Chapter 8

Avoiding Problems

Be Prepared

The greater the preparation, the smoother the shoot. To be properly prepared for an interior or exterior location, you should budget money and time for a site survey. The information you learn from a complete survey will not only affect your lighting approach, but it will affect your shooting schedule as well. The equipment required for a survey is minimal:

1.  Take your light meter to measure existing light levels. Take the measurements at the same time of day every day as you plan to shoot in that location.

2.  A 50-foot tape measure and/or a measuring wheel determines the exact dimensions of rooms, doors, windows, ceiling heights, outlet locations, and cable runs.

3.  A quad-ruled planning pad and architect’s scale lets you make quick scale drawings of the room dimensions, and window and outlet locations.

4.  A small screwdriver set gets you into breaker panels so you can determine the proper tiein equipment required and measure existing loads. It is embarrassing to kick a circuit breaker while on a shoot.

5.  To help you figure out which outlets are on which circuits, use a nightlight or low voltage buzzer with an AC/DC adapter.

6.  A clamp-on AC amp meter is a good optional item to have. With it you can measure loads on existing circuits without disconnecting the line being checked.

7.  A helpful item is a wire gauge, which is used to determine proper fuse size for branch circuits. (An explanation of this follows later in the chapter.)

8.  Use a digital camera to make a photo record that clarifies your drawings and illustrates any unusual situations. You can record views from windows that might be suitable as backgrounds for your shots.

9.  A compass and watch are useful for determining room orientation and tracking the sun to learn how daylight coming through windows will affect your production.

10.  Include a note pad on which to record names, titles, and phone numbers of key personnel on staff at the location. Make note of other important information about security procedures, house rules, and any unique information.

All of the above items should fit neatly in a briefcase. You can secure the necessary data efficiently and in a manner that will project professionalism to your client and/or those in charge of the location. That first impression can go a long way in greasing the skids for a cooperative effort between location owners or managers and your crew when it arrives. It is a rare owner who knows what to expect when a location crew arrives, and the more concern and respect you show for the property during the survey, the less likely the owner is to be concerned when gaffers tie into the circuit breaker panels and grips mount instruments on the doors and bookcases.

Location Complexity

In general, four levels of complexity are possible at any location. In the least complicated situations, you will have sufficient power to light the scene by simply plugging into existing outlets in the immediate vicinity. In the next case, you may find it necessary to tie in to the electrical service entrance to draw and distribute enough power for your needs. If you are still short on power, you might request that a special drop be installed by the local utility company. If that is not practical, it is time to call in an auxiliary generator. This generally requires a large, well-trained crew and a great many lighting instruments. It is at this point that you are better off calling in outside help, and since their operation will be left to those you hire, we will not discuss generator setups here.

To determine the complexity level of a proposed location, a thorough site survey is in order. Locations range anywhere from a private home to a multi-story office complex, hotel, or exhibit hall. Each has its own unique set of circumstances and restrictions that you must accommodate. Obviously, a private home with a valuable art collection and antique furniture will involve greater potential for problems than will a three-room apartment on the wrong side of the tracks. Without fail, you should have the proper insurance against property damage, general liability, and “hold harmless” clauses. Special-events coverage may be required (if obtainable) for productions shooting in locations that contain especially valuable items. In general, these rates are quite low, and you should never be without proper coverage. Check with your insurance agent before getting into high-risk situations to see if you are properly covered.

Conducting the Survey

Because of the variety of situations involved with different location sites, there is no one right way of conducting the survey, but there are some general elements that should not be overlooked.

Get the name and phone number of the person authorized to show you through the area you intend to shoot in. Make an appointment early enough so you can take any necessary corrective action on problems before your shoot date. If the site is a large multi-story building, take specific notes about its location, the nearest cross streets, and which entrance, loading dock, or elevator bank your crew is to use when it arrives. Check with building security to see if passes can be issued in advance to admit your personnel when they arrive. Get the names of security supervisors who will be on duty at the time of your shoot and meet with them personally, if possible, so they are fully aware of your intentions. Since 9/11, security is tighter everywhere, so take the extra time to get the clearances you may need.

Make a scale drawing of the shoot area on your quad-ruled pad. Indicate door and window locations and ceiling height. Indicate outlet locations. Use your compass to determine how the room is oriented so you do not try to shoot a scene at a time when the sun will be pouring into your lens or casting objectionable shadows or creating extremely bright pools of light in the area you wish to use as a background. If you plan to gel the windows with 85 gel, be sure you have accurate window measurements so you will have enough gel to do the job. Take readings with your light meter so you know what the normal light levels are in the room. If the area is lit by fluorescent lights, find out what type of lamp is used. Determine if there is a mixture of incandescent and/or mercury vapor, etc. Find out how to turn off the existing lights if they are objectionable. Sometimes they are computer controlled at some other location and no switches are available to you. Do not assume – check it out. If the lights are remotely controlled, find out who is at the switch and how to contact that person during your shoot.

There was a time when I was always carrying fuses with me to every shoot. A box full of every amperage and type (cylindrical and screw-in) was available in my briefcase. in case the inevitable happened. Now you will rarely run into a home or business that still uses fuses. The term “we’ve blown a fuse” has been replaced by “we’ve kicked the breaker.” Un-kicking the breaker is as simple as removing the offending unit that caused the problem and flipping the switch back to “on.” Replacing a blown fuse required a little more forethought. Fuses have not disappeared; you will read about them shortly.

Another option I used in the “old days” when shooting in a home was to tap into the 220 circuit in the kitchen or laundry. I am usually not the kind of person to “tap” into anything, but this I could handle. Most homes had (and still have) a 220 outlet for an electric range in the kitchen and one for an electric dryer. Obviously, you will not find either of these in an all-gas home. I had an electrician make up a box with four outlet boxes, each connected to a 20-amp circuit breaker. This breaker box would then plug directly into a 220 line. The plugs on a 220 line are large and unmistakable–the novice would know exactly where to plug them in. All of my lights would then be plugged into my “mini circuit breaker box,” and if a problem existed, the worst thing I could do was trip one of my breakers and not blow a fuse in the house. This is a handy box to have if shooting in a home. Even if the home has a breaker box, sometimes it is more convenient to plug everything into one central location than have AC cords stretched throughout the house.

Another item that is not directly connected with lighting but should be checked during the time of your survey is the heat and/or air conditioning system. It is generally controlled remotely and may require careful planning. Again, take nothing for granted. I have been on shoots where it has taken an act of God to have the air conditioning turned off. The noise from the vents was too noisy for the audio technician. Even with pre-planning, it took quite a while before we had the system turned off. The technician in charge of the area had to be located and an agreeable solution worked out. You may need to give specific times for when you want the system turned off and back on again. Make sure you give yourself enough time; you don’t want the system to start up again in the middle of your best take. If you think your shoot may wrap at 4:00, make sure the AC doesn’t resume until at least 5:00.

On one specific occasion, after hearing some loud air handler units in a room we were scheduled to shoot in, I asked the house engineer if the air conditioning could be turned off during our shoot. Special arrangements were made. I met the person at the controls, got the phone extension, and felt confident that all necessary plans had been made. On the first day of shooting, I requested that the units be shut down and was told it was being taken care of. When tape was ready to roll, the noise was still there. I talked with the engineer who assured me that the air conditioning had indeed been shut down. “Then why do I still hear the air noise?” I asked. “Oh,” he replied, “I have turned off the coolant, but I can’t shut down the blowers. That would affect this entire side of the building.” Wonderful. All the advanced planning had accomplished was to provide a noisy, hot room instead of a noisy, cool one. The moral of the story: Be specific about what you ask for from building personnel.

Ask to see the house electrician. One of your most important tasks is to determine how much power is available at existing outlets or from a nearby service entrance or power distribution centers. If you are able to obtain a current set of electrical drawings from building maintenance or electrical engineering, so much the better. It may be that you are dealing with a union house. In that case, you will have to make your specific needs known to the union steward and determine the costs involved to have their people on hand. Again, get names and numbers, and request confirmation in writing if you have any suspicion that the person in authority will not be present at the time of your shoot.

If a union does not have control, you must plan for your crew to do the job efficiently. Outlet circuits are generally 20 amps, or about 2000-watt capacity. If there are many outlets available in the area, be sure to check which breaker panels control them and how many of them are on the same circuit. If you have someone helping you with the survey, you can use a nightlight plugged into each outlet as you turn off breakers to confirm which ones control which outlet. If you are by yourself, you can plug in a small 6-volt AC/DC adapter (like those used as power supplies for radios) connected to a low-voltage buzzer. When you turn off the correct breaker, the buzzer will stop, and you can make appropriate notes. Check to see what other equipment is likely to be on that circuit so you do not disrupt power to vital equipment such as computer terminals or lab equipment.

On another shoot, I had met with the house electrician and reviewed the blueprints and electrical drawings for the auditorium where I was to shoot. The building was built in the 1920s and had the electrical service updated in the 1950s. I was told that each side of the wall could handle two coffee makers before blowing a fuse. Because tables of coffee and Danish were usually placed along the wall as refreshments for meetings, they had their electrical system based on the power consumption of these coffee makers.

Since each wall could handle only 15 amps, I needed another option to power our 2K lights. The electrician said he could provide an electrical tie-in to their fuse box (remember, this building was updated in the ‘50s and no circuit breaker box was available). My distribution box (four 20-amp circuits connected to individual circuit breakers) was connected directly to a 100-amp cylindrical fuse. In the middle of the lighting setup, we lost all power. Even after reviewing the electrical drawings, having the house electrician hook up my breaker box and not exceeding our amperage draw, we still lost power.

Upon examining the fuse, I noticed that it was definitely fried. After 2 hours, the electrician arrived to replace the fuse. When asked why it had blown without exceeding the draw he said, “Oh, didn’t I tell you? The break room behind the auditorium is also on the same circuit. The coffee machine in the back must have turned on!” Once again, I was foiled by a coffee maker. The electrical drawings had shown that 15 amps were available in the break room, but I hadn’t asked if it contained a coffee maker. The moral of this story: Ask even if it sounds like a dumb question. The mere mention of the coffee maker problem in the auditorium should have been my clue the problem could exist elsewhere. At least I learned my lesson during the lighting setup and not when the room was filled with people.

When you know which breakers control which outlets, you should then determine how much power is being drawn by other equipment on that circuit. Beware of units that draw a lot of power–like coffee makers.

The easiest way to determine circuit load is with a clamp-on AC amp meter. It has two jaws, like those of a pair of pliers, which can be opened and placed around the wire leading from a given breaker. It will indicate the current being drawn on a circuit. If the current draw is high, it may be caused by a coffee machine (what else?) or some other piece of equipment that can be turned off or relocated during your shooting schedule. Determine what the current draw is for the appliance involved and compute how much capacity is left for your lighting and technical requirements.

The way to estimate the current draw so that circuits are not overloaded on location is by using the simple rule of thumb that 100 watts equals 1 amp. The actual formula is amps = watts/volts. This formula will help you calculate an actual situation. If you do not want to figure it out, Table 8.1 shows common lamp wattages and typical voltages found on location.

Table 8.1: Watts vs. Voltages

images

If you determine that there is not enough power at available outlets, take a picture of the breaker box with the front panel removed so you will know the correct type of clip locks to get for your tie-in. (We will discuss proper tie-in procedure in Chapter 9.) Measure the length of cable runs to your shooting site and obtain permission to string cables through hallways or adjoining rooms. Always note the names and phone numbers of those who grant permission so they can be reached for confirmation if you run into problems later on. Take no one’s word for anything! If someone tells you, “I think the breakers for those outlets are in that closet,” do not believe them. Check it out for yourself. When you set up, are ready to shoot, and a breaker kicks, you should not waste time trying to find out where control for that circuit is located and who has the key for the closet in which the service panel is located. Confirm all of these things at the time of your survey. Often times, the nearest service panel is not the one that controls your area, and house electricians may not know where to find the correct panel without causing lengthy delays.

Ask what activities might be going on during your scheduled shooting times. Just because the area is quiet during the time of your survey, do not assume that that will be the case on the day of shooting. You may be coming in on Saturday when the carpets are shampooed, the floors buffed, or a new wall is being installed in the room next door. If construction is scheduled or other noisy activity is likely to take place, see what can be arranged. You may have to change your shooting schedule.

Make note of special problem areas. Large, shiny surfaces, furniture or plants that may not be appropriate to your production, distracting wall hangings, or other items that you want removed or changed in dressing the set properly should be noted. Get permission to make changes, if possible. See if you can bring in other furniture or artwork from surrounding offices or areas. If so, look at the items during your survey and begin the necessary paperwork to have them on set when you arrive to shoot. If the necessary items are not available inhouse, you will have to bring them with you. Always replace borrowed items when you have finished with them.

Inquire about methods of triggering fire alarms or sprinkler systems. If the ceiling contains heat sensors and you place a bounce light near one, you may make many enemies and cause extensive damage. Once I was shooting some news footage of a computer demo at a large bank. All the bank executives were clustered around in their pinstriped suits as the computer sales representative extolled the virtues of the hardware. Suddenly the room was flooded with water from the sprinkler system and silent alarms were sent to three fire stations by heat sensors hidden in the ceiling. The heat generated by the computer, the news camera lights, and more bodies in the room than usual had triggered the pandemonium.

Many of these points deal with the challenges posed by newer high-rise buildings. Older buildings and private homes pose their own challenges, the most frequent being insufficient power. As I mentioned earlier, unlike newer structures that usually have circuit breakers in the entrance panels, older buildings are apt to have fuses rather than circuit breakers. Checking the fuse rating and type is often not an accurate indication of circuit capacity. This is because people frequently substitute larger-capacity fuses in those panels when increasing power demands cause fuses to blow frequently. It is not uncommon to find 20-amp fuses on circuits designed for 15-amp operation. I have even found 30-amp fuses on such circuits. During the site survey, you should check the wire size leaving the individual fuse holders. If the size is not stamped on the wire covering, you can determine it by using an inexpensive wire gauge, which is available from any electrical supply house. Table 8.2 shows the ampere capacity for various wire sizes.

The most common of the old fuse type is the plug fuse. It is made in ratings of up to 30 amps. Plug fuses are screwed into the same type of socket that is used in household lamps and ceiling fixtures. A glass or mica window permits you to see if the fuse has blown or not. They are used on the individual branch circuits and are frequently oversized for the wire size of the circuit they are intended to protect.

Rather than carry around dozens of 15- and 20-amp plug fuses to keep location equipment operational, you can purchase a few plug breakers that screw into these sockets. They have a small pin in the center that pops out if the circuit they are protecting is overloaded. To reactivate the circuit, remove some of the load and push the pin back in again. You do not have to replace the unit as you do an ordinary plug fuse.

Table 8.2: Wire-Size Capacity (Amps)

No. 14 15
No. 12 20
No. 10 30
No. 8 40
No. 6 55
No. 4 70

Fustats may also be used on branch circuits. They are designed to overcome the problem of using overrated fuses. Though they look similar to plug fuses, their screw bases have different-sized threads for different ampere ratings. It is less likely that fustats will be overrated, but it is possible, since they screw into an adapter that fits the standard plug fuse socket. That adapter may have been improperly sized when it was first installed, so check wire sizes leading from these sockets also. When you know the proper fuse types and ratings, determined by the wire size, take notes and be sure to have proper replacements on hand during the shooting schedule.

In older homes, the mains may also be fused with plug fuses, but cartridge (cylindrical) fuses are probably used. These fuses look like shotgun shells and are held in place by brass contacts that fit snugly around each end of the cartridge. If you are in an older industrial plant, this type of fuse may also be used for branch circuits. Take along a fuse puller in your gadget bag to change this type of fuse. The fuse puller is a non-metallic pliers-type tool that will allow you to safely reach into the entrance panel and pull out cartridge fuses. It is dangerous to use metal pliers for this purpose, since you may touch live contacts that could cause severe electrical shock. Unlike plug-type fuses, cartridge fuses must be removed from the circuit and checked with a continuity tester or ohmmeter to determine if they are blown or not. Visual inspection will not always tell you if it has blown.

Note whether or not the wall outlets are three-wire or two-wire. If they are non-grounded, two-wire outlets, you will want to have plenty of converters on hand during the shoot, as your instruments are certain to have grounded plugs. Never break the ground pin off your instrument plugs to accommodate ungrounded outlets!

If your survey indicates that not even a tie-in will yield enough power to support your shoot, your most convenient and economical solution is to request a temporary drop from the local utility company. See Chapter 9 for more information about temporary drops.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset