1   

INTRODUCTION

Michael Fink, Jacquelyn Ford Morie

The art of visual effects involves nothing less than making words into pictures, technology into art, and magic into reality. Artists and technicians who create this magic have labored throughout the history of moving imagery, always working in service of the story, the director’s vision, and the cinematographer’s art. This book, and its accompanying online version, is meant to be an exhaustive source that clearly describes and explains the techniques we use in the incredibly creative process of visual effects.

It is important to keep in mind that film may have been the first moving image medium that employed visual effects, but as new technologies developed—animation, video, games, the Internet—visual effects were there. From the early video tricks of Ernie Kovacs, to YouTube, to your local cineplex, visual effects have been employed to help the creators of all moving media tell their stories. So to the reader, we stress that when you read the word “film,” we mean by implication all moving media. As technology improves—and video games start to look like film, and film’s visual effects are created like video games, and all are done at the same resolution, and they look photoreal in animated films as well as live-action films—visual effects will merge into a shared technology.

Visual Effects and Special Effects

Although in this book we will use almost entirely the term visual effects, we hope the reader will always understand that creating effects for moving images requires the skills of both visual effects artists and special effects artists. The public at large often confuses which techniques relate to special effects and which to visual effects, and often calls our work special effects regardless of how the effect is accomplished. This section explains the differences and how the two disciplines are often inextricably linked.

Visual Effects

Visual effects is the term used to describe any imagery created, altered, or enhanced for a film or other moving media that cannot be accomplished during live-action shooting. In other words, much of the art of visual effects takes place in post-production, after primary image capture is complete. Visual effects can be added to live-action capture through techniques such as matte painting; rear- and front-screen projection; miniature or forced perspective sets; computer graphic objects, characters, and environments; and compositing of disparate images recorded in any number of ways. The recent explosion in digital tools that make flawless compositing, digital sets, and fully computer-generated characters possible and accessible to moving image makers at all levels has made visual effects a standard part of every moving image maker’s tool kit.

Special Effects

Special effects are generally described as effects that can be done while the scene is being captured and are commonly called practical effects. Special effects go hand in hand with visual effects in current methodology, such that it is often difficult to determine what was a special effect and what was a visual effect. This collaboration has been enhanced by digital technology. For instance, the early acceptance of digital rig removal allowed more freedom for special effects artists to create more elaborate flying rigs on set while greatly increasing safety for all involved. Examples of more typical special effects are bullet hits, practical explosions, rain, fire, car gags of all sorts, flying rigs, motion rigs that shake sets or props or vehicles, gimbals to mimic the motion of boats or planes, and artificial ocean waves and spray.

Why Use Visual Effects?

There are three reasons to use visual effects in a film: The first is when there is absolutely no practical way to film the scenes described by the script or required by the director. The astronauts’ perilous trip around the moon in Apollo 13 (1995) and the transition of Mystique into Logan in X-Men (2000) are examples of this.

The second reason to use visual effects comes to fore when you could do the scene practically, but doing so might place someone’s life at risk. In the very first visual effect done in a narrative film, The Execution of Mary, Queen of Scots (1895), it probably would have been a bad idea to actually behead the actor portraying Mary. The 1926 silent film Fire Brigade contains a scene where a toddler gets left behind in a burning building. It is clear she is surrounded by flames and must be rescued by the heroic fireman. The little girl, however, could never be exposed to real fire. She was shot separately from the fire and the two shots were optically composited so the girl really appeared to be threatened by the flames. This technique allowed for some hair-raising scenes without risking anyone’s safety.

The third reason arises when it is more cost effective or practical to utilize a visual effect than to film a scene for real, due to issues of scale or location (or both). Examples of this are the huge crowds of Orcs attacking in the Lord of the Rings films (2001–2003), the little girl among the bears in Svalbard in The Golden Compass (2007), and Russell Crowe commanding his ship midstorm in Master and Commander (2003), or even the much simpler work done for Tropic Thunder (2008), with added shots of Ben Stiller having a phone conversation with his agent, long after the location was lost to the production.

The Creation of Visual Effects

Visual effects, if they are done well, are not obvious. At their best, they work to further the story being told, becoming an integral part of what makes us willing to suspend disbelief. We know when we see a film depicting fantasy places or characters, such as the distant planets in the film Star Wars (1977) or the Na’vi in Avatar (2009), that such places or people don’t really exist, but we believe in them nonetheless. Visual effects at their most powerful seamlessly combine different aspects of the story in each frame, in essence packing ever more story into the scene. The history of moving imagery is filled with examples, many of which are presented in this book.

From the earliest times, artists have been technologists. The progression from painting with crude dyes to painting with plaster (frescoes) to painting with oil paints; the invention of mathematical perspective; modern uses for lenses and mirrors; and the development of cameras, lenses, emulsions, and film itself were all advances driven by artists. These advances were all developed to create a more real, more believable, more fantastical visual effect, and above all, to tell a better story.

A Bit of Visual Effects History

In the very first years of commercial filmmaking, 1895 to 1905, any visual effect was limited to what could be done in-camera, which included fairly rudimentary effects such as substitution shots (stopping the camera and changing the scene before starting it again) or simple frame splits. In this latter technique, the first part of the effect would be shot, during which hand-drawn mattes1 would be slipped into the light path before the film plane, placed in front of the camera on stands, or even attached directly to the lens of the camera. The film was wound back to the starting point of the scene and the second element then exposed onto the film in the area that had no exposure from the black matte (thus the term matte box for the square fixture in front of a camera, which in current use holds filters in front of the lens). In these early days, the camera was always locked down, which made such effects possible.

The first widely acknowledged visual effect was in the 1895 film The Execution of Mary, Queen of Scots, a historic dramatization shot at Thomas Edison’s studio in New Jersey. Alfred Clark, who had recently joined Edison’s crew as a director-producer, devised a technique of stopping the camera so he could replace the actor portraying the queen with a dummy whose head could safely be detached from its body. One year later in France a magician named George Méliès discovered the same technique while filming a Paris street. His camera jammed, and when he got it going again, just seconds later, it was enough time for a bus in the street to seemingly transform into a hearse. Méliès went on to use such tricks in hundreds of short films over the next 15 years.

Edwin S. Porter, a member of Thomas Edison’s production team, drew on these techniques, and more, in his 12-minute film The Great Train Robbery (1903). The film was considered a break-through work, making a huge impression on the public and future filmmakers. One scene, inside the station ticket office, showed a moving train outside the office windows. The office was shot on a set, making sure it was black outside the windows so that there was no exposure on the film in those areas. The filmmakers, using a black matte to hold out the previously exposed region, then filmed a moving train into the black, unexposed area. Today we can see that the perspective doesn’t match and the scale is incorrect, but in 1903, this was an amazing tour de force.

The decade of the 1920s was also witness to movies enhanced by increasingly sophisticated matte paintings used for backgrounds that extended the depth of the screen image and created extraordinary scale. Painters such as Norman Dawn, in California, and Percy Day, in England, invented and refined matte painting techniques that were in continual use until the development of digital tools for matte paintings and composites. Norman Dawn is often credited with inventing matte painting for films with his use of glass paintings in California Missions in 1907. Percy Day, who was Peter Ellenshaw’s stepfather and Albert Whitlock’s teacher, began his career in 1919 and was very well known by the time he painted the matte paints for Thief of Baghdad in 1940 and Black Narcissus in 1947.

Early on, nearly all visual effects shots required a locked-off camera. By the 1930s, filmmakers had started experimenting with nodal pans and tilts. By moving the camera such that the horizontal or vertical rotation occurred around the nodal point2 of the lens, the filmmakers removed parallax3 and made possible the photography of matte paintings on glass and hanging miniatures, combined with live-action pans and tilts.

Borrowing technology from developments in sound in the late 1940s and early 1950s, visual effects artists adapted the use of synchronous motors to control pans, tilts, and dolly moves. This allowed for accurately duplicating a camera move shot on one set or location with a matching move back on the lot in the visual effects department. The gear was clumsy, and true-frame accurate recording and playback of moves was not always possible or consistent, but this precursor to motion control of film cameras provided visual effects artists with another tool to meet the growing demands of directors and camera people for more innovative shots.

Process photography, the rephotographing of previously shot footage projected on a screen in combination with a live-action scene, became a powerful tool by the 1930s, allowing actors to be placed in what appeared to be moving vehicles, airplanes, dog-sleds, and ships, and on what appeared to be precipitous cliffs, mountainsides, and building tops. Process photography needed the convergence of the development of pin-registered camera movements, fine-grain film stocks, and synchronous motors before it could become practical. Benefitting from the seemingly nonstop progress in image capture and projection technology, process photography became more and more commonplace through the 1930s and 1940s. It was in heavy use until the advent of digital compositing allowed for the creation of flawless blue-screen and greenscreen composites.

In addition to projecting backgrounds onto large screens behind actors, process photography allowed live-action images to be projected onto tiny screens placed in miniature sets, and by way of careful blending of the projected image with the set, the actors appeared to be in some very difficult circumstances. Fay Wray, when projected into a small screen at the top of the Empire State Building miniature in King Kong (1933), made the 18-inch Kong into a mighty beast.

The famous airplane chase scene in North by Northwest (1959) with Cary Grant is an excellent example of process photography in its heyday. The plane buzzing Grant’s character was rear projected, while Grant ran on dirt on the set, which also served to form a false horizon in front of the screen. The final shots are completely convincing.

The first film to effectively use front projection was Stanley Kubrick’s 2001 in 1966. Front projection had many advantages over rear projection—particularly color clarity of the projected image. Even so, it was nearly always used with static cameras, or limited to pans and tilts, because of the inability to create a camera move that was separate from the projection. In the late 1970s, Zoran Perisic introduced the Zoptic front projection system, which coupled zoom lenses on the camera and the projector. Used initially on Richard Donner’s Superman (1978), the system allowed for what appeared to be camera motion when in fact the motion was driven by the changing image size from the zooms.

Another development in process projection technology was further refined in the early 1980s by Jon Erland and John Dykstra at Apogee. In an attempt to create flawless bluescreen photography for photochemical compositing, Erland worked on a front-projected bluescreen technique, building on a technology first developed by L.B. “Bud” Abbott for the film Tora! Tora! Tora! in 1970. The result was the Blue Max system. In this technique the blue projected field is not very bright, but the screen’s retroreflective material is so directionally reflective that it returns nearly all of the projected light back to the camera lens. People or objects in the scene, lit in a normal fashion, reflect so little of the blue light that you don’t see blue on them—only on the screen. This was a major advantage for the time: There is virtually no blue spill on the actors or shiny objects.

It might surprise some to know that blue screens were used as far back as the 1930s in black-and-white films. In the 1933 film King Kong, the scene where Kong comes pounding through the gates was shot with blue behind the set. Because of the black-and-white film’s color sensitivity, it was possible to add filters so that the blue area did not receive any exposure. Thus, it was “simple” to reexpose the blue-screened parts of the film with the stop-motion of Kong.

Other systems besides bluescreen systems were developed to create traveling mattes for films. Like many of the techniques to create color images on film, and the many film formats, most of these now lie in obscurity. Systems that used ultraviolet light or infrared-sensitive emulsions in two-strip motion picture cameras were experimented with and even used but eventually were abandoned due to technical hurdles in their implementation. A very successful technique, used with great success by the Walt Disney Studio in the 1950s and into the 1960s and 1970s, was the “sodium vapor” process (named for the lamp used to light the screen). This method generated mattes by simultaneously exposing, through prisms in modified Technicolor three-strip cameras, both the live-action footage and footage on a second strip of film that had an exposure only where it captured light from the yellow screen. The filmmakers were able to generate first-generation mattes for much of their work using this technique. Disney used this process to great result in films such as Mary Poppins (1964) and Bedknobs and Broomsticks (1971). In the 1980s, modification of older techniques mentioned above using ultraviolet lights to expose some or all portions of the subject (by now, miniatures painted with ultraviolet-sensitive paint) came into use. These techniques were used with success on films such as FireFox (1982).

It was the groundbreaking work by Petro Vlahos in developing technology for creating color difference mattes that made all of these advances possible.

Optical Printers

By the late 1920s, in-camera effects had become very elaborate, and a new tool had appeared to create more complicated effects. The first optical printers made it possible to combine images shot in multiple locations into one shot without having to risk the original negative in an irreversible process. The early history of optical printers is not well documented. One of the first commercial versions, sold in the 1920s by the Dupue Company in Chicago, was fairly remarkable. It was able to handle both 16mm and 35mm film in 1000-foot loads and appears from illustrations to be able to carry bi-pack mattes. But from the 1920s and into the 1930s and 1940s, optical printers generally were custom made by camera people and technicians as the need arose. Whether driven by the demands of a particular scenario (i.e., 1941’s Citizen Kane) or by the creativity and endless experimentation of effects camera people (Linwood Dunn being the premiere example), optical printers increased in sophistication and capabilities, but they remained a “cottage industry” until the government got involved.

Linwood Dunn is widely acknowledged to have built the first modern optical printer during his work for the U.S. military during World War II. The military was actively involved in creating films for training and propaganda around the world. They wanted a printer that would use common parts available everywhere. With Cecil Love, Dunn created a very sophisticated version of the optical printer that could be mass produced, called the Acme-Dunn Special Effects Optical Printer.4 Visual effects created by use of the optical printer enabled directors like Orson Welles, Fritz Lang, Alfred Hitchcock, and Cecil B. DeMille to take us beyond our previous experience and show us exciting scenes in ways that were extraordinary.

In Citizen Kane (1941), Orson Welles worked with Dunn to create a large number of composites that were needed to complete Welles’ vision. The Thatcher Library statue shot from Citizen Kane was originally filmed to include only the base of the statue and the plaque. Welles, however, asked for a much richer shot. In what became one of the first matchmoves, Dunn’s crew built a miniature of the statue, as well as the dome and the ceiling of the room it is “in.” The miniature elements were photographed at an angle to match the live-action photography. Dunn then carefully matched the camera move frame by frame in the optical printer. We see the camera tilt down from the extreme up angle on the statue and onto the live-action scene, and there is nothing to give the effect away.

Electronics for Camera Control

Early experiments in controlling the motion of cameras were conducted in Thomas Edison’s studio in 1914, but these were mechanical connections linking cameras, and they were clumsy and impractical. Electronic control of camera motion was first seen in the 1940s, with a system devised by O.L. Dupy, a sound engineer at MGM. The Dupy Duplicator was a system that drew on the same technology used to synchronize sound recorders with motion picture cameras. It was used on films such as Samson and Delilah in 1949 to provide identical camera moves that allowed actors to appear truly threatened by a crumbling temple, and An American in Paris in 1951 to combine location footage with matte paintings and stage photography. The use of such synchronous motor controls continued well into the 1960s.

Stanley Kubrick’s 2001: A Space Odyssey in 1968 was a groundbreaking film in terms of both the visual storytelling used by Kubrick and the technology and artistry used by Doug Trumbull, Con Pederson, Wally Veevers, Tom Howard, Bruce Logan, and others to create those visuals. Cameras moved past miniature spaceships, driven by motors actuated by electrical timers, allowing precise control and multiple passes, of all elements in the shot. Timers and synchronized motors were employed to drive camera motors and art in pursuit of the famous, mesmerizing “slit-scan” images running toward the climax of the film.

By the mid-1970s, basic digital control of electronic stepper motors had been introduced for controlling the motion of industrial machines. Visual effects and special effects artists realized the potential of this technology and adapted digitally controlled motors to precisely control the motion of cameras and miniatures in multiple axes. The film Star Wars (now Star Wars Episode IV, A New Hope), released in 1977, brought audiences exciting and complicated sequences that would not have been possible without the innovations of John Dykstra, Don Trumbull, Jerry Jeffress, Alvah Miller, and a number of others.

During this same period, for Close Encounters of the Third Kind (1977), Jerry Jeffress and Alvah Miller built a system similar to the Star Wars system, but one that could record live-action pan, tilt, and focus on location in Alabama and then play that move back—now scaled to capture a matching move on a miniature—in California.

Star Trek: The Motion Picture (1979) followed on this technology with systems that controlled more axes simultaneously. Innovations by Paul Johnson at Apogee, Fred Iguchi at the Maxella facility supervised by Doug Trumbull, and others, provided simultaneous computer control of motion and camera, allowing shooting speeds that reduced demands on lighting, and allowed the recording of real-motion blur. Pan, tilt, roll, camera speed, aperture, dolly (east/west and north/south), boom, and swing were all available for camera motion, and the miniatures, lights, projectors, or other objects could be moved with purpose-built “model movers” that had the capability of roll, pitch, yaw, dolly (e/w and n/s), boom, and swing. When combined, the relative motion of the camera and the objects being photographed allowed for some thrilling choreography that audiences had never before seen.

Live-action motion control requires systems that are reliable, fast, quiet, and quick to set up and program. A number of individuals and companies have contributed to the ongoing development of this technology and have found ways to continue innovating so that the technology remains a powerful tool in filmmaking.

A very important recent development in motion control has given us the ability to integrate previsualized computer graphic scenes with live-action cameras. This technique allows directors to see dimensionally accurate real-time composites of digital backgrounds and characters with the actors who are being photographed. This provides confidence that the camera will not be moving through the digital set, or that the giant robot will have room for itself between the actor and the virtual set’s wall. It gives the director of photography confidence that the lighting will work with the digital set yet to be built, and that the camera moves and lenses are proper for the scale of the digital environment, which is invisible outside the camera monitor. Taking this technology a step forward, there are now systems, such as the system used by James Cameron for Avatar (2009), to capture manual camera moves using virtual camera devices on previsualized virtual sets with motion captured characters. Cameron and his visual effects team could plan and execute fully digital shots that achieved all the look and feel of physical photography, seamlessly integrating the language of live action camera work into fully digital scenes.

The Digital Age

In the late 1950s and into the 1960s, John Whitney, Sr., began creating intricate and involving images using surplus analog military equipment. He photographed moving patterns of light and lit objects that were moved by these analog computers. The patterns recorded by a camera synchronized to the motion were intricate and complex. This work was the inspiration for the slit-scan technique used to create the stargate sequence in the film 2001 (1968). John Whitney’s techniques and images attracted much attention, and after establishing his company, Motion Graphics, Inc., in 1960, he created the animated graphics for Hitchcock’s Vertigo (1961) opening.

In 1962 Ivan Sutherland’s MIT dissertation introduced the concept of the interactive graphic interface for a computer. From Sutherland’s original work flowed the work of many famous computer scientists who were driven to find ways to create images with a computer: Alvy Ray Smith, Jim Blinn, Ed Catmull, Steven Coons (who actually inspired Sutherland; d. 1979), Pierre Bezier (d. 1999), Henri Gouraud, Bui Thuong Phong (d. 1975), Turner Whitted, and the list goes on. Looking up any one of these names is a great adventure in the origins of digital computer graphics.

In the early 1970s John Whitney, Jr., and Gary Demos were working at Information International, Inc. (also known as Triple-I), a company that produced high-resolution scanning and image processing equipment. While at Triple-I, Whitney and Demos formed the Motion Picture Products Group and began creating computer graphic images to provide filmmakers with a tool for storytelling that up until then had been in the realm of academic researchers. Triple-I did tests for films such as Close Encounters of the Third Kind (1977) and The Empire Strikes Back (1980), in addition to creating some very early CG animation for commercials. They went on to contribute seminal computer graphic work for Westworld in 1973 and Futureworld in 1976, which had the first shaded 3D objects (a hand and Peter Fonda’s head) seen in film. Triple-I also created motion picture’s first fully shaded 3D computer graphic images and a full 3D digital body for the film Looker in 1981. Of course, the most famous film at Triple-I was 1982’s Tron, which used the talents of some of the most creative artists in motion pictures and computer science to create its imagery. In fact, it took the four major existing computer graphics companies to make the amazing visuals for Tron: Triple-I, MAGI, Robert Abel & Associates, and Digital Effects—an unprecedented effort.

Star Wars (1977) showed a scene in which pilots were training to fly through the Death Star trench, leading to the destruction of the Death Star. This graphic was created by Larry Cuba while still at the University of Chicago. In 1979, the film Aliens also had a small sequence displaying a vector graphic5 terrain flyover. In 1982, Pixar, then a division of ILM, created the “Genesis effect” for Star Trek: The Wrath of Khan. The effect was the first use of particles in a film to re-create the appearance of natural phenomena. Although not photorealistic, the effect was entirely convincing because it helped tell the story in a very strong visual sequence.

Whitney and Demos formed Digital Productions in 1983, with the acquisition of a Cray X-MP (the most powerful supercomputer of the day) and support from Control Data with a number of VAX computers. In 1983, Digital Productions undertook the task of creating hundreds of shots for the film The Last Starfighter (1984). This was a groundbreaking event in visual effects history, and the group created stunning computer graphic images at a far higher level of complexity than ever seen before, setting the stage for the future of computer graphics in film. From this point on, CG could be used to create images that were not just seen as a computer display, but as an original image in the story. Digital Productions went on to record a number of firsts for digital storytelling—the first fluid dynamics, the first attempt at a photoreal animal, and entirely new techniques in digital film scanning and compositing.

In 1985, Pixar, under the supervision of Dennis Muren, created arguably the first CG-animated character in a motion picture—the stained glass man in Young Sherlock Holmes.6 Yet less than 30 years later, we see the successors of this pioneering work in amazingly believable characters such as Gollum in The Lord of the Rings: The Two Towers (2002) and the Na’vi in Avatar (2009).

deGraf/Wahrman, formed by Brad deGraf and Michael Wahrman, opened the 1988 Electronic Theater showcase at SIGGRAPH7 with a low-resolution animated opera singer, remarkable for being rendered and displayed in real time. Using technology that has since been adapted for motion capture and performance capture, this was a stunning indication of the direction of computer games, video, and film animation in coming years. Trey Stokes, a puppeteer, now CG artist, manipulated a “Waldo”8 with his fingers. His motions drove the motion of the CG opera singer in sync with the prerecorded music. Devices based on this technology continue to be used in film, video, games, and even brain surgery.

Major advancements in computing speed, power, and storage led to the creation of tools to record and then film out scenes captured by motion picture cameras. Visual effects facilities and visual effects and special effects artists and scientists used imagination, technical knowledge, and an amazing amount of creativity to invent and create these first tools. In the late 1980s Kodak, with collaboration from ILM, developed the technology for the first (more or less) practical film resolution scanner. Along with this invention came the development of the Cineon digital film format, which became the standard format for motion picture image recording and filming across the world.

In 1988 audiences were excited by the use of digital “morphs” in Willow. The Abyss, with its water character, was released in 1989, and Terminator 2, featuring a fully CG leading man, opened in 1991. In 1992 the first attempt was made to replicate real, recognizable creatures in a feature film—the penguins and bats in Batman Returns. These films revealed to audiences amazing new characters and story moments that could not have been created in a convincing way without the developments in computer graphics. Jurassic Park, in 1993, finally showed the power of digital visual effects to help tell a compelling story.

The years since 1993, it can be argued, included as much innovation as the previous 100 years of visual effects. Everything was open, and a legion of incredibly clever visual effects artists, scientists, and engineers redrew the landscape such that no effect was beyond our reach. We saw the world of optical printing fade from common use faster than any of us would have believed possible as digital scanners and printers, augmented by new compositing, 2D software, and fantastic developments in 3D camera and object tracking came to the fore. We have seen tremendous work done in graphical user interfaces tailored to the needs of artists; improvements in animation, modeling, and rigging; the application of physiological attributes to characters; improved motion capture; physical simulation; and—absolutely essential to our current state of accomplishment—huge advances in lighting and rendering.

Paralleling the progress in visual effects for film has been the exponential increase in the power and complexity of computer games and web-based media, with stunning real-time graphics. As expectations rise with improved technology, visual effects techniques will disseminate through all aspects of visual storytelling done with moving images.

Unintended Consequences: Where Does Creativity End?

All of the improvements and progress in visual effects during the past 100+ years—the changes from the original hand-cranked camera, to optical printing, to digital compositing, to computer graphics imagery—have had one major impact: They have opened creative options well into the post-production process, virtually until the last possible moment.

When the techniques available to us were photochemical, visual effects artists knew exactly what had to be done to finish the film. Shots were not easily changeable, and filmmakers had long settled on what they expected from a given visual effect. You had to get the Millennium Falcon to fly between the asteroids, and you knew exactly what everything had to do. It was an intense exercise to get it done, to come up with a creative technical solution that looked good on screen. Now, after extraordinary progress in the power to create visual effects, everything can be constantly manipulated and changed—although often with extraordinary effort. Because of this, filmmakers are no longer disciplined to make critical creative decisions up front and often postpone them as long as they can. In essence, the creative process only ends when time runs out and the film, game, or other project must be released.

What does all this mean for the future? Very shortly, with digital distribution employed across the world, films will be directly downloaded into servers at theaters. Filmmakers will be able to change scenes even while the movie is playing! Many of the technologies that make online game playing, and changes to games, possible could fuel changes in the exhibition of feature films. Films can be altered for specific demographics. They can “play in Peoria” ... or in San Francisco, or Alaska, or for different countries or groups. Visual effects may never be done.

Conclusion

Visual effects have allowed filmmakers to take us on journeys to places that have ceased to exist or that have never existed, and to see things that we could only imagine. With the magic of visual effects, we have witnessed stories set on imaginary planets; embraced rich fictional worlds; come to know beasts, devils and angels, robots, and talking apes; and brought dinosaurs back to life, not from insect DNA trapped in ancient amber but from the magical plasticity of digital imagery created by talented visual effects artists.

It is important to emphasize the word artist. As our predecessors Masaccio, Piero della Francesca, Leonardo da Vinci, Muybridge, Maret, and Méliès drove their technologies forward, they created great art. So it is with visual effects artists. Computers today provide artists with a powerful tool to create fantastic images, but computers alone cannot make those images. It is the eyes of the artists—their imaginative and innovative use of these new tools—that create the wonderful new worlds we see in games, on television, on the web, and at the cinema. The magic is really and truly from the artist’s vision.

The art of visual effects can serve to change our perspectives and instill new understandings of our relationship with the universe. An amazing example of this is the opening scene from the 1997 film Contact, where we zoom out from earth’s atmosphere through bands of electromagnetic signals we have sent into space ... defining our small corner of the universe ... out past exceedingly distant galaxies where our signals will take countless millennia to penetrate—vast, unfathomable distances ... at last coming back to the blue eye of a little girl just discovering the wonders of this earth and the “small moves” it takes not to miss anything.

We, the visual effects artists and technologists of the Visual Effects Society whose daily lives are dedicated to making magic real, hope you will enjoy this book and that it serves in some way to enable you to see things in a new light, exercise your imaginative powers, perhaps even join us on this journey to make stories that engage, astonish, and captivate. We are proud of the work we have helped create as makers of movie magic, and we are glad to share our ideas, history, and techniques with you in this book.

1 Mattes: usually a black or opaque shape used to block the exposure in part of an image so that another image can be exposed into the matted, unexposed area.

2 Nodal point: the point at which the light entering the lens converges before it spreads again to form an image at the film plane.

3 Parallax: visible shifting of objects at different distances, in this case due to panning or tilting a camera that is not rotating around the point where the image converges in the lens (nodal point). Essentially equivalent to a very tiny crane or dolly move—the off-nodal mount of the camera creates a small translation of the lens through space.

4 This advancement was important enough to be recognized in 1945 with an Academy Award for technical achievement.

5 Vector graphics: images created with lines drawn by a deflected electron beam hitting the phosphor coating on the inside of a CRT. Unlike raster graphics, which contain solid areas of color or texture, vectors are just lines drawn on a screen. Vector graphic displays, although computationally friendly and amazing for their time, were incapable of creating shaded objects.

6 The argument comes from those who think the character Bit in Tron (1982) was the first.

7 SIGGRAPH stands for Special Interest Group on Computer Graphics and Interactive Techniques, which is part of the international Association for Computing Machinery. SIGGRAPH holds an annual conference that highlights the most innovative work in computer graphics and typically attracts attendance of up to 40,000 computer artists, scientists, filmmakers, and other CG enthusiasts.

8 Waldo: mechanical device that has encoders attached to its axes of motion such that any motion of the device will translate to a series of numbers that are read by the computer as locations or rotations in 3D space.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset