103
Bibliography
[1] National highway traffic safety administration, traffic safety facts 2012: A compilation of
motor vehicle crash data from the fatality analysis reporting system and the general es-
timates system. pp. 77–85, U.S. Department of Transportation, Washington, DC, 2014.
1
[2] H. Huang, R. Yedavalli, and D. Guenther. Active roll control for rollover prevention of
heavy articulated vehicles with multiple-rollover-index minimization. Vehicle System Dy-
namics, 50(3):471–493, 2012. DOI: 10.1115/dscc2010-4278. 1, 49
[3] G. Mattos, R. Grzebieta, M. Bambach, et al. Validation of a dynamic rollover
test device. International Journal of Crashworthiness, 18(3):207–214, 2013. DOI:
10.1080/13588265.2013.772766. 1
[4] J. Gertsch and T. Shim. Interpretation of roll plane stability models. International Journal
of Vehicle Design, 46(1):72–77, 2008. DOI: 10.1504/ijvd.2008.017070. 3, 21, 44
[5] G. Yu, H. Li, P. Wang, et al. Real-time bus rollover prediction algorithm with road
bank angle estimation. Chaos Solitons and Fractals the Interdisciplinary Journal of Non-
linear Science and Nonequilibrium and Complex Phenomena, 89:270–283, 2016. DOI:
10.1016/j.chaos.2015.11.023. 3, 21, 44
[6] H. Yu, L. Guvenc, and U. Ozguner. Heavy-duty vehicle rollover detection
and active roll control. Vehicle System Dynamics, 46(6):451–470, 2008. DOI:
10.1080/00423110701477529. 4
[7] B. Chen and H. Peng. A real-time rollover threat index for sports utility vehicle. Proc. of the
American Control Conference, 2(2):1233–1237, 1999. DOI: 10.1109/ACC.1999.783564. 4,
34
[8] S. Yim. Design of a robust controller for rollover prevention with active suspension and dif-
ferential braking. Journal of Mechanical Science and Technology, 26(1):213–222, 2012. DOI:
10.1007/s12206-011-0915-9. 6, 59
[9] Y. Zhang, A. Khajepour, and X. Xie. Rollover prevention for sport utility vehi-
cles using a pulsed active rear-steering strategy. Proc. of the Institution of Mechanical
Engineers Part D: Journal of Automobile Engineering, 230(9):1239–1253, 2016. DOI:
10.1177/0954407015605696.
104 BIBLIOGRAPHY
[10] S. Yim. Design of a rollover prevention controller with H1 preview con-
trol. Journal of Institute of Control Robotics and Systems, 24(1):42–48, 2018. DOI:
10.5302/j.icros.2018.17.0185.
[11] G. Dong, J. Chen, and N. Zhang. Study on the time lag between steering input and vehicle
lateral acceleration response under different key vehicle parameters. Applied Mechanics and
Materials, 226(11):681–684, 2012. DOI: 10.4028/www.scientific.net/amm.226-228.681.
[12] T. Zhu and C. Zong. Rollover warning system of heavy duty vehicle based on im-
proved TTR algorithm. Journal of Mechanical Engineering, 47(10):88–94, 2011. DOI:
10.3901/jme.2011.10.088. 6
[13] Z. Jin, J. Weng, and H. Hu. Rollover stability of a vehicle during critical driving manoeu-
vres. Proc. of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineer-
ing, 221(9):1041–1049, 2007. DOI: 10.1243/09544070jauto343. 6, 23, 28
[14] H. Imine, A. Benallegue, T. Madani, et al. Rollover risk prediction of heavy vehicle using
high order sliding mode observer: experimental results. IEEE Transactions on Vehicular
Technology, 63(6):2533–2543, 2014. DOI: 10.1109/tvt.2013.2292998. 9
[15] Z. Jin, L. Zhang, J. Zhang, et al. Stability and optimised H1 control of tripped
and untripped vehicle rollover. Vehicle System Dynamics, 54(10):1405–1427, 2016. DOI:
10.1080/00423114.2016.1205750. 9, 30, 41, 67
[16] M. Alberding, J. Tjønnås, et al. Integration of vehicle yaw stabilization and rollover
prevention through nonlinear hierarchical control allocation. Vehicle System Dynamics,
52(12):1607–1621, 2014. DOI: 10.1080/00423114.2014.952643. 16
[17] M. Alberding, J. Tjønnas, et al. Nonlinear hierarchical control allocation for ve-
hicle yaw stabilization and rollover prevention. Control Conference, 2015. DOI:
10.23919/ecc.2009.7075064.
[18] A. Kordani and A. Molan. e effect of combined horizontal curve and longitudinal grade
on side friction factors. KSCE Journal of Civil Engineering, 19(1):303–310, 2015. DOI:
10.1007/s12205-013-0453-3.
[19] B. Han and J. Seo. Analysis of vehicle rollover using multibody dynamics. Journal of Me-
chanical Science and Technology, 30(2):797–802, 2016. DOI: 10.1007/s12206-016-0122-9.
[20] S. Zhu and Y. He. A driver-adaptive stability control strategy for sport utility vehicles.
Vehicle System Dynamics, 55(8):1206–1240, 2017. DOI: 10.1080/00423114.2017.1308521.
16, 55
BIBLIOGRAPHY 105
[21] W. Bao and S. Hu. Vehicle rollover simulation analysis considering road excitation.
Transactions of the Chinese Society of Agricultural Engineering, 31(2):59–65, 2015. DOI:
10.3969/j.issn.1002-6819.2015.02.009. 17
[22] D. Baker, R. Bushman, and C. Berthelot. e effectiveness of truck rollover warning sys-
tems. Transportation Research Record: Journal of the Transportation Research Board, 2000.
DOI: 10.3141/1779-18. 21
[23] N. Zhang, G. Dong, and H. Du. Investigation into untripped rollover of light
vehicles in the modified fishhook and the sine maneuvers. Part I: Vehicle mod-
elling, roll and yaw instability. Vehicle System Dynamics, 46(4):271–293, 2008. DOI:
10.1080/00423110701344752. 21
[24] R. Huston and F. Kelly. Another look at the static stability factor (SSF) in predict-
ing vehicle rollover. International Journal of Crashworthiness, 19(6):567–575, 2014. DOI:
10.1080/13588265.2014.919730. 22
[25] Z. Yao, G. Wang, X. Li, et al. Dynamic simulation for the rollover stability performances
of articulated vehicles. Proc. of the Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering, 228(7):771–783, 2014. DOI: 10.1177/0954407013501486. 28
[26] D. Denis, B. uilot, and R. Lenain. Online adaptive observer for rollover avoidance of
reconfigurable agricultural vehicles. Computers and Electronics in Agriculture, 126(1):32–43,
2016. DOI: 10.1016/j.compag.2016.04.030.
[27] H. Imine and M. Djemaï. Switched control for reducing impact of vertical forces on
road and heavy-vehicle rollover avoidance. IEEE Transactions on Vehicular Technology,
65(6):4044–4052, 2016. DOI: 10.1109/tvt.2015.2470090.
[28] M. Saeedi, R. Kazemi, and S. Azadi. Improvement in the rollover stability of a liquid-
carrying articulated vehicle via a new robust controller. Journal of Automobile Engineering,
231(3):322–346, 2017. DOI: 10.1177/0954407016639204. 28, 49, 67
[29] S. Solmaz, M. Corless, and R. Shorten. A methodology for the design of robust rollover
prevention controllers for automotive vehicles. Part 1: Differential Braking, IEEE Confer-
ence on Decision and Control, 80(11):1739–1744, 2007. DOI: 10.1109/cdc.2006.377179.
30, 55
[30] M. Akar and A. Dere. A switching rollover controller coupled with closed-loop adaptive
vehicle parameter identification. IEEE Transactions on Intelligent Transportation Systems,
15(4):1579–1585, 2014. DOI: 10.1109/tits.2014.2301721.
106 BIBLIOGRAPHY
[31] H. Dahmani, M. Chadli, A. Rabhi, et al. Detection of impending vehicle rollover with
road bank angle consideration using a robust fuzzy observer. International Journal of Au-
tomation and Computing, 12(1):93–101, 2015. DOI: 10.1007/s11633-014-0836-z. 34, 44,
67
[32] R. Azim, F. Malik, and W. Syed. Rollover mitigation controller development for three-
wheeled vehicle using active front steering. Mathematical Problems in Engineering, article
ID:918429:1–9, 2015. DOI: 10.1155/2015/918429. 51
[33] D. Chu, X. Lu, C. Wu, et al. Smooth sliding mode control for vehicle rollover pre-
vention using active antiroll suspension. Mathematical Problems in Engineering, article
ID:478071:1–8, 2015. DOI: 10.1155/2015/478071. 50, 86
[34] B. Mashadi, M. Mokhtari-Alehashem, and H. Mostaghimi. Active vehicle rollover control
using a gyroscopic device. Proc. of the Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering, 230(14):1958–1971, 2016. DOI: 10.1177/0954407016641322.
[35] M. Ghazali, M. Durali, and H. Salarieh. Path-following in model predictive rollover pre-
vention using front steering and braking. Vehicle System Dynamics, 55(1):121–148, 2017.
DOI: 10.1080/00423114.2016.1246741. 74
[36] M. Ataei, A. Khajepour, and S. Jeon. Rollover stabilities of three-wheeled vehicles includ-
ing road configuration effects. Proc. of the Institution of Mechanical Engineers, Part D: Journal
of Automobile Engineering, 231(7):859–871, 2017. DOI: 10.1177/0954407017695007. 30,
44
[37] C. Larish, D. Piyabongkarn, V. Tsourapas, et al. A new predictive lateral load transfer ratio
for rollover prevention systems. IEEE Transactions on Vehicular Technology, 62(7):2928–
2936, 2013. DOI: 10.1109/tvt.2013.2252930. 34, 36, 37
[38] H. Li, Y. Zhao, H. Wang, et al. Design of an improved predictive LTR for rollover warning
systems. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(10):3779–
3791, 2017. DOI: 10.1007/s40430-017-0796-7. 34
[39] B. Zhu, Q. Piao, J. Zhao, et al. Integrated chassis control for vehicle rollover prevention
with neural network time-to-rollover warning metrics. Advances in Mechanical Engineering,
8(2):1–13, 2016. DOI: 10.1177/1687814016632679. 34
[40] H. Dahmani, M. Chadli, A. Rabhi, et al. Vehicle dynamic estimation with road bank angle
consideration for rollover detection: eoretical and experimental studies. Vehicle System
Dynamics, 51(12):1853–1871, 2013. DOI: 10.1080/00423114.2013.839819. 34, 44
[41] H. Dahmani, O. Pagès, A. Hajjaji, et al. Observer-based robust control of vehicle dynamics
for rollover mitigation in critical situations. IEEE Transactions on Intelligent Transportation
Systems, 15(1):274–284, 2014. DOI: 10.1109/tits.2013.2281135. 44, 67
BIBLIOGRAPHY 107
[42] S. Choi. Practical vehicle rollover avoidance control using energy method. Vehicle System
Dynamics, 46(4):323–337, 2008. DOI: 10.1080/00423110701377109. 46
[43] D. Sampson and D. Cebon. Active roll control of single unit heavy road vehicles. Vehicle
System Dynamics, 40(4):229–270, 2003. DOI: 10.1076/vesd.40.2.229.16540. 49
[44] V. Vu, O. Sename, L. Dugard, et al. Enhancing roll stability of heavy vehicle by LQR
active anti-roll bar control using electronic servo-valve hydraulic actuators. Vehicle System
Dynamics, 55(9):1405–1429, 2017. DOI: 10.1080/00423114.2017.1317822. 49, 83
[45] V. Muniandy, P. Samin, and H. Jamaluddin. Application of a self-tuning fuzzy PI-PD
controller in an active anti-roll bar system for a passenger car. Vehicle System Dynamics,
53(11):1641–1666, 2015. DOI: 10.1080/00423114.2015.1073336. 49, 61
[46] V. Vu, O. Sename, L. Dugard, et al. H1 active anti-roll bar control to prevent rollover
of heavy vehicles: A robustness analysis. IFAC-PapersOnLine, 49(9):99–104, 2016. DOI:
10.1016/j.ifacol.2016.07.503. 49, 67
[47] F. Sarel, V. Westhuizen, and P. Els. Slow active suspension control for rollover prevention.
Journal of Terramechanics, 50(1):29–36, 2013. DOI: 10.1016/j.jterra.2012.10.001. 50
[48] Q. Zhu and B. Ayalew. Predictive roll, handling and ride control of vehicles via active
suspensions. American Control Conference, 2014. DOI: 10.1109/acc.2014.6859037. 50
[49] W. Sun, Y. Li, J. Huang, et al. Efficiency improvement of vehicle active suspension based
on multi-objective integrated optimization. Journal of Vibration and Control, 23(4): 539–
554, 2017. DOI: 10.1177/1077546315581731. 51
[50] S. Yim, J. Choi, and K. Yi. Coordinated control of hybrid 4WD vehicles for enhanced ma-
neuverability and lateral stability. IEEE Transactions on Vehicular Technology, 61(4):1946–
1950, 2012. DOI: 10.1109/tvt.2012.2188921. 51
[51] N. Elmi, A. Ohadi, and B. Samadi. Active front-steering control of a sport utility vehicle
using a robust linear quadratic regulator method, with emphasis on the roll dynamics.
Proc. of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering,
227(12):1636–1649, 2013. DOI: 10.1177/0954407013502319.
[52] S. Yim. Unified chassis control with electronic stability control and active front steering
for under-steer prevention. International Journal of Automotive Technology, 16(5):775–782,
2015. DOI: 10.1007/s12239-015-0078-2. 51
[53] B. Zhang, A. Khajepour, and A. Goodarzi. Vehicle yaw stability control using active
rear steering: Development and experimental validation. Journal of Multi-Body Dynamics,
231(2):333–345, 2017. DOI: 10.1177/1464419316670757. 53
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset