline left-parenthesis upper P Subscript r plus 1 Superscript minus Baseline right-parenthesis Superscript negative 1 Baseline comma
(3.211)upper P overTilde Subscript r Baseline equals upper P Subscript r Baseline plus upper K overTilde Subscript r Baseline left-parenthesis upper P overTilde Subscript r plus 1 Baseline minus upper P Subscript r plus 1 Superscript minus Baseline right-parenthesis upper K overTilde Subscript r Superscript upper T Baseline comma

where the required KF estimates ModifyingAbove x With caret Subscript k, ModifyingAbove x With caret Subscript k Superscript minus, upper P Subscript k, and upper P Subscript k Superscript minus must be available (saved) from the filtering procedure. A more complete analysis of RTS smoother can be found in [83,185].

3.3.2 Bryson‐Frazier Algorithm

Another widely used modified Bryson‐Frazier (MBF) smoother, developed by Bierman [20] for fixed intervals, also uses data stored from the KF forward pass. In this algorithm, the backward pass for upper Lamda overTilde Subscript k Baseline equals 0 and ModifyingAbove lamda With Ì‚ Subscript k Baseline equals 0 is organized using the following recursions,

(3.212)upper Lamda overTilde Subscript r Baseline equals upper H Subscript r Superscript upper T Baseline upper S Subscript r Superscript negative 1 Baseline upper H Subscript r Baseline plus upper Pi Subscript r Superscript upper T Baseline ModifyingAbove upper Lamda With Ì‚ Subscript r Baseline upper Pi Subscript r Baseline comma
(3.213)ModifyingAbove upper Lamda With Ì‚ Subscript r minus 1 Baseline equals upper F Subscript r Superscript upper T Baseline upper Lamda overTilde Subscript r Baseline upper F Subscript r Baseline comma
(3.214)lamda overTilde Subscript r Baseline equals minus upper H Subscript r Superscript upper T Baseline upper S Subscript r Superscript negative 1 Baseline y Subscript r Baseline plus upper Pi Subscript r Superscript upper T Baseline ModifyingAbove lamda With Ì‚ Subscript r Baseline comma
(3.215)ModifyingAbove lamda With Ì‚ Subscript r minus 1 Baseline equals upper F Subscript r Superscript upper T Baseline lamda overTilde Subscript r Baseline comma

where upper Pi Subscript r Baseline equals upper I minus upper K Subscript r Baseline upper H Subscript r and other definitions are taken from Algorithm 4. The MBF q‐lag smoothing estimate and error covariance are then found as

(3.216)x overTilde Subscript r Baseline equals ModifyingAbove x With caret Subscript r Baseline minus upper P Subscript r Baseline ModifyingAbove lamda With Ì‚ Subscript r Baseline comma
(3.217)upper P overTilde Subscript r Baseline equals upper P Subscript r Baseline minus upper P Subscript r Baseline ModifyingAbove upper Lamda With Ì‚ Subscript r Baseline upper P Subscript r Baseline period

It can be seen that the inversion of the covariance matrix is not required for this algorithm, which is an important advantage over the RTS algorithm.

3.3.3 Two‐Filter (Forward‐Backward) Smoothing

Another solution to the smoothing problem can be proposed if we consider data on left-bracket m comma ellipsis comma r comma ellipsis comma k right-bracket, where m can be zero, provide forward filtering on left-bracket m comma r right-bracket and backward filtering on left-bracket k comma r right-bracket, and then combine both estimates at r. The resulting two‐filter (or forward‐backward) smoother is suitable for the fixed interval problem [83], but can also be applied to other smoothing problems. Furthermore, both recursive and batch structures can be designed for two‐filter smoothing by fusing either filtering or predictive estimates.

A two‐filter smoother can be designed if we assume that the forward filtering estimate is obtained at r over left-bracket m comma r right-bracket as ModifyingAbove x With caret Subscript r Superscript normal f and the backward filtering estimate is obtained at r over left-bracket k comma r right-bracket as ModifyingAbove x With caret Subscript r Superscript normal b. The smoothing estimate x overTilde Subscript r can then be obtained by combining both estimates as

where the gains upper K Subscript r Superscript normal f and upper K Subscript r Superscript normal b are required such that the MSE is minimized for the optimal x overTilde Subscript r. Since upper K Subscript r Superscript normal f and upper K Subscript r Superscript normal b should not cause a regular error (bias), they can be linked as upper K Subscript r Superscript normal f Baseline plus upper K Subscript r Superscript normal b Baseline equals upper I. Then (3.218) can be represented as

By defining the forward filtering error as epsilon Subscript r Superscript normal f Baseline equals x Subscript r Baseline minus ModifyingAbove x With caret Subscript r Superscript normal f, the backward one as epsilon Subscript r Superscript normal b Baseline equals x Subscript r Baseline minus ModifyingAbove x With caret Subscript r Superscript normal b, and the smoother error as epsilon overTilde Subscript r Baseline equals x Subscript r Baseline minus x overTilde Subscript r, we next represent the error covariance upper P overTilde Subscript r Baseline equals script upper E left-brace epsilon overTilde Subscript r Baseline epsilon overTilde Subscript r Superscript upper T Baseline right-brace as

StartLayout 1st Row 1st Column upper P overTilde Subscript r 2nd Column equals 3rd Column script upper E left-brace left-bracket x Subscript r Baseline minus upper K Subscript r Superscript normal f Baseline ModifyingAbove x With caret Subscript r Superscript normal f Baseline minus left-parenthesis upper I minus upper K Subscript r Superscript normal f Baseline right-parenthesis ModifyingAbove x With caret Subscript r Superscript normal b Baseline right-bracket left-bracket ellipsis right-bracket Superscript upper T Baseline right-brace 2nd Row 1st Column equals 2nd Column script upper E left-brace left-parenthesis epsilon Subscript r Superscript normal b Baseline minus upper K Subscript r Superscript normal f Baseline ModifyingAbove x With caret Subscript r Superscript normal f Baseline plus upper K Subscript r Superscript normal f Baseline ModifyingAbove x With caret Subscript r Superscript normal b Baseline right-parenthesis left-parenthesis ellipsis right-parenthesis Superscript upper T Baseline right-brace 3rd Row 1st Column Blank 2nd Column equals 3rd Column script upper E left-brace left-parenthesis epsilon Subscript r Superscript normal b Baseline plus upper K Subscript r Superscript normal f Baseline x Subscript r Baseline minus upper K Subscript r Superscript normal f Baseline ModifyingAbove x With caret Subscript r Superscript normal f Baseline minus upper K Subscript r Superscript normal f Baseline x Subscript r Baseline plus upper K Subscript r Superscript normal f Baseline ModifyingAbove x With caret Subscript r Superscript normal b Baseline right-parenthesis left-parenthesis ellipsis right-parenthesis Superscript upper T Baseline right-brace 4th Row 1st Column equals 2nd Column script upper E left-brace left-parenthesis epsilon Subscript r Superscript normal b Baseline plus upper K Subscript r Superscript normal f Baseline epsilon Subscript r Superscript normal f Baseline minus upper K Subscript r Superscript normal f Baseline epsilon Subscript r Superscript normal b Baseline right-parenthesis left-parenthesis ellipsis right-parenthesis Superscript upper T Baseline right-brace 5th Row 1st Column Blank 2nd Column equals 3rd Column upper P Subscript r Superscript normal b Baseline plus upper K Subscript r Superscript normal f Baseline left-parenthesis upper P Subscript r Superscript normal f Baseline plus upper P Subscript r Superscript normal b Baseline right-parenthesis upper K Subscript r Superscript normal f Super Superscript upper T Superscript Baseline minus 2 upper K Subscript r Superscript normal f Baseline upper P Subscript r Superscript normal b Baseline comma EndLayout

equate to zero the derivative applied to the trace of upper P overTilde Subscript r with respect to upper K Subscript r Superscript normal f, and obtain the optimal gains as

Using (3.220) and (3.221), the error covariance upper P overTilde Subscript r can finally be transformed to

and we see that the information script upper I overTilde Subscript r Baseline equals upper P overTilde Subscript r Superscript negative 1 about the smoothing estimate (3.219) is additively combined with the information script upper I overTilde Subscript r Superscript normal f Baseline equals left-parenthesis upper P overTilde Subscript r Superscript normal f Baseline right-parenthesis Superscript negative 1 at the output of the forward filter and script upper I overTilde Subscript r Superscript normal b Baseline equals left-parenthesis upper P overTilde Subscript r Superscript normal b Baseline right-parenthesis Superscript negative 1 at the output of the backward filter,

The proof of (3.222) can be found in [83,185] and is postponed to “Problems”.

Thus, two‐filter (forward‐backward) smoothing is provided by (3.218) with optimal gains (3.220) and (3.221) and error covariance (3.222). It also follows that the information identity (3.223) is fundamental to two‐filter optimal smoothing and must be obeyed regardless of structure (batch or recursive). Practical algorithms of these smoothers are given in [185], and more details about the two‐filter smoothing problem can be found in [83].

3.4 Nonlinear Models and Estimators

So far, we have looked at linear models and estimators. Since many systems are nonlinear in nature and therefore have nonlinear dynamics, their mathematical representations require nonlinear ODEs [80] and algebraic equations. More specifically, we will assume that the process (or system) is nonlinear and that measurement can also be provided using nonlinear sensors. For white Gaussian noise, the exact solution of the nonlinear problem in continuous time was found by Stratonovich [193] and Kushner [92] in the form of a stochastic partial differential equation (SPDE). The state probability density associated with the SPDE is given by the Stratonovich‐Kushner equation, which belongs to the FPK family of equations (2.118), and KBF is its particular solution. Because the Stratonovich‐Kuchner equation has no general solution and is therefore impractical in discrete time, much more attention has been drawn to approximate solutions developed during decades to provide a state estimate with sufficient accuracy.

In discrete‐time state‐space, the nonlinear state and observation equations can be written, respectively, as

where f Subscript k and h Subscript k are some nonlinear time‐varying functions, u Subscript k is an input, and w Subscript k and v Subscript k are white Gaussian with known statistics. If the noise is of low intensity or acts additively, the model (3.224) and (3.225) is often written as

Provided the posterior distribution p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k Baseline right-parenthesis of the state x Subscript k by (3.39), the Bayesian estimate ModifyingAbove x With caret Subscript k for nonlinear models can be found as (3.41) with error covariance (3.42). For Gauss‐Markov processes, p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k Baseline right-parenthesis can be specified by solving the FPK equation (2.118) in the stationary mode as (2.120). This gives fairly accurate estimates, but in practice difficulties arise when f Subscript k and/or h Subscript k are not smooth enough and the noise is large.

To find approximate solutions, Cox in [38] and others extended KF to nonlinear models in the first‐order approximation, and Athans, Wishner, and Bertolini provided it in [12] in the second‐order approximation. However, it was later told [178,185] that nothing definite can be said about the second‐order approximation, and the first‐order extended KF (EKF) was recommended as the main tool. Yet another versions of EKF have been proposed, such as the divided difference filter [136] and quadrature KF [10], and we notice that several solutions beyond the EKF can be found in [40].

Referring to particularly poor performance of the EKF when the system is highly nonlinear and noise large [49], Julier, Uhlmann, and Durrant‐Whyte developed the unscented KF (UKF) [81,82,199] to pick samples around the mean, propagate through the nonlinearity, and then recover the mean and covariance. Although the UKF often outperforms the EKF and can be improved by using high‐order statistics, it loses out in many applications to another approach known as particle filtering.

The idea behind the particle filter (PF) approach [44] is to use sequential Monte Carlo (MC) methods [116] and solve the filtering problem by computing the posterior distributions of the states of some Markov process, given some noisy and partial observations. Given enough time to generate a large number of particles, the PF usually provides better accuracy than other nonlinear estimators. Otherwise, it can suffer from two effects called sample degeneracy and sample impoverishment, which cause divergence.

Next we will discuss the most efficient nonlinear state estimators. Our focus will be on algorithmic solutions, advantages, and drawbacks.

3.4.1 Extended Kalman Filter

The EKF is viewed in state estimation as a nonlinear version of KF that linearizes the mean and covariance between two neighboring discrete points. For smooth rather than harsh nonlinearities, EKF has become the de facto standard technique used in many areas of system engineering.

For the model in (3.226) and (3.227), the first‐order EKF (EKF‐1) and the second‐order EKF (EKF‐2) can be obtained using the Taylor series as shown next. Suppose that both f Subscript k Baseline left-parenthesis x Subscript k minus 1 Baseline right-parenthesis and h Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis are smooth functions and approximate them on a time step between two neighboring discrete points using the second‐order Taylor series. For simplicity, omit the known input u Subscript k.

The nonlinear function f Subscript k Baseline left-parenthesis x Subscript k minus 1 Baseline right-parenthesis can be expanded around the estimate ModifyingAbove x With caret Subscript k minus 1 and h Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis around the prior estimate ModifyingAbove x With caret Subscript k Superscript minus as [178]

where the Jacobian matrices (A.20) are

(3.230)ModifyingAbove upper F With dot Subscript k Baseline equals StartFraction partial-differential f Subscript k Baseline Over partial-differential x EndFraction vertical-bar Subscript x equals ModifyingAbove x With caret Sub Subscript k minus 1 Subscript Baseline comma
(3.231)ModifyingAbove upper H With dot Subscript k Baseline equals StartFraction partial-differential h Subscript k Baseline Over partial-differential x EndFraction vertical-bar Subscript x equals ModifyingAbove x With caret Sub Subscript k Sub Superscript minus Subscript Baseline comma

epsilon Subscript k Superscript minus Baseline equals x Subscript k Baseline minus ModifyingAbove x With caret Subscript k Superscript minus is the prior estimation error, and epsilon Subscript k Baseline equals x Subscript k Baseline minus ModifyingAbove x With caret Subscript k is the estimation error. The second‐order terms are represented by [15]

where the Hessian matrices (A.21) are

and f Subscript i k, i element-of left-bracket 1 comma upper K right-bracket, and h Subscript j k, j element-of left-bracket 1 comma upper M right-bracket, are the ith and jth components, respectively, of vectors f Subscript k Baseline left-parenthesis x Subscript k minus 1 Baseline right-parenthesis and h Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis. Also, e Subscript i Superscript upper K Baseline element-of double-struck upper R Superscript upper K and e Subscript j Superscript upper M Baseline element-of double-struck upper R Superscript upper M are Cartesian basis vectors with the ith and jth components equal to unity and all others equal to zero.

Referring to (3.228) and (3.229), the nonlinear model (3.226) and (3.227) can now be approximated with

(3.236)x Subscript k Baseline equals ModifyingAbove upper F With dot Subscript k Baseline x Subscript k minus 1 Baseline plus eta Subscript k Baseline plus w Subscript k Baseline comma
(3.237)y overTilde Subscript k Baseline equals ModifyingAbove upper H With dot Subscript k Baseline x Subscript k Baseline plus v Subscript k Baseline comma

where the modified observation vector is y overTilde Subscript k Baseline equals y Subscript k Baseline minus psi Subscript k, also

(3.238)eta Subscript k Baseline equals f Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis minus ModifyingAbove upper F With dot Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline plus one half alpha Subscript k Baseline comma
(3.239)psi Subscript k Baseline equals h Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis minus ModifyingAbove upper H With dot Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline plus one half beta Subscript k Baseline comma

and other matrices are specified earlier. As can be seen, the second‐order terms alpha Subscript k and beta Subscript k affect only eta Subscript k and psi Subscript k. If alpha Subscript k and beta Subscript k contribute insignificantly to the estimates [185], they are omitted in the EKF‐1. Otherwise, the second‐order EKF‐2 is used.

The EKF algorithm can now be summarized with the recursions

(3.241)upper S Subscript k Baseline equals ModifyingAbove upper H With dot Subscript k Baseline upper P Subscript k Superscript minus Baseline ModifyingAbove upper H With dot Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline comma
(3.243)ModifyingAbove x With caret Subscript k Baseline equals f Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis plus upper K Subscript k Baseline left-brace y Subscript k Baseline minus psi Subscript k Baseline minus h Subscript k Baseline left-bracket f Subscript k Baseline left-parenthesis ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis right-bracket right-brace comma

Now it is worth mentioning again that the EKF usually works very accurately when both nonlinearities are weak. However, if this condition is not met and the nonlinearity is severe, another approach using the “unscented transformation” typically gives better estimates. The corresponding modification of the KF [81] is considered next.

3.4.2 Unscented Kalman Filter

Referring to typically large errors and possible divergence of the KF with sharp nonlinearities [49], Julier, Uhlrnann, and Durrant‐Whyte have developed another approach to nonlinear filtering, following the intuition that it is easier to approximate a probability distribution than it is to approximate an arbitrary nonlinear function or transformation [82]. The approach originally proposed by Uhlrnann in [199] was called the unscented transformation (UT) and resulted in the unscented (or Uhlrnann) KF (UKF) [81,82]. The UKF has been further deeply investigated and used extensively in nonlinear filtering practice. Next we will succinctly introduce UT and UKF, referring the reader to [185] and many other books, tutorials, and papers discussing the theory and applications of UT and UKF for further learning.

The Unscented Transformation

Consider a nonlinear function f Subscript k Baseline left-parenthesis x Subscript k minus 1 Baseline right-parenthesis. The problem with its linear approximation (3.210) is that the matrix ModifyingAbove upper F With dot Subscript k projects x Subscript k minus 1 into the next time index k in a linear way, which may not be precise and even cause divergence. To avoid the linearization and not use matrix ModifyingAbove upper F With dot Subscript k, we can project through f Subscript k Baseline left-parenthesis x Subscript k minus 1 Baseline right-parenthesis the statistics of x Subscript k minus 1 and obtain at k the mean and approximate covariance. First of all, we are interested in the projection of the mean and the deviations from the mean by the standard deviation.

Referring to [82], we can consider a upper K‐state process and assign 2 upper K plus 1 weighted samples of sigma points chi Subscript k minus 1 Superscript left-parenthesis i right-parenthesis at k minus 1 for i element-of left-bracket 0 comma upper K right-bracket as

where upper A equals StartRoot upper P EndRoot, and upper A Subscript i means the ith column of upper A if upper P equals upper A upper A Superscript upper T. Otherwise, if upper P equals upper A Superscript upper T Baseline upper A, upper A Subscript i means the ith raw of upper A. Note that, to find the matrix square root, the Cholesky decomposition method can be used [59]. A tuning factor kappa can be either positive or negative, although such that upper K plus kappa not-equals 0. This factor is introduced to affect the fourth and higher‐order sample moments of the sigma points.

While propagating through f Subscript k Baseline left-parenthesis x Subscript k minus 1 Baseline right-parenthesis, the sigma points (3.245) are projected at k as

and one may compute the predicted mean x overbar Subscript k by the weighed sum of x overbar Subscript k Superscript left-parenthesis i right-parenthesis as

where the weighted function upper W Subscript i is specified in [82] as upper W 0 equals kappa slash left-parenthesis upper K plus kappa right-parenthesis for i equals 0 and as upper W Subscript i Baseline equals 0.5 slash left-parenthesis upper K plus kappa right-parenthesis for i not-equals 0. But it can also be chosen in another way, for example, as upper W 0 equals 1 for i equals 0 and upper W 0 equals 1 slash 2 upper K for i not-equals 0 [185]. The advantage of the UT approach is that the weights upper W Subscript i can be chosen in such a way that this also affects higher‐order statistics.

Provided x overbar Subscript k by (3.247), the error covariance can be predicted as

Referring to (3.246) and h Subscript k Baseline left-parenthesis x Subscript k Baseline right-parenthesis in (3.227), the predicted observations can then be formed as

(3.249)y overbar Subscript k Superscript left-parenthesis i right-parenthesis Baseline equals h Subscript k Baseline left-parenthesis x overbar Subscript k Superscript left-parenthesis i right-parenthesis Baseline right-parenthesis comma

and further averaged to obtain

with the prediction error covariance

The cross‐covariance between x overbar Subscript k and y overbar Subscript k can be found as

It follows that the UT just described provides a set of statistics at the outputs of the nonlinear blocks for an optimal solution to the filtering problem. The undoubted advantage over the Taylor series (3.228) and (3.229) is that the Jacobian matrices are not used, and projections are obtained directly through nonlinear functions.

UKF Algorithm

So the ultimate goal of the UKF algorithm is to get rid of all matrices of the EKF algorithm (3.240)(3.244) using the previous introduced projections. Let us show how to do it. Since (3.248) predicts the error covariance, we can approximate upper P Subscript k Superscript minus with upper P Subscript k Superscript left-parenthesis x right-parenthesis, and since (3.251) predicts the innovation covariance (3.223), we can approximate upper S Subscript k with upper P Subscript k Superscript left-parenthesis y right-parenthesis. Then the product upper P Subscript k Superscript minus Baseline ModifyingAbove upper H With dot Subscript k Superscript upper T in (3.242) can be transformed to upper P Subscript k Superscript left-parenthesis x y right-parenthesis defined by (3.252) as

(3.253)StartLayout 1st Row 1st Column upper P Subscript k Superscript minus Baseline ModifyingAbove upper H With dot Subscript k Superscript upper T 2nd Column equals 3rd Column upper P Subscript k Superscript left-parenthesis x right-parenthesis Baseline ModifyingAbove upper H With dot Subscript k Superscript upper T 2nd Row 1st Column equals 2nd Column sigma-summation Underscript i equals 0 Overscript 2 upper K Endscripts upper W Subscript i Baseline left-bracket x overbar Subscript k Superscript left-parenthesis i right-parenthesis Baseline minus x overbar Subscript k Baseline right-bracket left-bracket x overbar Subscript k Superscript left-parenthesis i right-parenthesis Baseline minus x overbar Subscript k Baseline right-bracket Superscript upper T Baseline ModifyingAbove upper H With dot Subscript k Superscript upper T 3rd Row 1st Column Blank 2nd Column equals 3rd Column sigma-summation Underscript i equals 0 Overscript 2 upper K Endscripts upper W Subscript i Baseline left-bracket x overbar Subscript k Superscript left-parenthesis i right-parenthesis Baseline minus x overbar Subscript k Baseline right-bracket left-bracket ModifyingAbove upper H With dot Subscript k Baseline x overbar Subscript k Superscript left-parenthesis i right-parenthesis Baseline minus ModifyingAbove upper H With dot Subscript k Baseline x overbar Subscript k Baseline right-bracket Superscript upper T 4th Row 1st Column Blank 2nd Column equals 3rd Column sigma-summation Underscript i equals 0 Overscript 2 upper K Endscripts upper W Subscript i Baseline left-bracket x overbar Subscript k Superscript left-parenthesis i right-parenthesis Baseline minus x overbar Subscript k Baseline right-bracket left-bracket y overbar Subscript k Superscript left-parenthesis i right-parenthesis Baseline minus y overbar Subscript k Baseline right-bracket Superscript upper T 5th Row 1st Column Blank 2nd Column equals 3rd Column upper P Subscript k Superscript left-parenthesis x y right-parenthesis EndLayout

and the gain upper K Subscript k (3.242) represented as upper K Subscript k Baseline equals upper P Subscript k Superscript left-parenthesis x y right-parenthesis Baseline upper P Subscript k Superscript left-parenthesis y right-parenthesis Super Superscript negative 1. Finally, (3.244) can be transformed as

(3.254)StartLayout 1st Row 1st Column upper P Subscript k 2nd Column equals 3rd Column left-parenthesis upper I minus upper K Subscript k Baseline ModifyingAbove upper H With dot Subscript k Baseline right-parenthesis upper P Subscript k Superscript minus 2nd Row 1st Column equals 2nd Column upper P Subscript k Superscript minus Baseline minus upper K Subscript k Baseline ModifyingAbove upper H With dot Subscript k Baseline upper P Subscript k Superscript minus 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper P Subscript k Superscript minus Baseline minus upper K Subscript k Baseline upper P Subscript k Superscript left-parenthesis x y right-parenthesis Super Superscript upper T 4th Row 1st Column Blank 2nd Column equals 3rd Column upper P Subscript k Superscript minus Baseline minus upper K Subscript k Baseline upper P Subscript k Superscript left-parenthesis y right-parenthesis Super Superscript upper T Superscript Baseline upper K Subscript k Superscript upper T Baseline period EndLayout

It can be seen from the previous that there is now a complete set of predictions to get rid of matrices in EKF, and the UKF algorithm is thus the following

(3.256)ModifyingAbove x With caret Subscript k Baseline equals x overbar Subscript k Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus y overbar Subscript k Baseline right-parenthesis comma

where upper P Subscript k Superscript left-parenthesis x y right-parenthesis is computed by (3.252), upper P Subscript k Superscript minus Baseline equals upper P Subscript k Superscript left-parenthesis x right-parenthesis by (3.248), upper P Subscript k Superscript left-parenthesis y right-parenthesis by (3.251), x overbar Subscript k by (3.247), and y overbar Subscript k by (3.250).

Many studies have confirmed that the UKF in (3.255)(3.257) is more accurate than EKF when the nonlinearity is not smooth. Moreover, using the additional degree of freedom kappa in the weights upper W Subscript i, the UKF can be made even more accurate. It should be noted, however, that the same statistics can be predicted by UT for different distributions, which is a serious limitation on accuracy. Next, we will consider the “particle filtering” approach that does not have this drawback.

3.4.3 Particle Filtering

Along with the linear optimal KF, the Bayesian approach has resulted in two important suboptimal nonlinear solutions: point mass filter (PMF) [8] and particle filter (PF) [62]. The PMF computes posterior density recursively over a deterministic state‐space grid. It can be applied to any nonlinear and non‐Gaussian model, but it has a serious limitation: complexity. The PF performs sequential MC estimation by representing the posterior densities with samples or particles, similarly to PMF, and is generally more successful in accuracy than EKF and UKF for highly nonlinear systems with large Gaussian and non‐Gaussian noise.

To introduce the PF approach, we will assume that a nonlinear system is well represented by a first‐order Markov model and is observed over a nonlinear equation with (3.206) and (3.207) ignoring the input u Subscript k. We will be interested in the best estimate for x Subscript 1 colon k Baseline equals left-brace x 1 x 2 ellipsis x Subscript k Baseline right-brace, given measurements y Subscript 1 colon k Baseline equals left-brace y 1 y 2 ellipsis y Subscript k Baseline right-brace. More specifically, we will try to obtain a filtering estimate from p left-parenthesis x Subscript k Baseline vertical-bar x Subscript 1 colon k Baseline right-parenthesis. Within the Bayesian framework, the required estimate and the estimation error can be extracted from the conditional posterior probability density p left-parenthesis x Subscript 1 colon k Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis. This can be done, albeit approximately, using the classical “bootstrap” PF considered next.

Bootstrap

The idea behind PF is simple and can be described in two steps, referring to the bootstrap proposed by Gordon, Salmond, and Smith [62].

Prediction. Draw upper N samples3 (or particles) x Subscript k minus 1 Superscript left-parenthesis i right-parenthesis Baseline tilde p left-parenthesis x Subscript k minus 1 Baseline vertical-bar y Subscript 1 colon k minus 1 Baseline right-parenthesis and w Subscript k Superscript left-parenthesis i right-parenthesis Baseline tilde p left-parenthesis w Subscript k Baseline right-parenthesis. Pass these samples through the system model (3.206) to obtain upper N prior samples x Subscript k Superscript minus left-parenthesis i right-parenthesis Baseline equals f Subscript k Baseline left-parenthesis x Subscript k minus 1 Superscript left-parenthesis i right-parenthesis Baseline comma w Subscript k Superscript left-parenthesis i right-parenthesis Baseline right-parenthesis. Since prediction may not be accurate, update the result next.

Update. Using y Subscript k, evaluate the likelihood of each prior sample as p left-parenthesis y Subscript k Baseline vertical-bar x Subscript k Superscript minus left-parenthesis i right-parenthesis Baseline right-parenthesis, normalize by upper Sigma equals sigma-summation Underscript i equals 1 Overscript upper N Endscripts p left-parenthesis y Subscript k Baseline vertical-bar x Subscript k Superscript minus left-parenthesis i right-parenthesis Baseline right-parenthesis, and obtain a normalized weight omega Subscript i Baseline equals p left-parenthesis y Subscript k Baseline vertical-bar x Subscript k Superscript minus left-parenthesis i right-parenthesis Baseline right-parenthesis slash upper Sigma, which is a discrete pmf over x Subscript k Superscript minus left-parenthesis i right-parenthesis. From omega Subscript i, find the estimate of x Subscript k and evaluate errors. Optionally, resample upper N times from omega Subscript i to generate samples x overTilde Subscript k Superscript left-parenthesis i right-parenthesis such that upper P left-brace x overTilde Subscript k Superscript left-parenthesis j right-parenthesis Baseline equals x Subscript k Superscript minus left-parenthesis i right-parenthesis Baseline right-brace equals omega Subscript i holds for any j.

If we generate a huge number of the particles at each k, then the bootstrap will be as accurate as the best hypothetical filter. This, however, may not be suitable for many real‐time applications. But even if the computation time is not an issue, incorrectly set initial values cause errors in the bootstrap to grow at a higher rate than in the KF. Referring to these specifics, next we will consider a more elaborated and complete theory of PF.

Particle Filter Theory

Within the Bayesian framework, we are interested in the posterior pmf p left-parenthesis x Subscript 1 colon k Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis to obtain an estimate of x Subscript 1 colon k and evaluate the estimation errors. Thus, we may suppose that the past p left-parenthesis x Subscript 1 colon k minus 1 Baseline vertical-bar y Subscript 1 colon k minus 1 Baseline right-parenthesis is known, although in practice it may be too brave.

Assuming that p left-parenthesis x Subscript 1 colon k Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis is analytically inaccessible, we can find its discrete approximation at upper N points as a function of i element-of left-bracket 1 comma upper N right-bracket. Using the sifting property of Dirac delta, we can also write

and go to the discrete form by drawing samples x Subscript 1 colon k Superscript left-parenthesis i right-parenthesis from p left-parenthesis x Subscript 1 colon k Superscript left-parenthesis i right-parenthesis Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis, which we think is not easy. But we can introduce the importance density q left-parenthesis x Subscript 1 colon k Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis, from which x Subscript 1 colon k Superscript left-parenthesis i right-parenthesis can easily be drawn. Of course, the importance density must be of the same class as p left-parenthesis x Subscript 1 colon k Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis, so it is pmf. At this point, we can rewrite (3.258) as

where g left-parenthesis x Subscript 1 colon k Superscript left-parenthesis i right-parenthesis Baseline right-parenthesis is defined by comparing (3.259a) and (3.259b). Since (3.259b) de facto is the expectation of g left-parenthesis x Subscript 1 colon k Superscript left-parenthesis i right-parenthesis Baseline right-parenthesis, we then apply the sequential importance sampling (SIS), which is the MC method of integration, and rewrite (3.259b) in discrete form as

(3.260a)p left-parenthesis x Subscript 1 colon k Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis almost-equals sigma-summation Underscript i equals 1 Overscript upper N Endscripts StartFraction p left-parenthesis x Subscript 1 colon k Superscript left-parenthesis i right-parenthesis Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis Over q left-parenthesis x Subscript 1 colon k Superscript left-parenthesis i right-parenthesis Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis EndFraction delta left-parenthesis x Subscript 1 colon k Baseline minus x Subscript 1 colon k Superscript left-parenthesis i right-parenthesis Baseline right-parenthesis

where the importance weight

corresponds to each of the generated particles x Subscript 1 colon k Superscript left-parenthesis i right-parenthesis. Note that (3.261) still needs to be normalized for sigma-summation Underscript i equals 1 Overscript upper N Endscripts omega Subscript k Superscript left-parenthesis i right-parenthesis Baseline equals 1 in order to be a density. Therefore, the sign proportional-to is used.

To formalize the recursive form omega Subscript k minus 1 Superscript left-parenthesis i right-parenthesis Baseline right-arrow omega Subscript k Superscript left-parenthesis i right-parenthesis for (3.261), we apply Bayes' rule to p left-parenthesis x Subscript 1 colon k Baseline comma y Subscript k Baseline vertical-bar y Subscript 1 colon k minus 1 Baseline right-parenthesis and write

Using p left-parenthesis x Subscript 1 colon k Baseline vertical-bar y Subscript 1 colon k minus 1 Baseline right-parenthesis equals p left-parenthesis x Subscript 1 colon k minus 1 Baseline vertical-bar y Subscript 1 colon k minus 1 Baseline right-parenthesis p left-parenthesis x Subscript k Baseline vertical-bar x Subscript 1 colon k minus 1 Baseline comma y Subscript 1 colon k minus 1 Baseline right-parenthesis and the Markov property, we next represent (3.262) as

Since the importance density is of the same class as p left-parenthesis x Subscript 1 colon k Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis, we follow [43,155], apply Bayes' rule to q left-parenthesis x Subscript 1 colon k Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis equals q left-parenthesis x Subscript k Baseline comma x Subscript 1 colon k minus 1 Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis, and choose the importance density to factorize of the form

By combining (3.261), (3.263), and (3.264), the recursion for (3.261) can finally be found as

If we now substitute (3.265) in (3.260b), then we can use the density p left-parenthesis x Subscript 1 colon k Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis to find the Bayesian estimate

and the estimation error covariance

It should be noted that (3.266) and (3.267) are valid for both smoothing and filtering. In the case of filtering, the weight (3.265) ignores the past history and becomes

(3.268)omega Subscript k Superscript left-parenthesis i right-parenthesis Baseline proportional-to omega Subscript k minus 1 Superscript left-parenthesis i right-parenthesis Baseline StartFraction p left-parenthesis y Subscript k Baseline vertical-bar x Subscript k Superscript left-parenthesis i right-parenthesis Baseline right-parenthesis p left-parenthesis x Subscript k Superscript left-parenthesis i right-parenthesis Baseline vertical-bar x Subscript k minus 1 Superscript left-parenthesis i right-parenthesis Baseline right-parenthesis Over q left-parenthesis x Subscript k Superscript left-parenthesis i right-parenthesis Baseline vertical-bar x Subscript k minus 1 Superscript left-parenthesis i right-parenthesis Baseline comma y Subscript k Baseline right-parenthesis EndFraction comma

the posterior pmf (3.260b) transforms to

(3.269)p left-parenthesis x Subscript k Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis equals sigma-summation Underscript i equals 1 Overscript upper N Endscripts omega Subscript k Superscript left-parenthesis i right-parenthesis Baseline delta left-parenthesis x Subscript k Baseline minus x Subscript k Superscript left-parenthesis i right-parenthesis Baseline right-parenthesis comma

and the filtering estimates can be found as

(3.270a)ModifyingAbove x With caret Subscript k vertical-bar k Baseline equals integral x Subscript k Baseline p left-parenthesis x Subscript k Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis normal d x Subscript k Baseline
(3.270b)almost-equals sigma-summation Underscript i equals 1 Overscript upper N Endscripts x Subscript k Superscript left-parenthesis i right-parenthesis Baseline omega Subscript k Superscript left-parenthesis i right-parenthesis Baseline comma
(3.271a)StartLayout 1st Row 1st Column upper P Subscript k vertical-bar k 2nd Column equals integral left-parenthesis x Subscript k Baseline minus ModifyingAbove x With caret Subscript k vertical-bar k Baseline right-parenthesis left-parenthesis x Subscript k Baseline minus ModifyingAbove x With caret Subscript k vertical-bar k Baseline right-parenthesis Superscript upper T Baseline p left-parenthesis x Subscript k Baseline vertical-bar y Subscript 1 colon k Baseline right-parenthesis normal d x Subscript k Baseline EndLayout
(3.271b)almost-equals sigma-summation Underscript i equals 1 Overscript upper N Endscripts left-parenthesis x Subscript k Superscript left-parenthesis i right-parenthesis Baseline minus ModifyingAbove x With caret Subscript k vertical-bar k Baseline right-parenthesis left-parenthesis x Subscript k Superscript left-parenthesis i right-parenthesis Baseline minus ModifyingAbove x With caret Subscript k vertical-bar k Baseline right-parenthesis Superscript upper T Baseline omega Subscript k Superscript left-parenthesis i right-parenthesis Baseline period

Although PF is quite transparent and simple algorithmically, it has a serious drawback associated with the divergence caused by two effects called sample degeneracy and sample impoverishment [43,62,155]. Both these effects are associated with “bad” distribution of particles. The PF divergence usually occurs at low noise levels and is aggravated by incorrect initial values. There is a simple remedy for the divergency: set upper N right-arrow infinity to make both (3.248) and (3.251) true densities. However, this causes computational problems in real‐time implementations.

These disadvantages can be effectively overcome by improving the diversity of samples in hybrid structures [114]. Examples are the PF/UKF [201], PF/KF [43], and PF combined with the UFIR filter [143]. Nevertheless, none of the known solutions is protected from divergency when the noise is very low and upper N is small. The following issues need to be addressed to improve the performance.

Degeneracy. Obviously, the best choice of importance density is the posterior density itself. Otherwise, the unconditional variance of the importance weights increases with time for the observations y Subscript 1 colon k, interpreted as random variables [43]. This unavoidable phenomenon, known as sample degeneracy [43], has the following practical appearance: after a few iterations, all but one of the normalized weights are very close to zero. Thus, a large computational load will be required to update the particles, whose contribution to the final estimate is almost zero.

Importance density. The wrong choice of importance density may crucially affect the estimate. Therefore, efforts should be made to justify acceptable solutions aimed at minimizing the variance of the importance weights.

Resampling. Resampling of particles is often required to reduce the effects of degeneracy. The idea behind resampling is to skip particles that have small weights and multiply ones with large weights. Although the resampling step mitigates the degeneracy, it poses another problem, which is discussed next.

Sample impoverishment. As a consequence of resampling, particles with large weights are statistically selected many times. It results in a loss of divergency between the particles, since the resulting sample will contain many repeated points. This problem is called sample impoverishment, and its effect can be especially destroying when the noise is low and the number of particles in insufficient.

3.5 Robust State Estimation

Robustness is required of an estimator when model errors occur due to mismodeling, noise environments are uncertain, and a system (process) undergoes unpredictable temporary changes such as jumps in velocity, phase, frequency, etc. Because the KF is poorly protected against such factors, efforts should be made whenever necessary to “robustify” the performance.

When a system is modeled with errors in poorly known noise environments, then matrices upper F Subscript k, upper E Subscript k, upper B Subscript k, upper H Subscript k, upper D Subscript k, upper Q Subscript k, and upper R Subscript k in (3.32) and (3.33) can be complicated by uncertain additions upper Delta upper F Subscript k, upper Delta upper E Subscript k, upper Delta upper B Subscript k, upper Delta upper H Subscript k, upper Delta upper D Subscript k, upper Delta upper Q Subscript k, and upper Delta upper R Subscript k, and the state‐space equations written as

where the covariance upper Q Subscript k of noise w Subscript k and upper R Subscript k of v Subscript k may also have uncertain parts resulting in upper Q Subscript k Baseline plus upper Delta upper Q Subscript k and upper R Subscript k Baseline plus upper Delta upper R Subscript k.

Each uncertainty upper Delta Ï’ of a system can be completely or partially unknown, being either deterministic or stochastic [35]. But even if upper Delta Ï’ is uncertain, the maximum values of its components are usually available in applications. This allows restricting the estimation error covariance, as was done by Toda and Patel in [197] for nonzero upper Delta upper F, upper Delta upper H, upper Delta upper Q, and upper Delta upper R. Minimizing errors for a set of maximized uncertain parameters, all of each have bounded norms, creates the foundation for robust filtering [65]. The robust state estimation problem also arises when all matrices are certain, but noise is not Gaussian, heavy‐tailed, or Gaussian with outliers.

The minimax approach is most popular in the design of robust estimators [87, 123, 124, 135, 207] under the previous assumptions. Shown that a saddle‐point property holds, the minimax estimator designed to have worst‐case optimal performance is referred to as minimax robust [160]. Huber showed in [73] that such an estimator can be treated as the ML estimator for the least favorable member of the class [160]. Referring to [73], several approaches have been developed over the decades to obtain various kinds of minimax state estimators, such as the robust KF and upper H Subscript infinity filter.

3.5.1 Robustified Kalman Filter

After leaving the comfortable Gaussian environment, the KF output degrades, and efforts must be made to improve performance. In many cases, this is easier to achieve by modifying the KF algorithm rather than deriving a new filter. For measurement noise with uncertain distribution (supposedly heavy‐tailed), Masreliez and Martin robustified KF [124] to protect against outliers in the innovation residual. To reduce errors caused by such an uncertainty, they introduced a symmetric vector influence function upper Psi left-parenthesis nu Subscript k Baseline right-parenthesis, where nu Subscript k Baseline equals upper T Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline x Subscript k Superscript minus Baseline right-parenthesis is the weighted residual and upper T Subscript k is a transformation matrix of a certain type. For u Subscript k Baseline equals 0, upper B Subscript k Baseline equals upper I, and assuming all uncertain increments in (3.272) and (3.273) are zero, these innovations have resulted in the following robustified KF algorithm [124]

(3.274)upper P Subscript k Superscript minus Baseline equals upper F Subscript k Baseline upper P Subscript k minus 1 Baseline upper F Subscript k Superscript upper T Baseline plus upper Q Subscript k Baseline comma
(3.275)ModifyingAbove x With caret Subscript k Superscript minus Baseline equals upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline comma
(3.276)nu Subscript k Baseline equals upper T Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis comma
(3.277)ModifyingAbove x With caret Subscript k Baseline equals ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper T Subscript k Superscript upper T Baseline upper Psi left-parenthesis nu Subscript k Baseline right-parenthesis comma

where a component psi Subscript p Baseline left-parenthesis nu right-parenthesis of upper Psi left-parenthesis nu right-parenthesis is an odd symmetric scalar influence function corresponding to the minimax estimate and psi prime Subscript p Baseline left-parenthesis nu right-parenthesis equals d psi Subscript p Baseline left-parenthesis nu right-parenthesis slash d nu. To saturate the outliers efficiently, function psi Subscript p Baseline left-parenthesis nu right-parenthesis was written as (yet another function psi Subscript epsilon Baseline left-parenthesis nu right-parenthesis was suggested in [124])

psi Subscript p Baseline left-parenthesis nu right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1st Column StartFraction 1 Over s y Subscript p Baseline EndFraction tangent left-parenthesis StartFraction nu Over 2 s y Subscript p Baseline EndFraction right-parenthesis 2nd Column comma StartAbsoluteValue nu EndAbsoluteValue less-than-or-slanted-equals y Subscript p Baseline 2nd Row 1st Column StartFraction 1 Over s y Subscript p Baseline EndFraction tangent left-parenthesis StartFraction 1 Over 2 s EndFraction right-parenthesis sgn left-parenthesis nu right-parenthesis 2nd Column comma StartAbsoluteValue nu EndAbsoluteValue greater-than y Subscript p Baseline EndLayout comma

where 0 less-than p less-than 1 is a selected value, s equals s left-parenthesis p right-parenthesis is such that inf Underscript 0 less-than p less-than 1 Endscripts s left-parenthesis p right-parenthesis equals StartFraction 1 Over pi EndFraction [121], and y Subscript p is the saturation point. The factor upper E 0 left-brace psi prime Subscript p Baseline left-parenthesis nu right-parenthesis right-brace is completely defined by the selected p‐value as

upper E 0 left-brace psi prime left-parenthesis nu right-parenthesis right-brace equals StartFraction 1 Over s squared y Subscript p Superscript 2 Baseline EndFraction left-bracket 1 minus p left-parenthesis 1 plus tangent squared StartFraction 1 Over 2 s EndFraction right-parenthesis right-bracket

and more detail can be found in [124] and [121].

The advantage of this algorithm is that the error covariance upper P Subscript k for selected p‐point is always less than its value when the components of the transformed residual vector nu Subscript k are independently and identically distributed with the least favorable marginal distribution [87]. As mentioned in [87], this worst‐case covariance is the optimum covariance for the case where the transformed residuals have this least favorable property. However, this estimate does not provide a saddle point for the MSE due to the constraints of the linear model, as is discussed in [124]. A similar problem was latter solved by Schick and Mitter in [160].

3.5.2 Robust Kalman Filter

An advanced approach to state estimation under uncertain matrices was developed by Khargonekar, Petersen, and Zhou in [89]. It was assumed that upper Delta Ï’ is coupled with the bounded uncertainty upper Omega as upper H 1 upper Omega upper E, where upper Omega Superscript upper T Baseline upper Omega less-than-or-slanted-equals upper I and upper H 1 and upper E are some known matrices. Then the error minimization problem is solved for the maximized norm‐bounded uncertain block. Based on this approach, many robust estimators have been developed for time‐varying and time‐invariant systems, assuming different operation conditions and environments [42,55,57,113,129,215]. Next we give a robust KF (RKF) scheme obtained by Xie, Soh, and de Souza in [215] and generalized in [111] for uncertain models with known uncorrelated white noise sources.

Consider a discrete‐time state‐space model

(3.280)y Subscript k Baseline equals upper H Subscript delta Baseline x Subscript k Baseline plus v Subscript k

and unite the uncertain matrices upper F Subscript delta Baseline equals upper F plus upper Delta upper F Subscript k and upper H Subscript delta Baseline equals upper H plus upper Delta upper H Subscript k in a parameter uncertainties vector as

where upper Omega Subscript k is an unknown uncertain matrix such that upper Omega Subscript k Superscript upper T Baseline upper Omega Subscript k Baseline less-than-or-slanted-equals upper I for all k and upper H 1, upper H 2, and upper E are known matrices of appropriate dimensions. Noise vectors w Subscript k and v Subscript k are supposed to be zero mean Gaussian and uncorrelated with the covariances upper E left-brace w Subscript k Baseline w Subscript k Superscript upper T Baseline right-brace equals upper Q and upper E left-brace v Subscript k Baseline v Subscript k Superscript upper T Baseline right-brace equals upper R. It is also supposed that the system is quadratically stable.

Quadratic stability of a linear system [142]: A system ((3.261)) is said to be quadratically stable if there exists a symmetric positive definite matrix upper P such that

(3.282)left-parenthesis upper F plus upper Delta upper F Subscript k Baseline right-parenthesis Superscript upper T Baseline upper P left-parenthesis upper F plus upper Delta upper F Subscript k Baseline right-parenthesis minus upper P less-than 0

for all admissible uncertainties upper Delta upper F Subscript k .

We can look for a stable KF estimate in the form of [215]

where ModifyingAbove upper F With caret Subscript k and ModifyingAbove upper K With caret Subscript k are to be determined in a way such that the estimation error epsilon Subscript k Baseline equals x Subscript k Baseline minus ModifyingAbove x With caret Subscript k is asymptotically stable and the epsilon Subscript k dynamics satisfies

(3.284)script upper E left-brace epsilon Subscript k Superscript upper T Baseline epsilon Subscript k Baseline right-brace less-than-or-slanted-equals trace script í’« Subscript k Baseline

for a symmetric nonnegative definite matrix script í’« Subscript k being an optimized upper bound of the error covariance to provide a guaranteed cost by solving the minimax problem

script í’¥ equals min Underscript epsilon Subscript k Baseline Endscripts max Underscript upper Delta upper F Subscript k Baseline comma upper Delta upper H Subscript k Baseline Endscripts script í’« Subscript k Baseline left-parenthesis epsilon Subscript k Baseline comma upper Delta upper F Subscript k Baseline comma upper Delta upper H Subscript k Baseline right-parenthesis period

Now, since matrices ModifyingAbove upper F With caret Subscript k and ModifyingAbove upper K With caret Subscript k are specified, it is necessary to link the estimate (3.283) with the standard KF having no uncertainties.

Because error epsilon Subscript k depends on the system state, we can introduce an augmented vector xi Subscript k Baseline equals StartBinomialOrMatrix epsilon Subscript k Baseline Choose ModifyingAbove x With caret Subscript k EndBinomialOrMatrixand represent it recursively as

(3.285)xi Subscript k plus 1 Baseline equals left-parenthesis upper F overbar Subscript k Baseline plus upper D overbar Subscript k Baseline upper Delta Subscript k Baseline upper E overbar right-parenthesis xi Subscript k Baseline plus upper G overbar Subscript k Baseline eta Subscript k Baseline comma

where xi 0 equals StartBinomialOrMatrix x 0 Choose 0 EndBinomialOrMatrix, eta Subscript k Baseline equals StartBinomialOrMatrix w Subscript k Baseline Choose v Subscript k EndBinomialOrMatrix, upper Q overbar equals script upper E left-brace eta Subscript k Baseline eta Subscript k Superscript upper T Baseline right-brace, and

For given upper Delta Subscript k, the covariance matrix upper Sigma Subscript k Baseline equals script upper E left-brace xi Subscript k Baseline xi Subscript k Superscript upper T Baseline right-brace of xi Subscript k satisfies the following Lyapunov equation,

(3.287)left-parenthesis upper F overbar Subscript k Baseline plus upper D overbar Subscript k Baseline upper Delta Subscript k Baseline upper E overbar right-parenthesis upper Sigma Subscript k Baseline left-parenthesis upper F overbar Subscript k Baseline plus upper D overbar Subscript k Baseline upper Delta Subscript k Baseline upper E overbar right-parenthesis Superscript upper T Baseline minus upper Sigma Subscript k plus 1 Baseline plus upper G overbar Subscript k Baseline upper Q overbar upper G overbar Subscript k Superscript upper T Baseline equals 0 period

Since the uncertainty upper Delta Subscript k is unknown, we are interested in finding an upper bound upper Sigma overbar of upper Sigma Subscript k for all admissible upper Delta Subscript k. By replacing upper Sigma Subscript k with upper Sigma overbar, we arrive at the Lyapunov inequality

and notice that upper Sigma Subscript k Baseline less-than-or-slanted-equals upper Sigma overbar Subscript k holds for all upper Delta Subscript k, provided that upper Sigma Subscript k for optimal estimates stays at a saddle.

It has been shown [111] that the filter (3.283) can be said to be robust if for some scaling factor final sigma Subscript k Baseline greater-than 0 there exists a bounded, positive definite, and symmetric upper Sigma overTilde Subscript k Baseline greater-than-or-slanted-equals 0 that satisfies the DDRE

such that upper I minus final sigma Subscript k Baseline upper E overbar upper Sigma overTilde Subscript k Baseline upper E overbar Superscript upper T Baseline greater-than 0 for upper Sigma overTilde Subscript 0 Baseline equals upper Sigma overTilde Subscript 0 Baseline equals Start 2 By 2 Matrix 1st Row 1st Column upper P Subscript x 0 Baseline 2nd Column 0 2nd Row 1st Column 0 2nd Column 0 EndMatrix.

Without going into other details, which can be found in [215,233], we summarize the RKF estimate proposed in [111] with

where the necessary matrices with uncertain components are computed by

(3.291)StartLayout 1st Row 1st Column upper F overTilde Subscript k 2nd Column equals 3rd Column final sigma Subscript k Baseline upper F script í’« Subscript k Baseline upper F Superscript upper T Baseline left-parenthesis upper I minus final sigma Subscript k Baseline upper E script í’« Subscript k Baseline upper E Superscript upper T Baseline right-parenthesis Superscript negative 1 Baseline upper E comma 2nd Row 1st Column upper H overTilde Subscript k 2nd Column equals 3rd Column final sigma Subscript k Baseline upper H script í’« Subscript k Baseline upper E Superscript upper T Baseline left-parenthesis upper I minus final sigma Subscript k Baseline upper E script í’« Subscript k Baseline upper E Superscript upper T Baseline right-parenthesis Superscript negative 1 Baseline upper E comma 3rd Row 1st Column upper R Subscript gamma 2nd Column equals 3rd Column upper R plus final sigma Subscript k Superscript negative 1 Baseline upper H 2 upper H 2 Superscript upper T Baseline comma 4th Row 1st Column upper Y Subscript k Superscript negative 1 2nd Column equals 3rd Column script í’« Subscript k Superscript negative 1 Baseline minus final sigma Subscript k Baseline upper E Superscript upper T Baseline upper E comma 5th Row 1st Column ModifyingAbove upper K With caret Subscript k 2nd Column equals 3rd Column left-parenthesis upper F upper Y Subscript k Baseline upper H Superscript upper T Baseline plus final sigma Subscript k Superscript negative 1 Baseline upper H 1 upper H 2 Superscript upper T Baseline right-parenthesis left-parenthesis upper R Subscript final sigma Baseline plus upper H upper Y Subscript k Baseline upper H Superscript upper T Baseline right-parenthesis Superscript negative 1 Baseline comma EndLayout

and the optimized covariance bound script í’« Subscript k Baseline greater-than 0 of the filtering error epsilon Subscript k is specified by solving the DDRE

subject to

upper Y Subscript k Superscript negative 1 Baseline equals script í’« Subscript k Superscript negative 1 Baseline minus final sigma Subscript k Baseline upper E Superscript upper T Baseline upper E greater-than 0

over a horizon of upper N data points in order for script í’« Subscript k to be positive definite.

Let us now assume that the model in (3.289) and (3.290) has no uncertainties. By upper H 1 equals 0, upper H 2 equals 0, and upper E equals 0, we thus have upper F overTilde Subscript k Baseline equals 0, upper H overTilde Subscript k Baseline equals 0, upper R Subscript gamma Baseline equals upper R, upper Y Subscript k Baseline equals script í’« Subscript k. Since the DDRE gives a recursion for the prior estimation error [185], we substitute script í’« Subscript k Baseline equals upper P Subscript k Superscript minus, transform gain (3.273) to

(3.293)ModifyingAbove upper K With caret Subscript k Baseline equals upper F upper P Subscript k Superscript minus Baseline upper H Superscript upper T Baseline left-parenthesis upper R plus upper H upper P Subscript k Superscript minus Baseline upper H Superscript upper T Baseline right-parenthesis Superscript negative 1 Baseline equals upper F upper K Subscript k Baseline comma

where upper K Subscript k is the Kalman gain (3.79), and rewrite (3.292) as

(3.294)StartLayout 1st Row 1st Column upper P Subscript k plus 1 Superscript minus 2nd Column equals 3rd Column upper F upper P Subscript k Superscript minus Baseline upper F Superscript upper T minus upper F upper P Subscript k Superscript minus Baseline upper H Superscript upper T Baseline left-parenthesis upper R plus upper H upper P Subscript k Superscript minus Baseline upper H Superscript upper T Baseline right-parenthesis Superscript negative 1 Baseline upper H upper P Subscript k Superscript minus Baseline upper F Superscript upper T plus upper Q 2nd Row 1st Column Blank 2nd Column equals 3rd Column upper F left-parenthesis upper P Subscript k Superscript minus Baseline minus upper K Subscript k Baseline upper H upper P Subscript k Superscript minus Baseline right-parenthesis upper F Superscript upper T Baseline plus upper Q comma EndLayout

which also requires substituting ModifyingAbove x With caret Subscript k with ModifyingAbove x With caret Subscript k Superscript minus in (3.290) to obtain the prior estimate

(3.295)ModifyingAbove x With caret Subscript k plus 1 Superscript minus Baseline equals upper F left-bracket ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis right-bracket period

It now follows that the RKF (3.290)(3.292) is the a priori RKF [111] and that without model uncertainties it reduces to the a priori KF (Algorithm 2). Note that the a posteriori RKF, which reduces to the a posteriori KF (Algorithm 1) without model uncertainties, can be found in [111].

3.5.3 upper H Subscript infinity Filtering

Although the upper H Subscript infinity approach was originally introduced and long after that has been under investigation in control theory [111],[34], its application to filtering has also attracted researchers owing to several useful features. Unlike KF, the upper H Subscript infinity filter does not require any statistical information, while guaranteeing a prescribed level of noise reduction and robustness to model errors and temporary uncertainties.

To present the upper H Subscript infinity filtering approach, we consider an LTI system represented in state space with equations

where w Subscript k and v Subscript k are some error vectors, even deterministic, each with bounded energy. We wish to have a minimax estimator that for the maximized errors w Subscript k and v Subscript k minimizes the estimation error epsilon Subscript k Baseline equals x Subscript k Baseline minus ModifyingAbove x With caret Subscript k. Since the solution for Gaussian w Subscript k and v Subscript k is KF, and arbitrary w Subscript k and v Subscript k do not violate the estimator structure, the recursive estimate has the form

where the unknown gain script í’¦ Subscript k is still to be determined.

The objective is to minimize gamma in a way such that for the estimates obtained on a horizon left-bracket 1 comma upper N right-bracket the following relation is satisfied

sigma-summation Underscript k equals 1 Overscript upper N Endscripts double-vertical-bar epsilon Subscript k Baseline double-vertical-bar squared less-than gamma squared left-bracket double-vertical-bar epsilon 0 double-vertical-bar Subscript upper P Sub Subscript x 0 Sub Superscript negative 1 Subscript Superscript 2 Baseline plus sigma-summation Underscript k equals 0 Overscript upper N minus 1 Endscripts left-parenthesis double-vertical-bar w Subscript k Baseline double-vertical-bar squared plus double-vertical-bar v Subscript k Baseline double-vertical-bar squared right-parenthesis right-bracket comma

which leads to the following cost function of the a priori upper H Subscript infinity filter

where upper P Subscript x 0 is a positive definite matrix representing the uncertainty in the initial state, and the squared script l 2‐norm double-vertical-bar x double-vertical-bar squared delta-equals double-vertical-bar x double-vertical-bar Subscript 2 Superscript 2 is depicted as double-vertical-bar x double-vertical-bar squared equals x Superscript upper T Baseline x or double-vertical-bar x double-vertical-bar Subscript upper P Superscript 2 Baseline equals x Superscript upper T Baseline upper P x. Thus, the following minimax problem should be solved,

script í’¥ equals min Underscript epsilon Subscript k Baseline Endscripts max Underscript epsilon 0 comma w Subscript k Baseline comma v Subscript k Baseline Endscripts script í’« Subscript k Baseline left-parenthesis epsilon Subscript k Baseline comma epsilon 0 comma w Subscript k Baseline comma v Subscript k Baseline right-parenthesis period

It was shown in [111] that for a cost (3.299) with gamma greater-than 0 there exists an a priori upper H Subscript infinity filter over the horizon left-bracket 1 comma upper N right-bracket if and only if there exists a positive definite solution script í’« Subscript k Baseline equals script í’« Subscript k Superscript upper T Baseline greater-than 0 for script í’« 0 equals upper P Subscript x 0 Baseline greater-than 0 to the following DDRE,

where the filter gain is given by

script í’¬ is the error matrix of w Subscript k, and script upper R is the error matrix of v Subscript k. Note that script í’¬ and script upper R have different meanings than the noise covariances upper Q and upper R in KF. It can be shown that when w Subscript k and v Subscript k are both zero mean Gaussian and uncorrelated with known covariances upper Q and upper R, then substituting script í’¬ equals upper Q, script upper R equals upper R, script í’« Subscript k Baseline equals upper P Subscript k Superscript minus, and script í’¦ Subscript k Baseline equals upper F upper K Subscript k, and neglecting the terms with large gamma transform the a priori upper H Subscript infinity filter to the a priori KF (Algorithm 2). Let us add that the a posteriori upper H Subscript infinity filter, which for Gaussian models becomes the a posteriori KF (Algorithm 1), is also available from [111].

3.5.4 Game Theory upper H Subscript infinity Filter

Another approach to upper H Subscript infinity filtering was developed using the game theory. An existence of the game‐theoretic solutions for minimax robust linear filters and predictors was examined by Martin and Mintz in [122]. Shortly thereafter, Verdú in [207] presented a generalization of Huber's approach to the minimax robust Bayesian statistical estimation problem of location with respect to the least favorable prior distributions. The minimax upper H Subscript infinity problem, solved on FH, considers the game cost function as a ratio of the filter error norm, which must be minimized, and the sum of the initial error norm and bounded error covariance norms, which must be maximized [14,163,190]. The corresponding recursive upper H Subscript infinity filtering algorithm was obtained by Simon in [185], and it becomes KF without uncertainties.

In the standard formulation of game theory applied to model (3.278) and (3.279), the cost function for upper H Subscript infinity filtering is defined as follows:

in order to find an estimate that minimizes upper J overbar. Similarly to the upper H Subscript infinity filter, (3.302) can be modified to

and the upper H Subscript infinity filtering estimate can be found by solving the minimax problem

script í’¥ equals min Underscript epsilon Subscript k Baseline Endscripts max Underscript epsilon 0 comma w Subscript k Baseline comma v Subscript k Baseline Endscripts script í’« Subscript k Baseline left-parenthesis epsilon Subscript k Baseline comma epsilon 0 comma w Subscript k Baseline comma v Subscript k Baseline right-parenthesis period

For the FE‐based model (3.296) and (3.297), the a priori game theory‐based upper H Subscript infinity filter derived in [185] using the cost (3.303) is represented with the following recursions

(3.304)upper K Subscript k Baseline equals script í’« Subscript k Superscript minus Baseline left-bracket upper I minus theta upper S overbar Subscript k Baseline script í’« Subscript k Superscript minus Baseline plus upper H Subscript k Superscript upper T Baseline script upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline script í’« Subscript k Superscript minus Baseline right-bracket Superscript negative 1 Baseline upper H Subscript k Superscript upper T Baseline script upper R Subscript k Superscript negative 1 Baseline comma
(3.305)ModifyingAbove x With caret Subscript k plus 1 Superscript minus Baseline equals upper F Subscript k Baseline left-bracket ModifyingAbove x With caret Subscript k Superscript minus Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline ModifyingAbove x With caret Subscript k Superscript minus Baseline right-parenthesis right-bracket comma
(3.306)script í’« Subscript k plus 1 Superscript minus Baseline equals upper F Subscript k Baseline script í’« Subscript k Superscript minus Baseline left-bracket upper I minus theta upper S overbar Subscript k Baseline script í’« Subscript k Superscript minus Baseline plus upper H Subscript k Superscript upper T Baseline script upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline script í’« Subscript k Superscript minus Baseline right-bracket Superscript negative 1 Baseline upper F Subscript k Superscript upper T Baseline plus script í’¬ Subscript k Baseline comma

where matrix upper S overbar Subscript n is constrained by a positive definite matrix

left-parenthesis script í’« Subscript n Superscript minus Baseline right-parenthesis Superscript negative 1 Baseline minus theta upper S overbar Subscript n Baseline plus upper H Superscript upper T Baseline script upper R Superscript negative 1 Baseline upper H greater-than 0 period

It is the user choice to assign upper S overbar Subscript n, which is introduced to weight the prior estimation error. If the goal is to weight all error components equally [115], one can set upper S overbar Subscript n Baseline equals upper I. Because the cost upper J overbar represents the squared norm error‐to‐error ratio and is guaranteed in the a priori upper H Subscript infinity filter to be upper J less-than 1 slash theta, the scalar bound theta greater-than 0 must be small enough.

To organize a posteriori filtering that matches the BE‐based model (3.32) and (3.33) with u Subscript k Baseline equals 0 and upper B Subscript k Baseline equals upper I, we can consider (3.286)(3.288), replace upper F Subscript k with upper F Subscript k plus 1 and script í’¬ Subscript k with script í’¬ Subscript k plus 1, note that ModifyingAbove x With caret Subscript k plus 1 Superscript minus Baseline equals upper F Subscript k plus 1 Baseline ModifyingAbove x With caret Subscript k, refer to the derivation procedure given in (3.96), and arrive at the a posteriori upper H Subscript infinity filtering algorithm [180]

(3.308)upper K Subscript k Baseline equals script í’« Subscript k Baseline upper H Subscript k Superscript upper T Baseline script upper R Subscript k Superscript negative 1 Baseline comma
(3.309)ModifyingAbove x With caret Subscript k Baseline equals upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline plus upper K Subscript k Baseline left-parenthesis y Subscript k Baseline minus upper H Subscript k Baseline upper F Subscript k Baseline ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis comma

which for given script í’« 0 can be initiated with script í’« 1 Superscript minus Baseline equals upper F 1 script í’« 0 upper F 1 Superscript upper T Baseline plus script í’¬ 1.

For Gaussian noise and no disturbances, theta equals 0 makes this filter an alternate KF (3.92)(3.96). Otherwise, a properly set small theta greater-than 0 improves the upper H Subscript infinity filter accuracy. It is worth noting that when theta approaches the boundary specified by the constraint, the upper H Subscript infinity filter goes to instability. This means that in order to achieve the best possible effect, theta must be carefully selected and its value optimized.

3.6 Summary

As a process of filtering out erroneous data with measurement noise and simultaneously solving state‐space equations for unknown state variables at a given time instant, the state estimation theory is a powerful tool for many branches of engineering and science. To provide state estimation using computational resources, we need to know how to represent a dynamic process in the continuous‐time state space and then go correctly to the discrete‐time state space. Since a stochastic integral can be computed in various senses, the transition from continuous to discrete time is organized using either the FE method, associated with Itô calculus, or the BE method. The FE‐based state model predicts future state and is therefore fundamental in state feedback control. The BE‐based state model is used to solve various signal processing problems associated with filtering, smoothing, prediction, and identification.

The Bayesian approach is based on the use of Bayesian inference and is used to develop Bayesian estimators for linear and nonlinear state space models with noise having any distribution. For linear models, the Bayesian approach results in the optimal KF. Using the likelihood function, it is possible to obtain an ML estimator whose output converges to the Bayesian estimate as the number of measurement samples grows without bounds.

In the Gauss approach, the LS estimate is chosen so that the sum of the squares of the measurement residuals minimizes the mean square residual. The weighted LS approach considers the ML estimator as a particular case for Gaussian processes. The unbiased estimator only satisfies the unbiasedness condition and gives an estimate identical to LS.

The linear recursive KF algorithm can be a posteriori or a priori. The KF algorithm can be represented in various forms depending on the process, applications, and required outputs. However, the KF algorithm is poorly protected from initial errors, model errors, errors in noise statistics, and temporary uncertainties. The GKF is a modification of KF for time‐correlated and colored Gaussian noise. The KBF is an optimal state estimator in continuous time. For nonlinear state‐space models, the most widely used estimators are EKF, UKF, and PF.

Robust state estimation is required when the model is uncertain and/or operates under disturbances. The minimax approach is most popular when developing robust estimators. This implies minimizing estimation errors for a set of maximized uncertain parameters. Shown that a saddle‐point holds, the minimax estimator provides the worst‐case optimal performance and is therefore minimax robust.

3.7 Problems

  1. Find conditions under which the FE‐based and BE‐based state‐space models become identical. Which of these models provides the most accurate matched estimate?
  2. The FE‐based state space model is basic in feedback state control, and the BE‐based state space models is used for signal processing when prediction is not required. Why is this so? Give a reasonable explanation.
  3. Use the Bayes inference formula
    p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k Baseline right-parenthesis equals StartFraction p left-parenthesis x Subscript k Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis p left-parenthesis y Subscript k Baseline vertical-bar x Subscript k Baseline right-parenthesis Over p left-parenthesis y Subscript k Baseline vertical-bar y 0 Superscript k minus 1 Baseline right-parenthesis EndFraction

    and show that the ML estimate coincides with the most probable Bayesian estimate given a uniform prior distribution on the parameters.

  4. Consider the LS estimation problem of a constant quantity script í’¬
    ModifyingAbove script í’¬ With Ì‚ equals ModifyingBelow arg min With script í’¬ left-parenthesis upper Y minus upper M script í’¬ right-parenthesis Superscript upper T Baseline left-parenthesis upper Y minus upper M script í’¬ right-parenthesis comma

    where upper Y minus upper M script í’¬ is the measurement residual, upper Y is a vector of multiple measurements of script í’¬, and upper M is a proper matrix. Derive the LS estimator of script í’¬ and relate it to the UFIR estimator.

  5. Given an oscillatory system of the second order. Following Example 3.2, derive the matrix exponential for the system matrix upper A equals Start 2 By 2 Matrix 1st Row 1st Column 0 2nd Column 1 2nd Row 1st Column minus omega 0 squared 2nd Column minus 2 delta EndMatrix, where 2 delta is an angular bandwidth.
  6. Solved problem: Matrix identity. Matrix upper L Subscript k is given by (3.92). Show that this matrix is identical to the error covariance matrix upper P Subscript k given by (3.79). Equate (3.92) and (3.79), substitute (3.78) and (3.77), and write
    StartLayout 1st Row 1st Column upper P Subscript k Superscript minus Baseline left-parenthesis upper I plus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline right-parenthesis Superscript negative 1 2nd Column equals 3rd Column upper P Subscript k Superscript minus Baseline minus upper K Subscript k Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline comma 2nd Row 1st Column upper P Subscript k Superscript minus Baseline left-parenthesis upper I plus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline right-parenthesis Superscript negative 1 2nd Column equals 3rd Column upper P Subscript k Superscript minus Baseline minus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline left-parenthesis upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline right-parenthesis Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline comma 3rd Row 1st Column left-parenthesis upper I plus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline right-parenthesis Superscript negative 1 2nd Column equals 3rd Column upper I minus upper H Subscript k Superscript upper T Baseline left-parenthesis upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline right-parenthesis Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline period EndLayout

    By the Woodbury matrix identity (A.7),

    left-parenthesis upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline plus upper R Subscript k Baseline right-parenthesis Superscript negative 1 Baseline equals upper R Subscript k Superscript negative 1 Baseline minus upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline left-parenthesis upper I plus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline right-parenthesis Superscript negative 1 Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript minus Baseline comma

    transform the previous relation as

    StartLayout 1st Row 1st Column left-parenthesis upper I plus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline right-parenthesis Superscript negative 1 2nd Column equals 3rd Column upper I minus upper H Subscript k Superscript upper T Baseline left-bracket upper R Subscript k Superscript negative 1 Baseline minus upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline left-parenthesis upper I plus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline right-parenthesis Superscript negative 1 Baseline 2nd Row 1st Column Blank 2nd Column Blank 3rd Column times upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript minus Baseline right-bracket upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline period 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper I minus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus plus upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k 4th Row 1st Column Blank 2nd Column Blank 3rd Column times left-parenthesis upper I plus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline right-parenthesis Superscript negative 1 Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript minus Baseline upper H Subscript k Baseline upper P Subscript k Superscript minus Baseline period EndLayout

    Because upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k, upper P Subscript k Superscript minus, and upper I minus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k are symmetric, rearrange the matrix products as

    StartLayout 1st Row 1st Column left-parenthesis upper I plus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline right-parenthesis Superscript negative 1 2nd Column equals 3rd Column upper I minus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k plus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k 2nd Row 1st Column Blank 2nd Column Blank 3rd Column times left-parenthesis upper I plus upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k Baseline right-parenthesis Superscript negative 1 Baseline upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript minus Baseline upper H Subscript k Baseline comma EndLayout

    introduce upper D equals upper P Subscript k Superscript minus Baseline upper H Subscript k Superscript upper T Baseline upper R Subscript k Superscript negative 1 Baseline upper H Subscript k, rewrite as left-parenthesis upper I plus upper D right-parenthesis Superscript negative 1 Baseline equals upper I minus upper D plus upper D left-parenthesis upper I plus upper D right-parenthesis Superscript negative 1 Baseline upper D, substitute upper I equals left-parenthesis upper I plus upper D right-parenthesis left-parenthesis upper I plus upper D right-parenthesis Superscript negative 1, provide the transformations, and end up with an identity upper I equals upper I, which proves that upper L Subscript k given by (3.92) and upper P Subscript k given by (3.79) are identical.

  7. A linear discrete‐time state‐space model is augmented with the Gauss‐Markov CPN w Subscript k Baseline equals upper Theta Subscript k Baseline w Subscript k minus 1 Baseline plus mu Subscript k, where mu Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper Q Subscript mu Baseline right-parenthesis, and CMN v Subscript k Baseline equals upper Psi Subscript k Baseline v Subscript k minus 1 Baseline plus xi Subscript k, where xi Subscript k Baseline tilde script í’© left-parenthesis 0 comma upper R Subscript xi Baseline right-parenthesis. In what case is an estimator required to filter out only the CMN? What problem is solved by filtering out both CPN and CMN? Is there an application that only requires CPN filtering?
  8. Solved problem: Steady state KF. Consider the KF Algorithm 1. Set k right-arrow infinity and suppose that at a steady state upper P Subscript k Baseline approximately-equals upper P Subscript k minus 1 Baseline equals upper P and upper P Subscript k Superscript minus Baseline approximately-equals upper P Subscript k minus 1 Superscript minus Baseline equals upper P Superscript minus. Then transform the a priori error covariance as
    StartLayout 1st Row 1st Column upper P Subscript k Superscript minus 2nd Column equals 3rd Column upper F Subscript k Baseline upper P Subscript k minus 1 Baseline upper F Subscript k Superscript upper T plus upper Q Subscript k 2nd Row 1st Column equals 2nd Column upper F Subscript k Baseline left-parenthesis upper P Subscript k minus 1 Superscript minus Baseline minus upper K Subscript k minus 1 Baseline upper H Subscript k minus 1 Baseline upper P Subscript k minus 1 Superscript minus Baseline right-parenthesis upper F Subscript k Superscript upper T Baseline plus upper Q Subscript k Baseline comma 3rd Row 1st Column Blank 2nd Column equals 3rd Column upper F Subscript k Baseline upper P Subscript k minus 1 Superscript minus Baseline upper F Subscript k Superscript upper T minus upper F Subscript k Baseline upper P Subscript k minus 1 Superscript minus Baseline upper H Subscript k minus 1 Superscript upper T Baseline left-parenthesis upper H Subscript k minus 1 Baseline upper P Subscript k minus 1 Superscript minus Baseline upper H Subscript k minus 1 Superscript upper T Baseline plus upper R Subscript k minus 1 Baseline right-parenthesis Superscript negative 1 4th Row 1st Column Blank 2nd Column Blank 3rd Column times upper H Subscript k minus 1 Baseline upper P Subscript k minus 1 Superscript minus Baseline upper F Subscript k Superscript upper T plus upper Q Subscript k EndLayout

    and arrive at the discrete algebraic Riccati equation (DARE)

    upper P Superscript minus Baseline equals upper F upper P Superscript minus Baseline upper F Superscript upper T Baseline minus upper F upper P Superscript minus Baseline upper H Superscript upper T Baseline left-parenthesis upper H Superscript minus Baseline upper P Superscript minus Baseline upper H Superscript upper T Baseline plus upper R right-parenthesis Superscript negative 1 Baseline upper H upper P Superscript minus Baseline upper F Superscript upper T Baseline plus upper Q period

    Next, represent the Kalman gain as upper K equals upper P Superscript minus Baseline upper H Superscript upper T Baseline left-parenthesis upper H upper P Superscript minus Baseline upper H Superscript upper T Baseline plus upper R right-parenthesis Superscript negative 1 and end up with the steady state KF algorithm:

    StartLayout 1st Row 1st Column upper P Superscript minus 2nd Column equals 3rd Column left-parenthesis obtain b y solving the DARE right-parenthesis 2nd Row 1st Column upper K 2nd Column equals 3rd Column upper P Superscript minus Baseline upper H Superscript upper T Baseline left-parenthesis upper H upper P Superscript minus Baseline upper H Superscript upper T Baseline plus upper R right-parenthesis Superscript negative 1 Baseline comma 3rd Row 1st Column ModifyingAbove x With caret Subscript k 2nd Column equals 3rd Column upper F ModifyingAbove x With caret Subscript k minus 1 Baseline plus upper K left-parenthesis y Subscript k Baseline minus upper H upper F ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis period EndLayout
  9. The recursive LS estimate is given by
    ModifyingAbove x With caret Subscript k Baseline equals ModifyingAbove x With caret Subscript k minus 1 Baseline plus upper G Subscript k Baseline upper H Superscript upper T Baseline left-parenthesis y Subscript k Baseline minus upper H ModifyingAbove x With caret Subscript k minus 1 Baseline right-parenthesis comma

    where matrix upper G Subscript k is computed recursively as upper G Subscript k Baseline equals left-parenthesis upper H Superscript upper T Baseline upper H plus upper G Subscript k minus 1 Superscript negative 1 Baseline right-parenthesis Superscript negative 1. How does upper G Subscript k change with the increase in the number of measurement k? How is the recursive LS estimate related to UFIR estimate?

  10. A constant quantity script í’¬ is measured in the presence of Laplace noise and is estimated using the median estimator
    ModifyingAbove script í’¬ With Ì‚ equals ModifyingBelow arg min With script í’¬ sigma-summation Underscript i equals 1 Overscript upper N Endscripts StartAbsoluteValue y Subscript i Baseline minus script í’¬ EndAbsoluteValue period

    Modify this estimator under the assumption that script í’¬ is not constant and has upper K states.

  11. Under the Cauchy noise, a constant quantity script í’¬ is estimated using the myriad estimator [13]
    ModifyingAbove script í’¬ With Ì‚ equals ModifyingBelow arg min With script í’¬ sigma-summation Underscript i equals 1 Overscript upper N Endscripts log left-brace gamma squared plus left-parenthesis y Subscript i Baseline minus script í’¬ right-parenthesis squared right-brace comma

    where gamma is the linearity parameter. Modify the myriad estimator for a dynamic quantity script í’¬ represented in state space by upper K states.

  12. Solved problem: Proof of ((3.222)). Consider the two‐filter smoother and its error covariance upper P overTilde Subscript r Baseline equals upper P Subscript r Superscript normal b Baseline plus upper K Subscript r Superscript normal f Baseline left-parenthesis upper P Subscript r Superscript normal f Baseline plus upper P Subscript r Superscript normal b Baseline right-parenthesis upper K Subscript r Superscript normal f Super Superscript upper T Baseline minus 2 upper K Subscript r Superscript normal f Baseline upper P Subscript r Superscript normal b, substitute (3.220) and (3.221), and represent formally as
    StartLayout 1st Row 1st Column upper P 2nd Column equals 3rd Column upper B plus upper B left-parenthesis upper A plus upper B right-parenthesis Superscript negative 1 Baseline upper B minus 2 upper B left-parenthesis upper A plus upper B right-parenthesis Superscript negative 1 Baseline upper B 2nd Row 1st Column Blank 2nd Column equals 3rd Column upper B minus upper B left-parenthesis upper A plus upper B right-parenthesis Superscript negative 1 Baseline upper B comma EndLayout

    where upper A and upper B are positive definite, symmetric, and invertible matrices. Using (A.10), write left-parenthesis upper A plus upper B right-parenthesis Superscript negative 1 Baseline equals upper B Superscript negative 1 Baseline minus upper B Superscript negative 1 Baseline left-parenthesis upper I plus upper A upper B Superscript negative 1 Baseline right-parenthesis Superscript negative 1 Baseline upper A upper B Superscript negative 1 and transform the previous matrix equation to

    StartLayout 1st Row 1st Column upper P 2nd Column equals 3rd Column upper B minus upper B left-parenthesis upper A plus upper B right-parenthesis Superscript negative 1 Baseline upper B comma 2nd Row 1st Column equals 2nd Column upper B minus upper B left-bracket upper B Superscript negative 1 Baseline minus upper B Superscript negative 1 Baseline left-parenthesis upper I plus upper A upper B Superscript negative 1 Baseline right-parenthesis Superscript negative 1 Baseline upper A upper B Superscript negative 1 Baseline right-bracket upper B comma 3rd Row 1st Column Blank 2nd Column equals 3rd Column left-parenthesis upper I plus upper A upper B Superscript negative 1 Baseline right-parenthesis Superscript negative 1 Baseline upper A comma 4th Row 1st Column Blank 2nd Column equals 3rd Column left-parenthesis upper A Superscript negative 1 Baseline plus upper B Superscript negative 1 Baseline right-parenthesis Superscript negative 1 EndLayout

    that completes the proof of (3.222).

  13. The second‐order expansions of nonlinear functions are given by (3.228) and (3.229). Derive coefficients alpha Subscript k (3.232) and beta Subscript k (3.233) using Hessian matrices (3.234) and (3.235). Find an explanation to the practical observation that the second‐order EKF either decreases or increases the estimation error, and nothing definite can be said about its performance.
  14. The UKF has the following limitation: the same statistics can be predicted for different distributions. Suggest a feasible solution to improve performance using the high‐order statistics. Will it perform better than the second‐order EKF?
  15. The PF can dramatically improve estimation performance when the model has sever nonlinearity. Why is it impossible to fully guarantee the PF stability? What are the most effective ways to avoid the divergency in the PF? Why is there no guarantee that the PF will not diverge when the number of particles is insufficient?
  16. The robust KF approach for uncertain models suggests representing the uncertain system matrix upper F Subscript delta and observation matrix upper H Subscript delta using an unknown matrix upper Omega Subscript k as (3.281),
    StartBinomialOrMatrix upper F Subscript delta Baseline Choose upper H Subscript delta Baseline EndBinomialOrMatrix equals StartBinomialOrMatrix upper F Choose upper H EndBinomialOrMatrix plus StartBinomialOrMatrix upper H 1 Choose upper H 2 EndBinomialOrMatrix upper Omega Subscript k Baseline upper E comma

    where upper F and upper H are known and the newly introduced auxiliary matrices upper H 1, upper H 2, and upper E are supposed to be known as well. Give examples when such a model is 1) advantageous, 2) can hardly be applied, and 3) is not feasible. Consider both the LTI and LTV systems.

  17. In the presence of unknown norm‐bounded noise, the upper H Subscript infinity filtering estimate is given by (3.298) with the bias correction gain (3.301) and error covariance computed recursively by (3.300), where the optimal tuning factor gamma Subscript opt guarantees the best filtering performance and robustness. How to specify gamma Subscript opt? Can we find gamma Subscript opt analytically? What will happen if we set 1) gamma less-than gamma Subscript opt and 2) gamma greater-than gamma Subscript opt?
  18. Solve the problems listed in the previous item, considering instead the tuning factor theta of the game theory upper H Subscript infinity filter, recursively represented by (3.307)(3.310).

Notes

  1. 1 Carl Friedrich Gauss published his method of least squares in 1809 and claimed to have been in its possession since 1795. He showed that the arithmetic mean is the best estimate of the location parameter if the probability density is the (invented by him) normal distribution, now also known as Gaussian distribution.
  2. 2 Kalman derived his recursive filtering algorithm in 1960 by applying the Bayesian approach to linear processes with white Gaussian noise.
  3. 3 Notation x Subscript k Superscript left-parenthesis i right-parenthesis Baseline double-struck reversed-tilde p left-parenthesis x Subscript k Baseline right-parenthesis means drawing upper N samples x Subscript k Superscript left-parenthesis i right-parenthesis, i element-of left-bracket 1 comma upper N right-bracket, from p left-parenthesis x Subscript k Baseline right-parenthesis.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset