Index

a

  • acid feed, in WTP/WWTP design
    • HCl 190–193
    • H2SO4187–190
  • activated complex 168
  • activated sludge process 469–474
  • activation energy 168
  • acute stressors 157
  • advanced oxidation process costs 461–465
  • air management, design hierarchy for 97, 98
  • air pollutant standard index 13–15
  • air pollution 19, 20
  • AirPrex process 467
  • air quality index 13–14
  • air quality standards 131
  • air stripping
    • packed‐column air stripper 342–353
    • thermal oxidation and activated carbon 341
  • algae culture 406
  • ammonia‐oxidizing bacteria, cometabolism in 200, 201
  • anaerobic ammonia oxidation (anammox) 201, 203
    • nitrite concentrations 202
    • optimum parameters 202
  • anaerobic digester reactor 262–263
  • anaerobic digestion, for biogas production
    • acetogenesis 396
    • and aerobic processes 398
    • aerobic sludge 397
    • anaerobic respiration 397
    • anaerobic treatment 397
    • biodegradable organics and nutrients 399
    • biological oxygen demand (BOD) 396
    • carbon and nutrient removal process 396
    • electricity consumption 398
    • fermentation 396, 397
    • hydrolysis 396
    • methane and carbon dioxide 396
    • methanogenesis 396
    • nonbiodegradable organic solid 398
    • operation guidelines 397–399
    • product size 397
    • reduction reactions 396
    • upflow anaerobic sludge blanket (UASB) reactors 398
  • anaerobic process design 282, 339–341
  • Arrhenius equation 170
  • ASM3biop 425
  • atmospheric CO24, 5
  • atmospheric pollution equivalent values 454, 456
  • attributes, ISA 97

b

  • bacteria sensitivity index (BSI) 381–382
  • batch reactor design
    • vs. CSTR and PFR 203–204
    • limiting reagents 203
    • mass balance 203
  • benchmark dose (BMD) methods 34
  • Benson’s thermochemical group additivity theory 172
  • biochemical oxygen demand (BOD) 186
  • biogas production, anaerobic digestion for
    • acetogenesis 396
    • and aerobic processes 398
    • aerobic sludge 397
    • anaerobic respiration 397
    • anaerobic treatment 397
    • biodegradable organics and nutrients 399
    • biological oxygen demand (BOD) 396
    • carbon and nutrient removal process 396
    • electricity consumption 398
    • fermentation 396, 397
    • hydrolysis 396
    • methane and carbon dioxide 396
    • methanogenesis 396
    • nonbiodegradable organic solid 398
    • operation guidelines 397–399
    • product size 397
    • reduction reactions 396
    • upflow anaerobic sludge blanket (UASB) reactors 398
  • biomass 185
  • Biscayne aquifer 428
  • black carbon 131
  • business plan 493, 494

c

  • calculated dose approach 144
    • uncertainty of interpolation 149
  • Camp–Stein equation 326–327
  • carbon pollution 11
  • carrying capacity 11–13
  • cash flow statement 495
  • central vs. decentralized WWTP 136–137
  • Check Up Program for Small Systems (CUPSS) 138
  • chemical–biological treatment 281
  • chemical kinetics
    • activated complex 168
    • activation energy 168
    • Arrhenius equation 170
    • elementary reactions 168
    • kinetic rate constants 171–172
    • linearized kinetic equations 170
    • Maxwell–Boltzmann distribution 170
    • pseudo‐first order 168
    • rate coefficient 168
    • rate constant 168
    • rate determination steps 168
    • rate law 168
  • chemical oxygen demand (COD) 186, 215
  • chemical phosphorus removal
    • alum precipitation 282–283
    • iron coagulants 281
  • chemical precipitation 324–325
  • chronic stressors 157
  • climate change 11
  • coagulation and flocculation
    • Camp–Stein equation 326–327
    • destabilization 325
    • electric double layer (EDL) 325
    • mechanisms of 326
    • power, pressure, and pump in reactors 327–333
    • static and plug‐flow reactor mixers 327
  • CO2 emitters worldwide 71
  • collimated beam test 141–142
    • bench‐scale testing 142–143
    • data uncertainty 152–153
    • full‐scale reactor testing 143
    • UV dose–response curve 151–152
  • combined sewer system overflows 454
  • community proposal project 319
  • components, ISA 97
  • computational chemistry (CCH) 179
  • computational fluid dynamics (CFD) 179
  • computer software, for quantitative risk assessment 62
  • continuous stirred tank reactors (CSTRs)
    • vs. batch reactor and PFR 203–204
    • hydraulic condition for 167
    • lowest reaction rate 204
    • mass balance 203
  • Cryptosporidium concentrations 35
  • Crystalactor 467

d

  • Darcy–Weisbach (D–W) equation 232
  • decentralized vs. central WWTP 136–137
  • decentralized wastewater management system, defined 137
  • decentralized WRRFs 95, 159
  • denitrification process 200–201
  • dermal contaminants, cancer screening calculation for 41–43
  • design principles
    • balance between capital and operating costs 87–88
    • efficiency of renewable material 80–82
    • implementation procedure 88–89
    • integrated and interconnected system hierarchy 78–79
    • optimization through modeling and simulation 86–87
    • prevention 82–83
    • recovery 83–84
    • reliability on spatial scale 79–80
    • retrofitting and remediation 86
    • SEE integration into undergraduate education 89–91
    • separation 84–85
    • system resiliency on temporal scale 80
    • treatment 85–86
  • disinfection by‐products (DBPs) 10
    • classification 36, 47
    • DBP health advisory concentration 44–46
  • disinfection, in WTP/WWTP design
    • chlorine 193–196
    • ultraviolet 196–199
  • domestic solid waste treatment facilities, in China
    • incineration capacity 101, 102
    • indicators 98–99
    • landfill capacity 101
    • monitoring system investment 102
    • total investment 103
    • transfer facilities investment 102
    • treatment capacity 99–101
    • treatment facilities investment 102
  • Drinkable Book™ 496

e

  • ecological footprint (EF) 6
  • electrical energy per order (EE/O) 153–154
  • emerging treatment technologies
    • electron beam irradiation 388–389
    • ozonation 387
    • sonolysis 388
    • supercritical water oxidation 387–388
    • UV radiation 387
  • energy balances
    • conduction 223
    • convection 223
    • exergy 225
    • mass and energy inputs and outputs 223
    • open systems 223
    • physical framework, by thermodynamics 224
    • second law of thermodynamics 224
  • energy conservation laws see thermodynamics laws
  • energy consumption
    • flow in pipe 232
    • pump efficiency 232–233
    • pump station 232–233
  • entrepreneur
    • business plan 493, 494
    • definition 492
    • EEI financing 493
    • finance of environmental infrastructure 493
    • financial planning 495
    • out‐of‐the‐box thinking skills 493
    • successful entrepreneurs, requirements for 492
  • environmental engineering infrastructure systems (EEIS) 1 see also design principles; wastewater treatment plant (WWTP); water treatment plant (WTP)
    • ASCE criteria for sustainability 67
    • ISWM data analysis 115–117
    • regenerative design 68
    • resiliency 158
  • environmental health issues 29–31
  • environmental laws 22–24
  • environmental regulations
    • DVGW vs. US EPA. 369
    • EPA LT2ESWTR 367
    • EU UV dose requirements, UV disinfection 369–370
    • LT2ESWTR and Stage 2DBPR
      • Matlab codes 366
      • microbial/disinfection by‐product (M/DBP) rules 366
      • ozonation costs 366
    • UV disinfection 368
  • environmental standards
    • benchmark dose (BMD) methods 34
    • health advisories for drinking water contaminants 32
    • maximum contaminant level (MCL) 31–32
    • maximum contaminant level goal (MCLG) 32–33
      • of chloroform 34
      • quantitative structure–activity relationship (QSAR) study 35
    • reference dose (RfD) 33
  • environmental tax items and rates, by CMEP 454
  • EPA analysis tools 137, 138
  • excavation remedies 419
  • excessive nitrogen runoff 10
  • exergy 221, 225
  • exposure assessment
    • cancer screening calculation 41–43
    • noncancer screening calculation 43–44

f

  • fat–oil–grease (FOG) 322
  • Fenton process (FP)
    • biodegradable OM 428
    • 5,5‐dimethyl‐1‐pyrroline N‐oxide (DMPO) 429
    • DMPO–OH EPR signal, kinetic model
      • EPR quantification hydroxyl radical concentration 434
      • EPR spectrum 432
      • Fenton reagent concentration 431
      • 2‐hydroxy‐5,5‐dimethyl‐1‐pyrrolidinyloxy 429
      • hydroxyl radicals 429–430
      • peak‐to‐peak amplitude 435
      • steady‐state hydroxyl radical concentration 430
      • 2,5,5‐trimethyl‐1‐pyrroline‐N‐oxide (M3PO) tautomers 433
      • UV‐Vis absorbance 432
    • electron paramagnetic resonance (EPR) 429
    • hydroxyl radical concentration 429
    • hydroxyl radicals 428
    • optimal ratio 429
  • Fenton’s reagent, reaction mechanism of 178
  • ferrous sulfate 281
  • ferryl–oxo species 178
  • financial planning 495
  • Financing Alternatives Comparison Tool (FACT) 138
  • front‐end design (FED) 97

g

  • gasification 406
  • Gifhorn process, site‐specific data for 468
  • global water cycle 3
  • gray water system 7–9
  • green building 420
  • green chemistry (GC)
    • for environmental management 74, 75
    • history 74, 75
    • principles 76
  • green engineering (GE) 73, 76
  • greenhouse gas emissions evaluation fact sheet 419–420
  • green infrastructure (GI) 3
    • climate change adaptation 3
    • GI tools 242
    • Integrated Urban Water Management Paradigm 241–242
    • modeling tools 242–243
  • green remediation
    • data quality 415
    • electricity generation 415–416
    • goals and scope of analysis 411–412
    • materials and waste metrics 411
    • quantify energy and air metrics 414
    • quantify on‐site materials and waste metrics 412–413
    • quantify on‐site water metrics 413–414
    • remedy information 412
    • US EPA 410
  • green retrofitting
    • energy auditing 400–404
    • phototrophic system 404–406
    • renewable energy 406
    • sludge processing and disposal 406–410
  • green roof (GR) design
    • cost/benefit analysis 265, 266
    • life cycle assessment
  • gross domestic product (GDP) 69–71
  • gross primary production (GPP) 5
  • group theory 172

h

  • Haber–Bosch (HB) process, nitrogen fertilizers 10
  • haloacetonitriles 36, 37
  • haloalkanes 36
  • halogen‐substituted meta‐phenols, photocatalytic oxidation of 172
    • Hammett correlation analysis 177–178
    • hole vs. hydroxyl radical oxidation 174
    • Langmuir–Hinshelwood (LH) modeling 174–175
    • pH effect 175–176
  • Hammett correlation analysis 177–178
  • hazard identification (HI) 36–37
  • health advisories for drinking water contaminants 32
  • health risk assessment (HRA)
    • DBP health advisory concentration 44–46
    • dose–response curves 37, 38
    • exposure assessment
      • cancer screening calculation 41–43
      • noncancer screening calculation 43–44
    • hazard identification 36–37
    • linear dose–response assessment 40–41
    • nonlinear dose–response assessment 37–40
    • QSAR analysis 46–48
      • multiple linear regression 48–49
      • validation 49–54
    • quantification of uncertainty
      • computer software 62
      • Monte Carlo simulation 56–62
      • QSAR model 55–56, 60–61
      • types 55
    • risk characterization 46
    • specific parameters 42
  • hole vs. hydroxyl radical oxidation 174
  • human demand 5–6
  • human footprints
    • description 6–7
    • gray water system 7–9
    • water footprints 7
  • hydraulic retention time (HRT) 397
  • hydrological balance of water 4
  • hydroxyl radical kinetic constants 172

i

  • income statement 495
  • innovative consumer products
    • Drinkable Book™ 496
    • SteriPEN 495–496
    • SunSpring™ 496
  • innovative technologies 495, 496
  • integrated air pollution management 131–132
  • integrated management plan 96
  • Integrated Risk Information System (IRIS) 36
  • integrated solid waste management (ISWM)
    • data analysis
      • measuring quantity 115–116
      • waste composition, calculations for 116–117
    • generation source perspective 103, 108
    • life‐cycle‐assessment, solid waste recycle 109–115
    • life cycle perspective 107, 109
    • market in China 103–106
    • municipal solid wastes 107, 109, 110
    • stakeholders/management perspective 107, 108
    • strategy 103, 107–109
    • waste composition, determination of
      • calorific value 117–120
      • chemical composition 117–119
      • data presentation 119–121
      • moisture content 117
    • Zero Waste Strategic Plan 120–126
  • integrated system approach (ISA) 97
    • septic system 138
    • US EPA analysis tools 137, 138
    • water‐consuming household appliances 137–138
    • water‐efficient appliances 139–141
  • integrated urban water management (IUWM) paradigm 241–242
  • integrated water resources management (IWRM) 127–128
    • baseline analysis 126, 128
    • definition 3
    • description 124
    • participatory approach 124
    • sustainability objectives 124, 126
    • sustainable criteria 126, 128
    • US EPA procedure 127
  • International Organization for Standardization (ISO) 21
  • iron coagulants 281
  • ISWM see integrated solid waste management (ISWM)
  • IWRM see integrated water resources management (IWRM)

k

  • kinetic simulations
    • chain‐promoting chain‐terminating reactions 437
    • formic acid oxidation rate 436

l

  • landfill leachate quality
    • characteristics
      • acidic fermentation 427
      • elemental composition 428
      • energy‐dispersive spectroscopy (EDS) analysis 427
      • physicochemical characteristics 427
      • refractory (nonbiodegradable) compounds 427
      • volatile fatty acids (VFA) 426–427
    • in China 428
    • Fenton process (FP) 428
    • history of 426
    • treatment facilities and market size 428
  • landfills 279
  • land management, design hierarchy for 97, 98
  • Langmuir–Hinshelwood (LH) modeling 174–175
  • leachate treatment 426
  • Levenspiel plot 204
  • life cycle assessment (LCA) 21–23, 178
    • environmental laws 23, 24
    • goal and scope definition 21
    • green roof (GR) design
    • impact assessment 22
    • input and output methods 21, 22
    • interpretation and documentation 22
    • inventory analysis and product model 21
    • rain garden design 270–271
    • review 22
    • solid waste recycle 109–115
    • tools 22, 23
    • uncertainty and sensitivity analysis 22
  • life cycle cost and benefit analysis (LCCBA) 279
  • linear dose–response assessment 40–41
  • Long Term 2Enhanced Surface Water Treatment Rule (LT2ESWTR) 141, 365–367

m

  • materials recovery facilities (MRFs) 103
  • mathematical model 425
  • maximum contaminant level (MCL) 31–32
  • maximum contaminant level goal (MCLG) 32–33
    • of chloroform 34
    • quantitative structure–activity relationship (QSAR) study 35
  • membrane biological reactor 339–341
  • membrane filtration systems
    • capital and O&M costs
      • flow rates 353–358
      • reverse osmosis and nanofiltration 358–361
  • molten salt fuel cell (MSFC) technologies 453
  • 2‐monochlorophenol (2‐MCP) oxidation 206–207
  • Monte Carlo simulation (MCS) 56–60
    • sensitivity analysis 61–62
  • multiple linear regression (MLR) 48–49
  • municipal solid wastes (MSWs) 425

n

  • National ambient air quality standards 13–14
  • National Environmental Policy Act (NEPA) 67
  • nitrification process 200
  • nitrogen fertilizer production, Haber–Bosch process 10
  • nitrogen forms, in domestic wastewater 199–200
  • nonlinear dose–response assessment 37–40
  • nonrenewable fossil energy 1

o

  • onshore petroleum, environmental laws on 24
  • optimization
    • Fenton oxidation of landfill leachate 437–439
    • Fenton reagent dose
      • effect of LCOD444–447
      • Fe2+ and COD ratio 443
      • H2O2 and COD ratio 443
      • H2O2 and Fe2+442–443
      • total COD removal 444–445
    • optimum operating conditions
      • effect of reaction time 440–442
      • pH 440
      • reaction time 440
      • temperature 442
  • out‐of‐the‐box thinking skills 493
  • ozone 131

p

  • packed bed reactor (PBR) design 203
  • packed‐column air stripper 342–353
  • peak oil 11
  • Pearl process 467
  • Pfaudler reactors, cost of 212–213
  • pH effects
    • halogen‐substituted meta‐phenols, photocatalytic oxidation of 175–176
    • on Hammett correlations 177
  • phosphorus depletion 10–11
  • phosphorus recovery from sludge/wastewater 465
    • activated sludge process 469–474
    • capital cost of 469, 470
    • chemicals used 468, 469
    • Gifhorn process 468
    • process components 468
    • size and duration of operation 469
    • three‐stage activated sludge process 477–479
      • with alum addition 479–482
      • with alum and tertiary clarifier 482–484
      • with alum, tertiary clarifierand filtration 484–487
      • with tertiary clarifier and activated absorption 489–492
      • with tertiary clarifier and activated aluminum absorption 487–489
    • two‐stage activated sludge process 474–477
    • yield coefficients 466–469
  • phosphorus removal, from wastewater
    • alum precipitation 282–283
    • biological uptake 280
    • chemical phosphorus removal 281–283
    • in conventional treatment 281
    • sedimentation 280
  • photocatalytic oxidation, of halogen‐substituted meta‐phenols 172
    • Hammett correlation analysis 177–178
    • hole vs. hydroxyl radical oxidation 174
    • Langmuir–Hinshelwood (LH) modeling 174–175
    • pH effect 175–176
  • planetary boundary (PB) 13
  • plug flow reactor (PFR) 210
    • vs. batch reactor and CSTR 203–204
    • conversion and reaction rate profiles 208
    • vs. CSTR reactor size 209
    • hydraulic condition for 167
    • volume comparison for 2‐MCP 2,4‐DCP and 2,4,6‐TCP 211, 212
  • point estimate method (PEM) 60
  • pollution equivalent values
  • pollution prevention 74, 75
    • green chemistry (GC) 239, 240
    • hazardous wastes 239
    • US Environmental Protection Agency (EPA) 239
    • volume reduction 239
    • waste reduction 239
  • post‐remediation site conditions 420–421
  • prevention 82–83
    • of flooding 240
    • pollution prevention
      • green chemistry (GC) 239
      • hazardous wastes 239
      • US Environmental Protection Agency (EPA) 239
      • volume reduction 239
      • waste reduction 239
    • of water contamination 241
  • process system modeling (PSM) 179
  • pseudo‐first order 168
  • purchasing power parity (PPP) 69
  • pyrolysis 406

q

  • quantitative structure‐activity relationship (QSAR) analysis, in HRA 46–48
    • DBPs classification 46, 47
    • halogenated alkane compounds 49–51
    • multiple linear regression 48–49
    • quantification of uncertainty 55–56, 60–61
    • validation 49–54
  • Q‐value tables, for water quality index calculations 14, 16

r

  • rain garden design
    • conventional development 273
    • cost and benefit analysis 271
    • cost estimate 273
    • drainage area 269
    • environmental impacts of aluminum
      • energy 271
      • energy, from sectors 271, 272
      • greenhouse gases 271, 272
      • water withdrawals 271
    • garden length 270
    • green improvements 273
    • life cycle assessment 270–271
    • lot information 273
    • Miami‐Dade County Stormwater Fee 273–274
    • monetary 273
    • nitrogen and phosphorus footprint 274, 276
    • predevelopment 273
    • project location 269
    • rain garden depth 269
    • rain garden volume 270
    • runoff reduction goal 273
    • surface area 270
    • volume control 273
    • water footprint 274, 276
  • rain harvest
    • roof area determination
      • cumulative plot method 250–252
      • smallest roof area 252–254
      • and tank size 257–262
      • without city water 254–257
    • water demand, of public bathroom
      • day of month 244, 245
      • flowchart of 244, 245
      • input data 244, 245
      • monthly water demand 244, 246
      • roof area and tank size 247–250
      • uses and flow rate of bathroom 244, 245
  • rate determination steps 168
  • rate laws 168
  • reduction equivalent dose (RED) calculation 145–148
  • reference dose (RfD) 33
  • relationships, ISA 97
  • reliability 79–80
    • definition 135
    • small WWTPs, best practice steps 137
    • of UV disinfection system
      • collimated beam data uncertainty 152–153
      • electrical energy per order 153–154
      • LT2ESWTR validation requirements 141, 142
      • reduction equivalent dose (RED) calculation 145–148
      • uncertainty in validation 149–152
      • UV sensitivity of challenge microorganisms 143–145
      • validation testing, requirements for 141–143
  • renewable energy
    • activated sludge 216
    • biomass 216
    • chemical engineering 216
    • China emission reduction target
      • ammonia nitrogen in 217, 219
      • chemical oxygen demand (COD) 217, 219
      • of nitrogen oxides 217, 220
      • of SO2217, 220
      • of volatile organic carbon 217, 221
    • China energy consumption reduction target 217, 218
    • COD and BOD 215
    • energy balances 223–225
    • energy conservation laws 218–219, 221–223
    • fossil fuels, inefficient combustion of 216–218
    • history of 2
    • roadmap of 2, 3
    • solar photovoltaic technology 216
    • sources 1
  • renewable materials
    • acid feeds, capital cost and O&M cost 187–193
    • stoichiometry 185–186
  • residential soil contaminants, noncancer screening calculation for 43–44
  • resiliency 80
    • challenges and opportunities 159
    • definition 157–158
    • discharge standards 159–160
    • population growth 160–162
    • steady vs. unsteady system 162–167

s

  • semibatch reactor (SBR) PN/A sidestream treatment systems 202
  • separation 84–85
    • air stripping
      • packed‐column air stripper 342–353
      • thermal oxidation and activated carbon 341
    • black water 321
    • challenges and opportunities 323–324
    • chemical precipitation 324–325
    • cloth microsieved solids 321
    • coagulation and flocculation 325–333
    • domestic solid waste (DSW) stream 322
    • energy consumption and materials 321
    • fat–oil–grease (FOG) 322
    • membrane biological reactor 339–341
    • membrane filtration systems
      • capital and O&M costs 353–361
    • particle size vs. treatment technologies 322
    • physicochemical treatment 321
    • purpose of 321
    • reverse osmosis 322
    • urine and fecal separation 321
    • zero water design 321
  • septic system 138
  • shoulder broadness index (SBI) 382
  • SiteWiseTM 421
  • sludge treatment methods, in China 73
  • small WWTPs, reliability of 137
  • soil quality index (SQI) 17–19
  • solar energy
    • biosphere and economic system 233
    • calculation of 233–235
    • green infrastructure (GI) 233
  • solid waste management, in China
    • incineration capacity 101, 102
    • indicators 98–99
    • landfill capacity 101
    • monitoring system investment 102
    • total investment 103
    • transfer facilities investment 102
    • treatment capacity 99–101
    • treatment facilities investment 102
  • standardized modular technologies 453
  • SteriPEN 495–496
  • stoichiometry 185–186
  • Struvia process 467
  • successful entrepreneurs, requirements for 492
  • SunSpring™ 496
  • surface waters, classification of 14, 15
  • sustainability
    • history 67, 68
    • material sustainability in natural cycles 68
    • United Nations sustainable development goals 68–70
    • US EPA unit impact metrics 76
    • “Venn” diagram 96
  • sustainable development goals (SDGs) 68–70
  • sustainable element management 95
  • sustainable environmental engineering (SEE)
    • challenges 69–71
    • definition 68, 69
    • designer challenges 96
    • goal 96
    • metrics 76–78
    • opportunities 71–74
    • principles 76 (see also design principles)
    • system development 136
  • sustainable remediation tool (SRT) 421
  • Swiss Federal Institute of Aquatic Science and Technology (EAWAG) 425

t

  • theoretical oxygen demand 186
  • thermodynamics laws
    • first thermodynamic law 221
    • second thermodynamic law
      • conservation of energy 222–223
      • energy conversion 221–222
      • enthalpy 222
  • The Wastewater Information System Tool (TWIST) 138
  • three‐stage activated sludge process 477–479
    • with alum addition 479–482
    • with alum and tertiary clarifier 482–484
    • with alum, tertiary clarifier and filtration 484–487
    • with tertiary clarifier and activated absorption 489–492
    • with tertiary clarifier and activated aluminum absorption 487–489
  • turnover time, phytoplankton 5
  • twelve design principles (TDPs) see design principles
  • two‐stage activated sludge process 474–477

u

  • uncertainty of interpolation 149
  • United Nations Environmental Protection (UNEP) 69
  • United Nations sustainable development goals 68–70
  • upflow anaerobic sludge blanket (UASB) reactors 398
  • urban pollutants
    • direct economic losses 240
    • integrated urban water management (IUWM) 240
    • risk of flooding 240
    • sediment control 241
    • sponge city 240–241
    • stormwater runoff 240
    • urban drainage system 240
    • water contamination 241
  • US EPA SDWA regulations 367
  • UV disinfection 35
    • absorption coefficient 372
    • antibiotic resistant bacteria (ARBs) 385, 386
    • design considerations
      • hydraulic retention time 390–391
      • turbidity 391
      • UV components 391
      • UV lamps 391
    • fluence 372–374
    • history 370
    • photochemistry 370–371
    • UV dose 371–372
    • UV dose–response 374–376
    • virus sensitivity index (VSI) 376–381
  • UV disinfection system, reliability of
    • collimated beam data uncertainty 152–153
    • electrical energy per order 153–154
    • reduction equivalent dose (RED) calculation 145–148
    • UV sensitivity of challenge microorganisms 143–145
    • validation
      • flow rate, RED 146–148
      • LT2ESWTR requirements 141, 142
      • testing requirements 141–143
      • test plan 150–151
      • uncertainty in 149–152
  • UV dose requirements 35
  • UV intensity set point approach 149

v

  • validation and uncertainty analysis 447–448
  • virus sensitivity index (VSI)
    • applications 379–381
    • first‐order kinetics 376
    • MS2‐phage 377
    • relative UV fluence Hi/Hr377–378
  • volatile fatty acids (VFA) 426–427

w

  • waste composition, determination of
    • calorific value 117–120
    • chemical composition 117–119
    • data presentation 119–121
    • moisture content 117
  • waste water (WW)
    • chemical precipitation 324–325
    • domestic wastewater (DWW) 325
    • in rural China 323
  • wastewater treatment plant (WWTP) 1, 425
    • aging infrastructures 10
    • avoiding acid addition 187–193
    • best practice benchmark 399–400
    • capital and operation cost
      • admin/lab/shop building, flow rates 286–290
      • aerobic SBR 297–300
      • disinfection 314–317
      • filtration 311–314
      • headworks 290–293
      • MBR 301–304
      • microfiltration 304–307
      • oxidation 293–297
      • reverse osmosis 308–311
    • central vs. decentralized 136–137
    • conventional systems 323–324
    • disinfection with chlorine 193–196
    • energy efficiency 215
    • energy positive design 23
    • equalization basin 162–167
    • green retrofitting and remediation
      • activated sludge (AS) 396
      • anaerobic digestion, for biogas production 396–399
      • conventional WWTPs 395, 396
      • energy auditing 400–404
      • energy efficiency, of water 396
      • materials and waste metrics 411
      • methodology 411–416
      • phototrophic system 404–406
      • renewable energy 406
      • sludge processing and disposal 406–410
    • integrated planning 127
    • LCA tools 350, 352–353
    • membrane biological reactor (MBR) 324
    • operation and maintenance 323
    • operation parameters and performance levels 324
    • patented OLAND scheme 202
    • phosphorus recovery (see also phosphorus recovery from sludge/wastewater)
      • aerobic conditions 283
      • enhanced phosphorus uptake 283–284
      • phosphorus‐accumulating bacteria 283
      • sewage sludge 283
      • struvite precipitation 284–286
    • regenerative design 23
    • sludge digestion technology 324
    • and sludge disposal 323
    • sludge generation 73
    • solar‐powered WWTP 235
    • sustainable design, temporal vs. spatial scales
      • computational tools in multiscale modeling 179, 181
      • integrated multiscale approach 179, 180
      • modeling and simulation, scales of 179, 180
      • time and length multiscales 179
    • 12th Five‐Year Plan (FYP) 324
    • toxic pollutants 428
    • ultraviolet disinfection 196–199
    • unit energy consumption values
      • anaerobic digestion 227, 231
      • anaerobic digestion dewatering 231
      • biological reactor and final clarifiers 227, 230
      • boiler 227, 231
      • dewatering cake 231
      • dewatering sidestream pump 231
      • flare 231
      • gravity thickener 227, 230
      • influent pump station 227, 229
      • lime stabilization 227, 230
      • mechanical thickener 227, 230
      • primary clarifier 227, 229
      • screening and grit removal 227, 229
      • typical disinfection 227, 230
    • upgrade/retrofit 454
    • in urban China 324
    • urine separation project 323
  • Water and Wastewater Treatment Technologies Appropriate for Reuse (WAWTTAR) 138
  • water budget 3
  • water‐consuming household appliances 137–138
  • water‐efficient appliances 139–141
  • WATERisLIFE 496
  • water management, design hierarchy for 97, 98
  • water pollution 19–21
  • water quality index 14, 16–17
  • water resource recovery facilities (WRRFs) 127
    • energy breakdown 72, 128
    • future 129
    • integrated planning tools 128, 131
    • operating cost breakdown 72, 128, 129
    • operations 128, 130
    • organic compounds in wastewater 185
    • performance 158
  • water resources, quality of 98
  • water treatment plant (WTP) 1
    • aging infrastructures 10
    • avoiding acid addition 187–193
    • disinfection with chlorine 193–196
    • integrated planning 127
    • sustainable design, temporal vs. spatial scales
      • computational tools in multiscale modeling 179, 181
      • integrated multiscale approach 179, 180
      • modeling and simulation, scales of 179, 180
      • time and length multiscales 179
    • ultraviolet disinfection 196–199
    • unit energy consumption values 225–227
  • World Meteorological Organization (WMO) Commission for Hydrology 3
  • WRRFs see water resource recovery facilities (WRRFs)

z

  • Zenon MBR 318
  • zero discharge EEIS 68
  • zero waste 68
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset