Contents

Preface

Authors

1.  Introduction

1.1  Symbols and Factors Used in This Book

1.1.1  Symbols Used in Power Systems

1.1.2  Factors and Symbols Used in AC Power Systems

1.1.3  Factors and Symbols Used in DC Power Systems

1.2  FFT—Fast Fourier Transform

1.2.1  Central Symmetrical Periodical Function

1.2.2  Axial (Mirror) Symmetrical Periodical Function

1.2.3  Nonperiodic Function

1.2.4  Useful Formulae and Data

1.2.5  Examples of FFT Applications

1.3  DC/AC Inverters

1.3.1  Categorizing Existing Inverters

1.3.2  Updated Circuits

1.3.3  Soft Switching Methods

References

2.  Pulse Width-Modulated DC/AC Inverters

2.1  Introduction

2.2  Parameters Used in PWM Operation

2.2.1  Modulation Ratios

2.2.1.1  Linear Range (ma 1.0)

2.2.1.2  Over Modulation (1.0 < ma 3.24)

2.2.1.3  Square Wave (Sufficiently Large ma > 3.24)

2.2.1.4  Small mf (mf ≤ 21)

2.2.1.5  Large m (m > 21)

2.2.2  Harmonic Parameters

2.3  Typical PWM Inverters

2.3.1  Voltage Source Inverter (VSI)

2.3.2  Current Source Inverter (CSI)

2.3.3  Impedance Source Inverter (z-Source Inverter—ZSI)

2.3.4  Circuits of DC/AC Inverters

References

3.  Voltage Source Inverters

3.1  Single-Phase Voltage Source Inverter

3.1.1  Single-Phase Half-Bridge VSI

3.1.2  Single-Phase Full-Bridge VSI

3.2  Three-Phase Full-Bridge VSI

3.3  Vector Analysis and Determination of ma

3.3.1  Vector Analysis

3.3.2  ma Calculation

3.3.3  ma Calculation with L-C Filter

3.3.4  Some Waveforms

3.4  Multistage PWM Inverter

3.4.1  Unipolar PWM VSI

3.4.2  Multicell PWM VSI

3.4.3  Multilevel PWM Inverter

References

4.  Current Source Inverters

4.1  Three-Phase Full-Bridge Current Source Inverter

4.2  Boost-Type CSI

4.2.1  Negative Polarity Input Voltage

4.2.2  Positive Polarity Input Voltage

4.3  CSI with L-C Filter

References

5.  Impedance Source Inverters

5.1  Comparison with VSI and CSI

5.2  Equivalent Circuit and Operation

5.3  Circuit Analysis and Calculations

5.4  Simulation and Experimental Results

References

6.  Quasi-Impedance Source Inverters

6.1  Introduction to ZSI and Basic Topologies

6.2  Extended Boost qZSI Topologies

6.2.1  Diode-Assisted Extended Boost qZSI Topologies

6.2.2  Capacitor-Assisted Extended Boost qZSI Topologies

6.2.3  Simulation Results

References

7.  Soft-Switching DC/AC Inverters

7.1  Notched DC Link Inverters for Brushless DC Motor Drive

7.1.1  Resonant Circuit

7.1.2  Design Considerations

7.1.3  Control Scheme

7.1.3.1  Non-PWM Operation

7.1.3.2  PWM Operation

7.1.4  Simulation and Experimental Results

7.2  Resonant Pole Inverter

7.2.1  Topology of Resonant Pole Inverter

7.2.2  Operation Principle

7.2.3  Design Considerations

7.2.4  Simulation and Experimental Results

7.3  Transformer-Based Resonant DC Link Inverter

7.3.1  Resonant Circuit

7.3.2  Design Considerations

7.3.3  Control Scheme

7.3.3.1  Full Duty Cycle Operation

7.3.3.2  PWM Operation

7.3.4  Simulation and Experimental Results

References

8.  Multilevel DC/AC Inverters

8.1  Introduction

8.2  Diode-Clamped Multilevel Inverters

8.3  Capacitor-Clamped Multilevel Inverters (Flying Capacitor Inverters)

8.4  Multilevel Inverters Using H-Bridges (HBs) Converters

8.4.1  Cascaded Equal Voltage Multilevel Inverters (CEMI)

8.4.2  Binary Hybrid Multilevel Inverter (BHMI)

8.4.3  Quasi-Linear Multilevel Inverter (QLMI)

8.4.4  Trinary Hybrid Multilevel Inverter (THMI)

8.5  Other Kinds of Multilevel Inverters

8.5.1  Generalized Multilevel Inverters (GMI)

8.5.2  Mixed-Level Multilevel Inverter Topologies

8.5.3  Multilevel Inverters by Connection of Three-Phase Two-Level Inverters

References

9.  Trinary Hybrid Multilevel Inverter (THMI)

9.1  Topology and Operation

9.2  Proof of Greatest Number of Output Voltage Levels

9.2.1  Theoretical Proof

9.2.2  Comparison of Various Kinds of Multilevel Inverters

9.2.3  Modulation Strategies for THMI

9.2.3.1  Step Modulation Strategy

9.2.3.2  Virtual Stage Modulation Strategy

9.2.3.3  Hybrid Modulation Strategy

9.2.3.4  Subharmonic PWM Strategies

9.2.3.5  Simple Modulation Strategy

9.2.4  Regenerative Power

9.2.4.1  Analysis of DC Bus Power Injection

9.2.4.2  Regenerative Power in THMI

9.2.4.3  Method to Avoid Regenerative Power

9.2.4.4  Summary of Regenerative Power in THMI

9.3  Experimental Results

9.3.1  Experiment to Verify Step Modulation and Virtual Stage Modulation

9.3.2  Experiment to Verify New Method to Eliminate Regenerative Power

9.4  Trinary Hybrid 81-Level Multilevel Inverter

9.4.1  Space Vector Modulation

9.4.2  DC Sources of H-Bridges

9.4.3  Motor Controller

9.4.4  Simulation and Experimental Results

References

10.  Laddered Multilevel DC/AC Inverters Used in Solar Panel Energy Systems

10.1  Introduction

10.2  Progressions (Series)

10.2.1  Arithmetic Progressions

10.2.1.1  Unit Progression

10.2.1.2  Natural Number Progression

10.2.1.3  Odd Number Progression

10.2.2  Geometric Progressions

10.2.2.1  Binary Progression

10.2.2.2  Trinary Number Progression

10.2.3  New Progressions

10.2.3.1  Luo Progression

10.2.3.2  Ye Progression

10.3  Laddered Multilevel DC/AC Inverters

10.3.1  Special Switches

10.3.1.1  Toggle Switch

10.3.1.2  Change-over Switch

10.3.1.3  Band Switch

10.3.2  General Circuit of Laddered Inverters

10.3.3  Linear Laddered Inverters (LLIs)

10.3.4  Natural Number Laddered Inverters (NNLIs)

10.3.5  Odd Number Laddered Inverters (ONLIs)

10.3.6  Binary Laddered Inverters (BLIs)

10.3.7  Modified Binary Laddered Inverters (MBLIs)

10.3.8  Luo Progression Laddered Inverters (LPLIs)

10.3.9  Ye Progression Laddered Inverters (YPLIs)

10.3.10  Trinary Laddered Inverters (TLIs)

10.4  Comparison of All Laddered Inverters

10.5  Solar Panel Energy Systems

10.6  Simulation and Experimental Results

References

11.  Super-Lift Converter Multilevel DC/AC Inverters Used in Solar Panel Energy Systems

11.1  Introduction

11.2  Super-Lift Converter Used in Multilevel DC/AC Inverters

11.2.1  Seven-Level SL Inverter

11.2.2  Fifteen-Level SL Inverter

11.2.3  Twenty-One-Level SC Inverter

11.3  Simulation and Experimental Results

References

12.  Switched-Capacitor Multilevel DC/AC Inverters in Solar Panel Energy Systems

12.1  Introduction

12.2  Switched Capacitor Used in Multilevel DC/AC Inverters

12.2.1  Five-Level SC Inverter

12.2.2  Nine-Level SC Inverter

12.2.3  Fifteen-Level SC Inverter

12.2.4  Higher-Level SC Inverter

12.3  Simulation and Experimental Results

References

13.  Switched Inductor Multilevel DC/AC Inverters Used in Solar Panel Energy Systems

13.1  Introduction

13.2  Switched Inductor Used in Multilevel DC/AC Inverters

13.2.1  Five-Level SI Inverter

13.2.2  Nine-Level SL Inverter

13.2.3  Fifteen-Level SC Inverter

13.3  Simulation and Experimental Results

References

14.  Best Switching Angles to Obtain Lowest THD for Multilevel DC/AC Inverters

14.1  Introduction

14.2  Methods for Determination of Switching Angle

14.2.1  Main Switching Angles

14.2.2  Equal-Phase (EP) Method

14.2.3  Half-Equal-Phase (HEP) Method

14.2.4  Half-Height (HH) Method

14.2.5  Feed-Forward (FF) Method

14.2.6  Comparison of Methods in Each Level

14.2.7  Comparison of Levels for Each Method

14.2.8  THDs of Different Methods

14.3  Best Switching Angles

14.3.1  Using MATLAB® to Obtain Best Switching Angles

14.3.2  Analysis of Results of Best Switching Angles Calculation

14.3.3  Output Voltage Waveform for Multilevel Inverters

References

15.  Design Examples for Wind Turbine and Solar Panel Energy Systems

15.1  Introduction

15.2  Wind Turbine Energy Systems

15.2.1  Technical Features

15.2.2  Design Example for Wind Turbine Power System

15.2.2.1  Design Example for Wind Turbine

15.2.2.2  Design Example for Converters

15.2.2.3  Simulation Results

15.3  Solar Panel Energy Systems

15.3.1  Technical Features

15.3.2  P/O Super-Lift Luo Converter

15.3.3  Closed-Loop Control

15.3.4  PWM Inverter

15.3.5  System Design

15.3.6  Simulation Results

References

Index

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset