9
Robust FIR State Estimation for Uncertain Systems

A statistical analysis, properly conducted, is a delicate dissection of uncertainties, a surgery of suppositions.

Michael J. Moroney [132], p. 3.

In physical systems, various uncertainties occur naturally and are usually impossible to deal with. An example is the sampling time that is commonly set constant but changes due to frequency drifts in low‐accuracy oscillators of timing clocks. To mitigate the effect of uncertainties, more process states can be involved that, however, can cause computational errors and latency. Therefore, robust estimators are required [79,161]. Most of works developing estimators for uncertain systems follow the approach proposed in [51], where the system and observation uncertainties are represented via a single strictly bounded unknown matrix and known real constant matrices. For uncertainties considered as multiplicative errors, the approach was developed in [56], and for uncertainties coupled with model matrices with scalar factors, some results were obtained in [180]. In early works on robust FIR filtering for uncertain systems [98,99], the problem was solved using recursive forms that is generally not the case. In the convolution‐based batch form, several solutions were originally found in [151,152] for some special cases.

Like in the case of disturbances, robust FIR estimators can be designed using different approaches by minimizing estimation errors for maximized uncertainties. Moreover, we will show that effects caused by uncertainties and disturbances can be accounted for as an unspecified impact. Accordingly, the idea behind the estimator robustness can be illustrated as shown in Fig. (9.1), which is supported by Fig. 8.3. Assume that an error factor eta exists from eta Subscript min to eta Subscript max and causes an unspecified impact psi left-parenthesis eta right-parenthesis (uncertainty, disturbance, etc.) to grow from point A to point C. Suppose that optimal tuning mitigates the effect by a factor alpha and consider two extreme cases. By tuning an estimator to eta Subscript min, we go from point A to point B. Then an increase in eta will cause an increase in tuning errors and in psi left-parenthesis eta right-parenthesis, and the estimation error can significantly grow. Now, we tune an estimator to eta Subscript max and go from point C to D. Then a decrease in eta will cause an increase in tuning errors and a decrease in psi left-parenthesis eta right-parenthesis. Since both these effects compensate for each other, the estimate becomes robust.

In this chapter, we develop the theory of robust FIR state estimation for uncertain systems operating under disturbances with initial and measurement errors. In this regard, such estimators can be considered the most general, since they unify other robust FIR solutions in particular cases. However, further efforts need to be made to turn most of these estimators into practical algorithms.

Schematic illustration of errors caused by optimal tuning an estimator to ηmin and ηmax: tuning to ηmax makes the filter robust.

Figure 9.1 Errors caused by optimal tuning an estimator to eta Subscript min and eta Subscript max: tuning to eta Subscript max makes the filter robust.

9.1 Extended Models for Uncertain Systems

Traditionally, we will develop robust FIR state estimators for uncertain systems using either a BE‐based model that is suitable for a posteriori FIR filtering or an FE‐based model that is suitable for FIR prediction and FIR predictive filtering. For clarity, we note once again that these solutions are generally inconvertible. Since the most elaborated methods, which guarantee robust performance, have been developed for uncertain LTI systems in the transform domain, we start with BE‐ and FE‐based state space models and their extensions on left-bracket m comma k right-bracket.

Backward Euler Method–Based Model

Consider an uncertain linear system and represent it in discrete‐time state‐space with the following equations,

where upper F Subscript k Superscript u Baseline equals upper F plus normal upper Delta upper F Subscript k, upper E Subscript k Superscript u Baseline equals upper E plus normal upper Delta upper E Subscript k, upper B Subscript k Superscript u Baseline equals upper B plus normal upper Delta upper B Subscript k, upper H Subscript k Superscript u Baseline equals upper H plus normal upper Delta upper H Subscript k, and upper D Subscript k Superscript u Baseline equals upper D plus normal upper Delta upper D Subscript k. The time‐varying increments normal upper Delta upper F Subscript k, normal upper Delta upper E Subscript k, normal upper Delta upper B Subscript k, normal upper Delta upper H Subscript k, and normal upper Delta upper D Subscript k represent bounded parameter uncertainties, w Subscript k is the disturbance, and v Subscript k is the measurement error. Hereinafter, we will use the superscript double-turned-comma-quotation-mark u double-comma-quotation-mark to denote uncertain matrices.

We assume that all errors in (9.1) and (9.2) are norm‐bounded, have zero mean, and can vary arbitrailry over time; so we cannot know their exact distributions and covariances. Note that the zero mean assumption matters, because otherwise a nonzero mean will cause regular bias errors and the model will not be considered correct.

To extend (9.1) and (9.2) to left-bracket m comma k right-bracket, we separate the regular and zero mean uncertain components and represent the model in standard form

where the zero mean uncertain vectors are given by

(9.5)xi Subscript k Baseline equals normal upper Delta upper F Subscript k Baseline x Subscript k minus 1 Baseline plus normal upper Delta upper E Subscript k Baseline u Subscript k Baseline plus upper B Subscript k Superscript u Baseline w Subscript k Baseline comma
(9.6)zeta Subscript k Baseline equals normal upper Delta upper H Subscript k Baseline x Subscript k Baseline plus upper D Subscript k Superscript u Baseline w Subscript k Baseline plus v Subscript k Baseline period

Then, similarly to (8.1), the model in (9.3) can be extended as

where matrices upper F Subscript upper N and upper S Subscript upper N are defined after (8.4) and the extended error vector normal upper Xi Subscript m comma k and matrix ModifyingAbove upper F With caret Subscript upper N are given by

We next extend the uncertain vector xi Subscript k to left-bracket m comma k right-bracket as

where the uncertain block matrices are defined by

in which upper E Subscript i Superscript u Baseline equals upper E plus normal upper Delta upper E Subscript i and upper B Subscript i Superscript u Baseline equals upper B plus normal upper Delta upper B Subscript i hold for i element-of left-bracket m comma k right-bracket, and matrix script upper F overTilde Subscript r Superscript g of the uncertain product is specified with

(9.11)script upper F overTilde Subscript r Superscript g Baseline equals StartLayout Enlarged left-brace 1st Row 1st Column upper F Subscript r Superscript u Baseline upper F Subscript r minus 1 Superscript u Baseline ellipsis upper F Subscript g Superscript u Baseline comma 2nd Column g less-than r plus 1 comma 2nd Row 1st Column upper I comma 2nd Column g equals r plus 1 3rd Row 1st Column 0 comma 2nd Column g greater-than r plus 1 EndLayout period

By combining (9.7) with (9.9) and referring to the identity ModifyingAbove upper F With caret Subscript upper N Baseline upper B overbar Subscript upper N Baseline equals upper D Subscript upper N, where matrix upper D Subscript upper N is defined after (8.4), we rewrite model (9.7) as

where upper F overTilde Subscript m comma k Baseline equals ModifyingAbove upper F With caret Subscript upper N Baseline upper F Subscript m comma k Superscript normal upper Delta, upper S overTilde Subscript m comma k Baseline equals ModifyingAbove upper F With caret Subscript upper N Baseline upper S Subscript m comma k Superscript normal upper Delta, and upper D overTilde Subscript m comma k Baseline equals ModifyingAbove upper F With caret Subscript upper N Baseline upper D Subscript m comma k Superscript normal upper Delta. We now notice that, for systems without uncertainties, ModifyingAbove upper F With caret Subscript upper N Baseline upper F Subscript m comma k Superscript normal upper Delta Baseline equals 0, ModifyingAbove upper F With caret Subscript upper N Baseline upper S Subscript m comma k Superscript normal upper Delta Baseline equals 0, and ModifyingAbove upper F With caret Subscript upper N Baseline upper D Subscript m comma k Superscript normal upper Delta Baseline equals 0 bring (9.12) to the standard form (8.3).

The system current state x Subscript k can now be expressed in terms of the last row vector in (9.12) as

where upper F overTilde overbar Subscript m comma k, upper S overTilde overbar Subscript m comma k, and upper D overTilde overbar Subscript m comma k are the last row vectors in upper F overTilde Subscript m comma k, upper S overTilde Subscript m comma k, and upper D overTilde Subscript m comma k, respectively.

We also extend the observation model (9.4) as

where matrices upper H Subscript upper N and upper L Subscript upper N are defined after (8.4), upper M Subscript upper N Baseline equals upper H overbar Subscript upper N Baseline ModifyingAbove upper F With caret Subscript upper N, and normal upper Pi Subscript m comma k Baseline equals left-bracket zeta Subscript m Superscript upper T Baseline zeta Subscript m plus 1 Superscript upper T Baseline ellipsis zeta Subscript k Superscript upper T Baseline right-bracket Superscript upper T is the vector of uncertain observation errors, which has the following extension to left-bracket m comma k right-bracket,

for which the uncertain matrices are given by

upper L Subscript m comma k Superscript normal upper Delta Baseline equals upper M Subscript m comma k Superscript normal upper Delta Baseline upper E overbar Subscript upper N, upper S Subscript m comma k Superscript normal upper Delta is specified after (9.10), and upper E overbar Subscript upper N Baseline equals diag left-parenthesis ModifyingBelow upper E comma upper E ellipsis upper E With presentation form for vertical right-brace Underscript upper N Endscripts right-parenthesis and upper T overbar Subscript upper N Baseline equals diag left-parenthesis ModifyingBelow upper D comma upper D ellipsis upper D With presentation form for vertical right-brace Underscript upper N Endscripts right-parenthesis are diagonal.

By combining (9.14) and (9.15), we finally represent the extended observation equation in the form

where the uncertain matrices are defined in terms of the matrices introduced previously as

(9.19)upper L overTilde Subscript m comma k Baseline equals upper L Subscript m comma k Superscript normal upper Delta Baseline plus left-parenthesis upper M Subscript upper N Baseline plus upper M Subscript m comma k Superscript normal upper Delta Baseline right-parenthesis upper S Subscript m comma k Superscript normal upper Delta Baseline comma

It can now be shown that exact modeling with upper H overTilde Subscript m comma k Baseline equals 0, upper L overTilde Subscript m comma k Baseline equals 0, and upper T overTilde Subscript m comma k Baseline equals 0 makes (9.17) the standard model (8.4).

Thus, the BE‐based state‐space model in (9.1) and (9.2), extended to left-bracket m comma k right-bracket for organizing a posteriori FIR filtering of uncertain systems under bounded disturbances with initial and data errors, is given by (9.13) and (9.17).

Forward Euler Method–Based Model

Keeping the definitions of vectors and matrices introduced for (9.1) and (9.2), we now write the FE‐based state‐space model for uncertain systems as

By reorganizing the terms, we next represent this model in the standard form

where the uncertain vectors associated with the prediction are denoted by the superscript double-turned-comma-quotation-mark p double-comma-quotation-mark and are given by

(9.25)xi Subscript k Superscript p Baseline equals normal upper Delta upper F Subscript k Baseline x Subscript k Baseline plus normal upper Delta upper E Subscript k Baseline u Subscript k Baseline plus upper B Subscript k Superscript u Baseline w Subscript k Baseline comma
(9.26)zeta Subscript k Superscript p Baseline equals normal upper Delta upper H Subscript k Baseline x Subscript k Baseline plus upper D Subscript k Superscript u Baseline w Subscript k Baseline plus v Subscript k Baseline period

Obviously, extensions of vectors (9.23) and (9.24) to left-bracket m comma k right-bracket can be provided similarly to the BE‐based model. Referring to (8.8), we first represent (9.23) on left-bracket m comma k right-bracket with respect to the prediction vector upper X Subscript m plus 1 comma k plus 1 as

where normal upper Xi Subscript m comma k Superscript p Baseline equals left-bracket xi Subscript m Superscript p Super Superscript upper T Superscript Baseline xi Subscript m plus 1 Superscript p Super Superscript upper T Superscript Baseline ellipsis xi Subscript k Superscript p Super Superscript upper T Superscript Baseline right-bracket Superscript upper T, upper F Subscript upper N Superscript p Baseline equals upper F upper F Subscript upper N, and upper F Subscript upper N, upper S Subscript upper N, and upper D Subscript upper N are defined after (8.4). Similarly to (9.9), we also express the vector normal upper Xi Subscript m comma k Superscript p on left-bracket m comma k right-bracket as

where matrix upper F Subscript m comma k Superscript p normal upper Delta is defined by

Combining (9.27) and (9.28), we finally obtain the extended state equation

where upper F overTilde Subscript m comma k Superscript p Baseline equals ModifyingAbove upper F With caret Subscript upper N Baseline upper F Subscript m comma k Superscript p normal upper Delta, upper S overTilde Subscript m comma k Baseline equals ModifyingAbove upper F With caret Subscript upper N Baseline upper S Subscript m comma k Superscript normal upper Delta, and upper D overTilde Subscript m comma k Baseline equals ModifyingAbove upper F With caret Subscript upper N Baseline upper D overTilde Subscript m comma k Superscript normal upper Delta, and notice that zero uncertainties make equation 9.30 equal to (8.8).

The predicted state x Subscript k plus 1 can now be extracted from (9.30) to be

where upper F overTilde overbar Subscript m comma k Superscript p is the last row vectors in upper F overTilde Subscript m comma k Superscript p and upper S overTilde overbar Subscript m comma k and upper D overTilde overbar Subscript m comma k are defined after (9.13).

Without any innovation, we extend the observation equation 9.24 to left-bracket m comma k right-bracket as

where upper H Subscript upper N Superscript p Baseline equals upper H overbar Subscript upper N Baseline upper F Subscript upper N, upper L Subscript upper N Superscript p Baseline equals upper M Subscript upper N Superscript p Baseline upper E overbar Subscript upper N, and

(9.33)upper M Subscript upper N Superscript p Baseline equals Start 5 By 5 Matrix 1st Row 1st Column 0 2nd Column 0 3rd Column ellipsis 4th Column 0 5th Column 0 2nd Row 1st Column upper H 2nd Column 0 3rd Column ellipsis 4th Column 0 5th Column 0 3rd Row 1st Column vertical-ellipsis 2nd Column vertical-ellipsis 3rd Column down-right-diagonal-ellipsis 4th Column vertical-ellipsis 5th Column vertical-ellipsis 4th Row 1st Column upper H upper F Superscript upper N minus 3 Baseline 2nd Column upper H upper F Superscript upper N minus 4 Baseline 3rd Column ellipsis 4th Column 0 5th Column 0 5th Row 1st Column upper H upper F Superscript upper N minus 2 Baseline 2nd Column upper H upper F Superscript upper N minus 3 Baseline 3rd Column ellipsis 4th Column upper H 5th Column 0 EndMatrix comma normal upper Pi Subscript m comma k Superscript p Baseline equals Start 6 By 1 Matrix 1st Row zeta Subscript m Superscript p Baseline 2nd Row zeta Subscript m plus 1 Superscript p Baseline 3rd Row vertical-ellipsis 4th Row zeta Subscript k minus 1 Superscript p Baseline 5th Row zeta Subscript k Superscript p Baseline 6th Row Blank EndMatrix period

Similarly, we extend the vector normal upper Pi Subscript m comma k Superscript p as

where upper L Subscript m comma k Superscript p normal upper Delta Baseline equals upper M Subscript m comma k Superscript p normal upper Delta Baseline upper E overbar Subscript upper N,

StartLayout 1st Row 1st Column upper N Subscript m comma k Superscript normal upper Delta 2nd Column equals 3rd Column Start 6 By 1 Matrix 1st Row normal upper Delta upper H Subscript m Baseline 2nd Row normal upper Delta upper H Subscript m plus 1 Baseline upper F 3rd Row vertical-ellipsis 4th Row normal upper Delta upper H Subscript k minus 1 Baseline upper F Superscript upper N minus 2 Baseline 5th Row normal upper Delta upper H Subscript k Baseline upper F Superscript upper N minus 1 Baseline 6th Row Blank EndMatrix comma 2nd Row 1st Column upper M Subscript m comma k Superscript p normal upper Delta 2nd Column equals 3rd Column Start 5 By 5 Matrix 1st Row 1st Column 0 2nd Column 0 3rd Column ellipsis 4th Column 0 5th Column 0 2nd Row 1st Column normal upper Delta upper H Subscript m plus 1 Baseline 2nd Column 0 3rd Column ellipsis 4th Column 0 5th Column 0 3rd Row 1st Column vertical-ellipsis 2nd Column vertical-ellipsis 3rd Column down-right-diagonal-ellipsis 4th Column vertical-ellipsis 5th Column vertical-ellipsis 4th Row 1st Column normal upper Delta upper H Subscript k minus 1 Baseline upper F Superscript upper N minus 3 Baseline 2nd Column normal upper Delta upper H Subscript k minus 1 Baseline upper F Superscript upper N minus 4 Baseline 3rd Column ellipsis 4th Column 0 5th Column 0 5th Row 1st Column normal upper Delta upper H Subscript k Baseline upper F Superscript upper N minus 2 Baseline 2nd Column normal upper Delta upper H Subscript k Baseline upper F Superscript upper N minus 3 Baseline 3rd Column ellipsis 4th Column normal upper Delta upper H Subscript k Baseline 5th Column 0 EndMatrix comma EndLayout

and matrices upper T overbar Subscript upper N and upper T overbar Subscript m comma k Superscript normal upper Delta are defined previously.

Finally, substituting (9.28) and (9.34) into (9.32) and reorganizing the terms, we obtain the extended observation equation

where the uncertain matrices are given by

(9.37)upper L overTilde Subscript m comma k Superscript p Baseline equals upper L Subscript m comma k Superscript p normal upper Delta Baseline plus left-parenthesis upper M Subscript upper N Superscript p Baseline plus upper M Subscript m comma k Superscript p normal upper Delta Baseline right-parenthesis upper S Subscript m comma k Superscript normal upper Delta Baseline comma

and all other definitions can be found earlier. The last thing to notice is that without uncertainties, (9.35) becomes the standard equation (8.9).

Now that we have provided extended models for uncertain systems, we can start developing FIR filters and FIR predictors.

9.2 The a posteriori H2 FIR Filtering

Various types of a posteriori upper H 2 FIR filters (optimal, optimal unbiased, ML, and suboptimal) can be obtained for uncertain systems represented by the BE‐based model. Traditionally, we start with the a posteriori FIR filtering estimate defined using (9.17) as

where the uncertain matrices upper H overTilde Subscript m comma k, upper L overTilde Subscript m comma k, and upper T overTilde Subscript m comma k are given by (9.18)(9.20).

Under the assumption that all error factors, including the uncertainties, have zero mean, the unbiasedness condition script upper E left-brace ModifyingAbove x With caret Subscript k Baseline right-brace equals script upper E left-brace x Subscript k Baseline right-brace applied to (9.13) and (9.39) gives two unbiasedness constraints,

We now write the estimation error epsilon Subscript k Baseline equals x Subscript k Baseline minus ModifyingAbove x With caret Subscript k as

(9.42)StartLayout 1st Row 1st Column epsilon Subscript k 2nd Column equals 3rd Column left-parenthesis upper F Superscript upper N minus 1 Baseline minus script upper H Subscript upper N Baseline upper H Subscript upper N Baseline plus upper F overTilde overbar Subscript m comma k Baseline minus script upper H Subscript upper N Baseline upper H overTilde Subscript m comma k Baseline right-parenthesis x Subscript m 2nd Row 1st Column Blank 2nd Column Blank 3rd Column plus left-parenthesis upper S overbar Subscript upper N Baseline minus script upper H Subscript upper N Baseline upper L Subscript upper N Baseline minus script upper H Subscript upper N Superscript normal f Baseline plus upper S overTilde overbar Subscript m comma k Baseline minus script upper H Subscript upper N Baseline upper L overTilde Subscript m comma k Baseline right-parenthesis upper U Subscript m comma k 3rd Row 1st Column Blank 2nd Column Blank 3rd Column plus left-parenthesis upper D overbar Subscript upper N Baseline minus script upper H Subscript upper N Baseline upper T Subscript upper N Baseline plus upper D overTilde overbar Subscript m comma k Baseline minus script upper H Subscript upper N Baseline upper T overTilde Subscript m comma k Baseline right-parenthesis upper W Subscript m comma k minus script upper H Subscript upper N Baseline upper V Subscript m comma k EndLayout

and generalize with

where the regular error residual matrices script upper B Subscript upper N, script upper W Subscript upper N, and script upper V Subscript upper N are given by (8.15)–(8.17), script upper U Subscript upper N Baseline equals upper S overbar Subscript upper N Baseline minus script upper H Subscript upper N Baseline upper L Subscript upper N Baseline minus script upper H Subscript upper N Superscript normal f is the regular bias caused by the input signal and removed in optimal and optimal unbiased filters by the constraint (9.41), and the uncertain error residual matrices are defined as

(9.45)script upper U overTilde Subscript m comma k Baseline equals upper S overTilde overbar Subscript m comma k Baseline minus script upper H Subscript upper N Baseline upper L overTilde Subscript m comma k Baseline comma

By introducing the disturbance‐induced errors

and the uncertainty‐induced errors

and then neglecting regular errors by embedding the constraint (9.41), we represent the estimation error as the sum of the sub errors as

where the components are given by (9.47) and (9.48).

In the transform domain, we now have the structure shown in Fig. 9.2, where we recognize two types of errors caused by 1) disturbance and errors and 2) uncertainties, and the corresponding transfer functions:

  • script upper T Subscript x overbar Baseline left-parenthesis z right-parenthesis is the epsilon Subscript x‐to‐epsilon overbar Subscript x transfer function (initial errors).
  • script upper T Subscript w overbar Baseline left-parenthesis z right-parenthesis is the epsilon Subscript w‐to‐epsilon overbar Subscript w transfer function (disturbance).
  • script upper T Subscript v overbar Baseline left-parenthesis z right-parenthesis is the epsilon Subscript v‐to‐epsilon overbar Subscript v transfer function (measurement errors).
  • script upper T Subscript x overTilde Baseline left-parenthesis z right-parenthesis is the epsilon Subscript x‐to‐epsilon overTilde Subscript x transfer function (initial uncertainty).
  • script upper T Subscript w overTilde Baseline left-parenthesis z right-parenthesis is the epsilon Subscript w‐to‐epsilon overTilde Subscript w transfer function (system uncertainty).
  • script upper T Subscript u overtilde Baseline left-parenthesis z right-parenthesis is the epsilon Subscript u‐to‐epsilon overTilde Subscript u transfer function (input uncertainty).
Schematic illustration of errors in the H2-OFIR state estimator caused by uncertainties, disturbances, and errors in the z-domain.

Figure 9.2 Errors in the upper H 2‐OFIR state estimator caused by uncertainties, disturbances, and errors in the z‐domain.

Using the definitions of the specific errors and the transfer functions presented earlier and in Fig. 9.2, different types of FIR filters can be obtained for uncertain systems operating under disturbances, initial errors, and data errors. Next we start with the a posteriori upper H 2‐OFIR filter.

9.2.1 upper H 2‐OFIR Filter

To obtain the a posteriori upper H 2‐OFIR filter for uncertain systems, we will need the following lemma.

To obtain the a posteriori upper H 2‐OFIR filter using lemma 9.1, we first note that the initial state error epsilon Subscript x goes to epsilon overbar Subscript k unchanged and the epsilon Subscript x‐to‐epsilon overbar Subscript x transfer function is thus an identity matrix, script upper T Subscript x overbar Baseline left-parenthesis z right-parenthesis equals upper I. Using lemma 9.1, we then write the squared norms for the disturbances and errors as

(9.52)StartLayout 1st Row 1st Column parallel-to ModifyingAbove script upper T With bar Subscript x overbar Baseline left-parenthesis z right-parenthesis parallel-to 2nd Column equals 3rd Column trace left-parenthesis script upper B Subscript upper N Baseline chi Subscript m Baseline script upper B Subscript upper N Superscript upper T Baseline right-parenthesis comma parallel-to ModifyingAbove script upper T With bar Subscript w overbar Baseline left-parenthesis z right-parenthesis parallel-to equals trace left-parenthesis script upper W Subscript upper N Baseline script upper Q Subscript upper N Baseline script upper W Subscript upper N Superscript upper T Baseline right-parenthesis comma 2nd Row 1st Column parallel-to ModifyingAbove script upper T With bar Subscript v overbar Baseline left-parenthesis z right-parenthesis parallel-to 2nd Column equals 3rd Column trace left-parenthesis script upper V Subscript upper N Baseline script upper R Subscript upper N Baseline script upper V Subscript upper N Superscript upper T Baseline right-parenthesis period EndLayout

The squared Frobenius norms associated with uncertain errors can be specified similarly. For the epsilon Subscript x‐to‐epsilon overTilde Subscript x transfer function, we write the squared norm parallel-to ModifyingAbove script upper T With bar Subscript x overTilde Baseline left-parenthesis z right-parenthesis parallel-to as

where the uncertain error matrices are defined by

(9.54)chi overTilde Subscript m Superscript upper F Baseline equals script upper E left-brace upper F overTilde overbar Subscript m comma k Baseline x Subscript m Baseline x Subscript m Superscript upper T Baseline upper F overTilde overbar Subscript m comma k Superscript upper T Baseline right-brace comma
(9.55)chi overTilde Subscript m Superscript upper F upper H Baseline equals script upper E left-brace upper F overTilde overbar Subscript m comma k Baseline x Subscript m Baseline x Subscript m Superscript upper T Baseline upper H overTilde Subscript m comma k Superscript upper T Baseline right-brace comma
(9.56)chi overTilde Subscript m Superscript upper H upper F Baseline equals script upper E left-brace upper H overTilde Subscript m comma k Baseline x Subscript m Baseline x Subscript m Superscript upper T Baseline upper F overTilde overbar Subscript m comma k Superscript upper T Baseline right-brace comma
(9.57)chi overTilde Subscript m Superscript upper H Baseline equals script upper E left-brace upper H overTilde Subscript m comma k Baseline x Subscript m Baseline x Subscript m Superscript upper T Baseline upper H overTilde Subscript m comma k Superscript upper T Baseline right-brace period

Likewise, for the epsilon Subscript w‐to‐epsilon overTilde Subscript w transfer function we write the squared norm parallel-to ModifyingAbove script upper T With bar Subscript w overTilde Baseline left-parenthesis z right-parenthesis parallel-to as

where the uncertain error matrices are given by

(9.59)upper Q overTilde Subscript upper N Superscript upper D Baseline equals script upper E left-brace upper D overTilde overbar Subscript m comma k Baseline upper W Subscript m comma k Baseline upper W Subscript m comma k Superscript upper T Baseline upper D overTilde overbar Subscript m comma k Superscript upper T Baseline right-brace comma
(9.60)upper Q overTilde Subscript upper N Superscript upper D upper T Baseline equals script upper E left-brace upper D overTilde overbar Subscript m comma k Baseline upper W Subscript m comma k Baseline upper W Subscript m comma k Superscript upper T Baseline upper T overTilde Subscript m comma k Superscript upper T Baseline right-brace comma
(9.61)upper Q overTilde Subscript upper N Superscript upper T upper D Baseline equals script upper E left-brace upper T overTilde Subscript m comma k Baseline upper W Subscript m comma k Baseline upper W Subscript m comma k Superscript upper T Baseline upper D overTilde overbar Subscript m comma k Superscript upper T Baseline right-brace comma
(9.62)upper Q overTilde Subscript upper N Superscript upper T Baseline equals script upper E left-brace upper T overTilde Subscript m comma k Baseline upper W Subscript m comma k Baseline upper W Subscript m comma k Superscript upper T Baseline upper T overTilde Subscript m comma k Superscript upper T Baseline right-brace period

Finally, for the epsilon Subscript u‐to‐epsilon overTilde Subscript u transfer function we obtain the squared norm parallel-to ModifyingAbove script upper T With bar Subscript u overtilde Baseline left-parenthesis z right-parenthesis parallel-to as

using the uncertain error matrices

(9.64)upper M overTilde Subscript upper N Superscript upper S Baseline equals script upper E left-brace upper S overTilde overbar Subscript m comma k Baseline upper U Subscript m comma k Baseline upper U Subscript m comma k Superscript upper T Baseline upper S overTilde overbar Subscript m comma k Superscript upper T Baseline right-brace comma
(9.65)upper M overTilde Subscript upper N Superscript upper S upper L Baseline equals script upper E left-brace upper S overTilde overbar Subscript m comma k Baseline upper U Subscript m comma k Baseline upper U Subscript m comma k Superscript upper T Baseline upper L overTilde Subscript m comma k Superscript upper T Baseline right-brace comma
(9.66)upper M overTilde Subscript upper N Superscript upper L upper S Baseline equals script upper E left-brace upper L overTilde Subscript m comma k Baseline upper U Subscript m comma k Baseline upper U Subscript m comma k Superscript upper T Baseline upper S overTilde overbar Subscript m comma k Superscript upper T Baseline right-brace comma
(9.67)upper M overTilde Subscript upper N Superscript upper L Baseline equals script upper E left-brace upper L overTilde Subscript m comma k Baseline upper U Subscript m comma k Baseline upper U Subscript m comma k Superscript upper T Baseline upper L overTilde Subscript m comma k Superscript upper T Baseline right-brace period

Using the previous definitions, we can now represent the trace of the estimation error matrix upper P associated with the estimation error (9.48) as

StartLayout 1st Row 1st Column trace upper P 2nd Column equals 3rd Column script upper E left-brace left-parenthesis epsilon overbar Subscript x k Baseline plus epsilon overbar Subscript w k Baseline plus epsilon overbar Subscript v k Baseline plus epsilon overTilde Subscript x k Baseline plus epsilon overTilde Subscript w k Baseline plus epsilon overTilde Subscript u k Baseline right-parenthesis Superscript upper T Baseline left-parenthesis ellipsis right-parenthesis right-brace 2nd Row 1st Column equals 2nd Column script upper E left-brace epsilon overbar Subscript x k Superscript upper T Baseline epsilon overbar Subscript x k Baseline right-brace plus script upper E left-brace epsilon overbar Subscript w k Superscript upper T Baseline epsilon overbar Subscript w k Baseline right-brace plus script upper E left-brace epsilon overbar Subscript v k Superscript upper T Baseline epsilon overbar Subscript v k Baseline right-brace 3rd Row 1st Column Blank 2nd Column Blank 3rd Column plus script upper E left-brace epsilon overTilde Subscript x k Superscript upper T Baseline epsilon overTilde Subscript x k Baseline right-brace plus script upper E left-brace epsilon overTilde Subscript w k Superscript upper T Baseline epsilon overTilde Subscript w k Baseline right-brace plus script upper E left-brace epsilon overTilde Subscript u k Superscript upper T Baseline epsilon overTilde Subscript u k Baseline right-brace 4th Row 1st Column Blank 2nd Column equals 3rd Column parallel-to ModifyingAbove script upper T With bar Subscript x overbar Baseline left-parenthesis z right-parenthesis parallel-to Subscript upper F Superscript 2 Baseline plus parallel-to ModifyingAbove script upper T With bar Subscript w overbar Baseline left-parenthesis z right-parenthesis parallel-to Subscript upper F Superscript 2 Baseline plus parallel-to ModifyingAbove script upper T With bar Subscript v overbar Baseline left-parenthesis z right-parenthesis parallel-to 5th Row 1st Column Blank 2nd Column Blank 3rd Column plus parallel-to ModifyingAbove script upper T With bar Subscript x overTilde Baseline left-parenthesis z right-parenthesis parallel-to Subscript upper F Superscript 2 Baseline plus parallel-to ModifyingAbove script upper T With bar Subscript w overTilde Baseline left-parenthesis z right-parenthesis parallel-to Subscript upper F Superscript 2 Baseline plus parallel-to ModifyingAbove script upper T With bar Subscript u overtilde Baseline left-parenthesis z right-parenthesis parallel-to EndLayout

and determine the gain script upper H Subscript upper N for the a posteriori upper H 2‐OFIR filter by solving the following minimization problem

where the norms for uncertain errors are given by (9.53), (9.58), and (9.63).

Since the upper H 2 filtering problem is convex, we equivalently consider instead of (9.68) the equality

for which the trace trace upper P can be written as

where normal upper Omega Subscript upper N Baseline equals upper G Subscript upper N Baseline script upper Q Subscript upper N Baseline upper G Subscript upper N Superscript upper T Baseline plus script upper R Subscript upper N.

By applying the derivative (9.69) to (9.70), neglecting the correlation between different error sources, and setting upper D equals 0 that gives upper T Subscript upper N Baseline equals upper G Subscript upper N, we finally obtain the gain for the a posteriori upper H 2‐OFIR filter applied to uncertain systems operating under disturbances, initial errors, and data errors,

As can be seen, zero uncertain terms make (9.71) the gain (8.34) obtained for systems operating under disturbances, initial errors, and data errors. This means that the gain (9.71) is most general for LTI systems.

For the gain script upper H Subscript upper N obtained by (9.71), we write the a posteriori upper H 2‐OFIR filtering estimate as

(9.72)ModifyingAbove x With caret Subscript k Baseline equals script upper H Subscript upper N Baseline upper Y Subscript m comma k Baseline plus left-parenthesis upper S overbar Subscript upper N Baseline minus script upper H Subscript upper N Baseline upper L Subscript upper N Baseline right-parenthesis upper U Subscript m comma k

and specify the estimation error matrix as

where the uncertain error matrices are defined by

(9.75)StartLayout 1st Row 1st Column upper P overTilde Subscript w 2nd Column equals 3rd Column script upper E left-brace script upper W overTilde Subscript m comma k Baseline upper W Subscript m comma k Baseline upper W Subscript m comma k Superscript upper T Baseline script upper W overTilde Subscript m comma k Superscript upper T Baseline right-brace 2nd Row 1st Column Blank 2nd Column equals 3rd Column upper Q overTilde Subscript upper N Superscript upper D Baseline minus upper Q overTilde Subscript upper N Superscript upper D upper T Baseline script upper H Subscript upper N Superscript upper T Baseline minus script upper H Subscript upper N Baseline upper Q overTilde Subscript upper N Superscript upper T upper D Baseline plus script upper H Subscript upper N Baseline upper Q overTilde Subscript upper N Superscript upper T Baseline script upper H Subscript upper N Superscript upper T Baseline comma EndLayout

Any uncertainty in system modeling leads to an increase in estimation errors, which is obvious. In this regard, using the upper H 2‐OFIR filter with a gain (9.71) gives a chance to minimize errors under the uncertainties. However, a good filter performance is not easy to reach. Efforts should be made to determine boundaries for all uncertainties and other error matrices (9.74)(9.76). Otherwise, mistuning can cause the filter to generate large errors and lose the advantages of robust filtering.

Equivalence with OFIR Filter

Not only for theoretical reasons, but rather for practical utility, we will now show that the gain (9.71) of the a posteriori upper H 2‐OFIR filter obtained for uncertain systems is equivalent to the OFIR filter gain valid in white Gaussian environments. Indeed, for white Gaussian noise the FIR filter optimality is guaranteed by the orthogonality condition script upper E left-brace epsilon Subscript k Baseline upper Y Subscript m comma k Superscript upper T Baseline right-brace equals 0 that, if we use (9.17) and (9.43), can be rewritten as

Assuming all error sources are independent and uncorrelated zero mean white Gaussian processes and providing the averaging, we can easily transform (9.77) to (9.71). This provides further evidence that, according to Parseval's theorem, minimizing the error spectral energy in the transform domain is equivalent to minimizing the MSE in the time domain.

9.2.2 Bias‐Constrained upper H 2‐OFIR Filter

A known drawback of optimal filters is that optimal performance cannot be guaranteed without setting correct initial values. This is especially critical for the upper H 2‐OFIR and OFIR filters, which require initial values for each horizon left-bracket m comma k right-bracket. To remove the requirement of the initial state in the upper H 2‐OFIR filter, its gain must be subject to unbiasedness constraints, and then the remaining errors can be analyzed as shown in Fig. 9.3.

Schematic illustration of errors in the H2-OUFIR state estimator caused by uncertainties, disturbances, and data errors in the z-domain.

Figure 9.3 Errors in the upper H 2‐OUFIR state estimator caused by uncertainties, disturbances, and data errors in the z‐domain.

Referring to the previous, we can now design the upper H 2‐OUFIR filter for uncertain systems, minimizing the trace of the error matrix (9.73) subject to the constraint (9.40). As in the case of the OUFIR filter, the gain obtained in such a way is freed from the regular errors, and its error matrix depends only on uncertainties, disturbances, and data errors, as shown in Fig. 9.3. Next we give the corresponding derivation.

First, we use (9.74)(9.76) and represent the error matrix (9.73) as

where the newly introduced uncertain matrices have the form

(9.79)script upper Z 1 equals chi overTilde Subscript m Superscript upper F Baseline plus upper M overTilde Subscript upper N Superscript upper S Baseline plus upper Q overTilde Subscript upper N Superscript upper D Baseline comma
(9.80)script upper Z 2 equals chi overTilde Subscript m Superscript upper F upper H Baseline plus upper M overTilde Subscript upper N Superscript upper S upper L Baseline plus upper Q overTilde Subscript upper N Superscript upper D upper T Baseline comma
(9.81)script upper Z 3 equals chi overTilde Subscript m Superscript upper H Baseline plus upper M overTilde Subscript upper N Superscript upper L Baseline plus upper Q overTilde Subscript upper N Superscript upper T Baseline period

The Lagrangian cost function associated with (9.78) becomes

(9.82)upper J equals trace upper P plus trace normal upper Lamda left-parenthesis upper I minus script upper H Subscript upper N Baseline upper C Subscript upper N Baseline right-parenthesis

and we determine the gain script upper H Subscript upper N by solving the minimization problem

The solution to (9.83) is available by solving two equations

and we notice that (9.85) is equivalent to the unbiasedness constraint (9.40).

The first equation 9.84 gives

Multiplying both sides of (9.86) from the left‐hand side by a nonzero upper C Subscript upper N Superscript upper T Baseline normal upper Omega Subscript upper N Superscript negative 1 and referring to the constraint (9.85), we obtain

upper C Subscript upper N Superscript upper T Baseline normal upper Omega Subscript upper N Superscript negative 1 Baseline upper C Subscript upper N Baseline normal upper Lamda equals minus 2 upper C Subscript upper N Superscript upper T Baseline normal upper Omega Subscript upper N Superscript negative 1 Baseline left-parenthesis upper G Subscript upper N Baseline script upper Q Subscript upper N Baseline upper D overbar Subscript upper N Superscript upper T Baseline plus script upper Z 2 Superscript upper T Baseline right-parenthesis plus 2 left-parenthesis upper I plus upper C Subscript upper N Superscript upper T Baseline normal upper Omega Subscript upper N Superscript negative 1 Baseline script upper Z 3 script upper H Subscript upper N Superscript upper T Baseline right-parenthesis

and retrieve the Lagrange multiplier

Reconsidering (9.84), substituting (9.85) and (9.87), and performing some transformations, we obtain the gain for the upper H 2‐OUFIR filter in the form

Note that for zero uncertain matrices script upper Z 2 and script upper Z 3, the gain (9.88) becomes the gain (8.42) of the upper H 2‐OUFIR filter, which is valid for systems affected by disturbances. The obvious advantage of (9.88) is that it does not require initial values and thus is more suitable to operate on left-bracket m comma k right-bracket.

Summarizing, we note that for script upper H Subscript upper N determined by (9.88), the upper H 2‐OUFIR filtering estimate ModifyingAbove x With caret Subscript k and error matrix upper P are obtained as, respectively,

(9.89)ModifyingAbove x With caret Subscript k Baseline equals script upper H Subscript upper N Baseline upper Y Subscript m comma k Baseline plus left-parenthesis upper S overbar Subscript upper N Baseline minus script upper H Subscript upper N Baseline upper L Subscript upper N Baseline right-parenthesis upper U Subscript m comma k Baseline comma

where the error matrices upper P overTilde Subscript x, upper P overTilde Subscript w, and upper P overTilde Subscript u associated with system uncertainties are given by (9.74)(9.76). It is worth noting that the uncertain component upper P overTilde Subscript x cannot be removed by embedding unbiasedness, since it represents zero mean uncertainty in the initial state. The same can be said about the uncertain matrix upper P overTilde Subscript u, which is caused by the zero mean input uncertainty.

9.3 H2 FIR Prediction

When an uncertain system operates under disturbances, initial errors, and measurement errors, then state feedback control can be organized using a upper H 2‐OFIR predictor, which gives robust estimates if the error matrices are properly maximized. The prediction can be organized in two ways. The one‐step ahead predicted estimate can be obtained through the system matrix as x overTilde Subscript k plus 1 Baseline equals upper F ModifyingAbove x With caret Subscript k or x overTilde Subscript k Baseline equals upper F ModifyingAbove x With caret Subscript k minus 1. Note that there is a well‐founded conclusion, drawn in [119] and corroborated in [171], that such an unbiased prediction can provide more accuracy than optimal prediction. Another way is to derive an optimal predictor that we will consider next.

Using the FE‐based model, we define the one‐step FIR prediction as

where the uncertain matrices upper H overTilde Subscript m comma k Superscript p, upper L overTilde Subscript m comma k Superscript p, and upper T overTilde Subscript m comma k Superscript p are given by (9.36)(9.38).

The unbiasedness condition script upper E left-brace x overTilde Subscript k plus 1 Baseline right-brace equals script upper E left-brace x Subscript k plus 1 Baseline right-brace applied to (9.31) and (9.91) yields two unbiasedness constraints,

and the estimation error epsilon Subscript k plus 1 Baseline equals x Subscript k plus 1 Baseline minus x overTilde Subscript k plus 1 becomes

By embedding (9.93), we next generalize epsilon Subscript k plus 1 in the form

where the regular error residual matrices script upper B Subscript upper N Superscript p, script upper W Subscript upper N Superscript p, and script upper V Subscript upper N Superscript p are given by (8.60)–(8.62) and the uncertain error residual matrices can be taken from (9.94) as

(9.97)script upper U overTilde Subscript m comma k Superscript p Baseline equals upper S overTilde overbar Subscript m comma k Baseline minus script upper H Subscript upper N Superscript p Baseline upper L overTilde Subscript m comma k Superscript p Baseline comma
(9.98)script upper W overTilde Subscript m comma k Superscript p Baseline equals upper D overTilde overbar Subscript m comma k Baseline minus script upper H Subscript upper N Superscript p Baseline upper T overTilde Subscript m comma k Superscript p Baseline period

Following Fig. 9.1, we now introduce the disturbance‐induced errors

(9.99)StartLayout 1st Row 1st Column epsilon overbar Subscript x left-parenthesis k plus 1 right-parenthesis 2nd Column equals 3rd Column script upper B Subscript upper N Superscript p Baseline x Subscript m Baseline comma epsilon overbar Subscript w left-parenthesis k plus 1 right-parenthesis Baseline equals script upper W Subscript upper N Superscript p Baseline upper W Subscript m comma k Baseline comma 2nd Row 1st Column epsilon overbar Subscript v left-parenthesis k plus 1 right-parenthesis 2nd Column equals 3rd Column script upper V Subscript upper N Superscript p Baseline upper V Subscript m comma k EndLayout

and the uncertainty‐induced errors

and represent the estimation error as

It should now be noted that with the help of (9.101) we can develop different kinds of FIR predictors for uncertain systems operating under disturbances in the presence of initial and data errors.

9.3.1 Optimal upper H 2 FIR Predictor

Using lemma 9.1, it is a matter of similar transformations to show that the trace of the error matrix of the upper H 2‐OFIR predictor is given by

where the squared weighted sub‐norms for the properly chosen weight pi Subscript k Superscript p are defined by

(9.103)parallel-to ModifyingAbove script upper T With bar Superscript p Baseline left-parenthesis z right-parenthesis parallel-to equals trace script upper T overbar Superscript p Baseline pi Subscript k Superscript p Baseline pi Subscript k Superscript p Super Superscript upper T Superscript Baseline script upper T overbar Superscript p Super Superscript upper T Superscript Baseline period

The first three squared norms in (9.102) are given by

(9.104)parallel-to ModifyingAbove script upper T With bar Subscript x overbar Superscript p Baseline left-parenthesis z right-parenthesis parallel-to equals trace left-parenthesis script upper B Subscript upper N Superscript p Baseline chi Subscript m Baseline script upper B Subscript upper N Superscript p Super Superscript upper T Superscript Baseline right-parenthesis comma
(9.105)parallel-to ModifyingAbove script upper T With bar Subscript w overbar Superscript p Baseline left-parenthesis z right-parenthesis parallel-to equals trace left-parenthesis script upper W Subscript upper N Superscript p Baseline script upper Q Subscript upper N Baseline script upper W Subscript upper N Superscript p Super Superscript upper T Superscript Baseline right-parenthesis comma
(9.106)parallel-to ModifyingAbove script upper T With bar Subscript v overbar Superscript p Baseline left-parenthesis z right-parenthesis parallel-to equals trace left-parenthesis script upper V Subscript upper N Superscript p Baseline script upper R Subscript upper N Baseline script upper V Subscript upper N Superscript p Super Superscript upper T Superscript Baseline right-parenthesis period

The squared norm parallel-to ModifyingAbove script upper T With bar Subscript x overTilde Superscript p Baseline left-parenthesis z right-parenthesis parallel-to can be found using (9.100) and (9.96) to be

where the uncertain error matrices are defined by

(9.108)chi overTilde Subscript m Superscript upper F Baseline equals script upper E left-brace upper F overTilde overbar Subscript m comma k Superscript p Baseline x Subscript m Baseline x Subscript m Superscript upper T Baseline upper F overTilde overbar Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline right-brace comma
(9.109)chi overTilde Subscript m Superscript upper F upper H Baseline equals script upper E left-brace upper F overTilde overbar Subscript m comma k Superscript p Baseline x Subscript m Baseline x Subscript m Superscript upper T Baseline upper H overTilde Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline right-brace comma
(9.110)chi overTilde Subscript m Superscript upper H upper F Baseline equals script upper E left-brace upper H overTilde Subscript m comma k Superscript p Baseline x Subscript m Baseline x Subscript m Superscript upper T Baseline upper F overTilde overbar Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline right-brace comma
(9.111)chi overTilde Subscript m Superscript upper H Baseline equals script upper E left-brace upper H overTilde Subscript m comma k Superscript p Baseline x Subscript m Baseline x Subscript m Superscript upper T Baseline upper H overTilde Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline right-brace period

The squared norm parallel-to ModifyingAbove script upper T With bar Subscript w overTilde Superscript p Baseline left-parenthesis z right-parenthesis parallel-to can be transformed to

by introducing the uncertain error matrices

(9.113)upper Q overTilde Subscript upper N Superscript upper D Baseline equals script upper E left-brace upper D overTilde overbar Subscript m comma k Baseline upper W Subscript m comma k Baseline upper W Subscript m comma k Superscript upper T Baseline upper D overTilde overbar Subscript m comma k Superscript upper T Baseline right-brace comma
(9.114)upper Q overTilde Subscript upper N Superscript upper D upper T Baseline equals script upper E left-brace upper D overTilde overbar Subscript m comma k Baseline upper W Subscript m comma k Baseline upper W Subscript m comma k Superscript upper T Baseline upper T overTilde Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline right-brace comma
(9.115)upper Q overTilde Subscript upper N Superscript upper T upper D Baseline equals script upper E left-brace upper T overTilde Subscript m comma k Superscript p Baseline upper W Subscript m comma k Baseline upper W Subscript m comma k Superscript upper T Baseline upper D overTilde overbar Subscript m comma k Superscript upper T Baseline right-brace comma
(9.116)upper Q overTilde Subscript upper N Superscript upper T Baseline equals script upper E left-brace upper T overTilde Subscript m comma k Superscript p Baseline upper W Subscript m comma k Baseline upper W Subscript m comma k Superscript upper T Baseline upper T overTilde Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline right-brace period

Likewise, the squared norm parallel-to ModifyingAbove script upper T With bar Subscript u overtilde Superscript p Baseline left-parenthesis z right-parenthesis parallel-to can be represented with

using the uncertain error matrices

(9.118)upper M overTilde Subscript upper N Superscript upper S Baseline equals script upper E left-brace upper S overTilde overbar Subscript m comma k Baseline upper U Subscript m comma k Baseline upper U Subscript m comma k Superscript upper T Baseline upper S overTilde overbar Subscript m comma k Superscript upper T Baseline right-brace comma
(9.119)upper M overTilde Subscript upper N Superscript upper S upper L Baseline equals script upper E left-brace upper S overTilde overbar Subscript m comma k Baseline upper U Subscript m comma k Baseline upper U Subscript m comma k Superscript upper T Baseline upper L overTilde Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline right-brace comma
(9.120)upper M overTilde Subscript upper N Superscript upper L upper S Baseline equals script upper E left-brace upper L overTilde Subscript m comma k Superscript p Baseline upper U Subscript m comma k Baseline upper U Subscript m comma k Superscript upper T Baseline upper S overTilde overbar Subscript m comma k Superscript upper T Baseline right-brace comma
(9.121)upper M overTilde Subscript upper N Superscript upper L Baseline equals script upper E left-brace upper L overTilde Subscript m comma k Superscript p Baseline upper U Subscript m comma k Baseline upper U Subscript m comma k Superscript upper T Baseline upper L overTilde Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline right-brace period

Based upon (9.102) and using the previously determined squared sub‐norms, we determine the gain for the upper H 2‐OFIR predictor by solving the following minimization problem

where the uncertain norms are given by (9.107), (9.112), and (9.117). To find script upper H Subscript upper N Superscript p, we further substitute (9.122) equivalently with

and transform the trace trace upper P to

where normal upper Omega Subscript upper N Superscript p Baseline equals upper G Subscript upper N Superscript p Baseline script upper Q Subscript upper N Baseline upper G Subscript upper N Superscript p Super Superscript upper T Baseline plus script upper R Subscript upper N.

By applying the derivative (9.123) to (9.124), we obtain the gain for the upper H 2‐OFIR predictor as

and notice that, by neglecting the uncertain terms, this gain becomes the gain (8.70) derived for systems operating under disturbances.

Finally, we end up with the batch upper H 2‐OFIR prediction

where gain script upper H Subscript upper N Superscript p is given by (9.125), and write the error matrix as

where the uncertain error matrices are defined by

(9.129)StartLayout 1st Row 1st Column upper P overTilde Subscript w Superscript p 2nd Column equals 3rd Column script upper E left-brace script upper W overTilde Subscript m comma k Superscript p Baseline upper W Subscript m comma k Baseline upper W Subscript m comma k Superscript upper T Baseline script upper W overTilde Subscript m comma k Superscript p Super Superscript upper T Superscript Baseline right-brace 2nd Row 1st Column Blank 2nd Column equals 3rd Column upper Q overTilde Subscript upper N Superscript upper D Baseline minus upper Q overTilde Subscript upper N Superscript upper D upper T Baseline script upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline minus script upper H Subscript upper N Superscript p Baseline upper Q overTilde Subscript upper N Superscript upper T upper D Baseline plus script upper H Subscript upper N Superscript p Baseline upper Q overTilde Subscript upper N Superscript upper T Baseline script upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline comma EndLayout

The batch form (9.126) gives an optimal prediction of the state of an uncertain system operating under disturbances, initial errors, and measurement errors. Because this algorithm operates with full block error matrices, it can provide better accuracy than the best available recursive Kalman‐like scheme relying on diagonal block error matrices. Next, we will show that the gain (9.125) of the upper H 2‐OFIR predictor (9.126) generalizes the gain of the OFIR predictor for white Gaussian processes.

Equivalence with OFIR Predictor

By Parseval's theorem, the minimization of the error spectral energy in the transform domain is equivalent to the minimization of the MSE in the time domain. When all uncertainties, disturbances, and errors are white Gaussian and uncorrelated, then the orthogonality condition script upper E left-brace epsilon Subscript k plus 1 Baseline upper Y Subscript m comma k Superscript upper T Baseline right-brace equals 0 applied to (9.32) and (9.101) guarantees the FIR predictor optimality. Accordingly, we have

Providing averaging in (9.131) for mutually independent and uncorrelated error sources, we transform (9.131) into (9.124) and note that the upper H 2‐OFIR predictor has the same structure as the OFIR predictor. The obvious difference between these solutions resides in the fact that the upper H 2‐OFIR predictor does not impose restrictions on the error matrices, while the OFIR predictor requires them to be white Gaussian, that is, diagonal. Then it follows that the upper H 2‐OFIR predictor is a more general estimator for LTI systems.

9.3.2 Bias‐Constrained upper H 2‐OUFIR Predictor

Referring to the inherent disadvantage of optimal state estimation of uncertain systems, which is an initial state requirement, we note that the upper H 2‐OFIR predictor may not be sufficiently accurate, especially for short left-bracket m comma k right-bracket, if the initial state is not set correctly. In upper H 2‐OUFIR prediction, this issue is circumvented by embedding the unbiasedness constraint, and now we will extend this approach to the upper H 2‐OUFIR predictor.

Considering the error matrix (9.127) of the upper H 2‐OFIR predictor, we first remove the term containing chi Subscript m using the unbiasedness constraint (9.92). Then we rewrite (9.127) as

where the matrices script upper Z 1, script upper Z 2, and script upper Z 3 are defined as

(9.133)script upper Z 1 equals chi overTilde Subscript m Superscript upper F Baseline plus upper M overTilde Subscript upper N Superscript upper S Baseline plus upper Q overTilde Subscript upper N Superscript upper D Baseline comma
(9.134)script upper Z 2 equals chi overTilde Subscript m Superscript upper F upper H Baseline plus upper M overTilde Subscript upper N Superscript upper S upper L Baseline plus upper Q overTilde Subscript upper N Superscript upper D upper T Baseline comma
(9.135)script upper Z 3 equals chi overTilde Subscript m Superscript upper H Baseline plus upper M overTilde Subscript upper N Superscript upper L Baseline plus upper Q overTilde Subscript upper N Superscript upper T

in terms of the uncertain matrices specified for the upper H 2‐OFIR predictor.

We now write the Lagrangian cost function for (9.132),

(9.136)upper J equals trace upper P plus trace normal upper Lamda left-parenthesis upper I minus script upper H Subscript upper N Superscript p Baseline upper C Subscript upper N Superscript p Baseline right-parenthesis comma

and determine the gain script upper H Subscript upper N Superscript p by solving the minimization problem

The solution to (9.137) can be found by solving two equations

where the second equation 9.139 is equal to the constraint (9.92).

From the first equation 9.138 we find

We then multiply both sides of (9.140) from the left‐hand side with a nonzero upper C Subscript upper N Superscript p Super Superscript upper T Baseline normal upper Omega Subscript upper N Superscript p Super Superscript negative 1 and, using the constraint (9.92), obtain

From (9.141), we extract the Lagrange multiplier

Looking at (9.138) again, substituting (9.142), and providing some transformations, we finally obtain the gain for the upper H 2‐OUFIR predictor as

As in the previous cases of state estimation of uncertain systems, we take notice that the zero uncertain matrices script upper Z 2 and script upper Z 3 make the gain (9.143) equal to the gain (8.70) of the upper H 2‐OUFIR predictor, developed under disturbances and measurement errors. We also notice that the gain (9.143) does not require initial values and thus is more suitable for finite horizons.

Finally, the upper H 2‐OUFIR prediction x overTilde Subscript k plus 1 can be computed using (9.126), and the error matrix upper P Subscript k plus 1 can be written by neglecting chi Subscript m as, respectively,

(9.144)x overTilde Subscript k plus 1 Baseline equals script upper H Subscript upper N Superscript p Baseline upper Y Subscript m comma k Baseline plus left-parenthesis upper S overbar Subscript upper N Baseline minus script upper H Subscript upper N Superscript p Baseline upper L Subscript upper N Superscript p Baseline right-parenthesis upper U Subscript m comma k Baseline comma

where the uncertain error matrices upper P overTilde Subscript x Superscript p, upper P overTilde Subscript w Superscript p, and upper P overTilde Subscript u Superscript p are defined by (9.128)(9.130) and the gain script upper H Subscript upper N Superscript p is given by (9.143).

To summarize, it is worth noting that, as in the upper H 2‐OUFIR filter case, efforts should be made to specify the uncertain matrices for (9.143). If these matrices are properly maximized, then prediction over left-bracket m comma k right-bracket can be robust and sufficiently accurate. Otherwise, errors can grow and become unacceptably large.

9.4 Suboptimal upper H 2 FIR Structures Using LMI

Design of hybrid state estimators with improved robustness requires suboptimal upper H 2 FIR algorithms using LMI. Since hybrid FIR structures are typically designed based on different types of upper H Subscript infinity estimators, the upper H 2 algorithm should have a similar structure using LMI. In what follows, we will consider such suboptimal FIR algorithms.

9.4.1 Suboptimal upper H 2 FIR Filter

To obtain the numerical gain script upper H Subscript upper N for a suboptimal upper H 2 FIR filter using LMI, we refer to (9.73) and introduce an additional positive definite matrix script upper Z such that

Substituting the error residual matrices taken from (8.15)–(8.17) and (9.74)(9.76), we rewrite the inequality (9.146) as

StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column script upper Z minus left-parenthesis script upper H Subscript upper N Baseline upper H Subscript upper N Baseline minus upper F Superscript upper N minus 1 Baseline right-parenthesis chi Subscript m Baseline left-parenthesis script upper H Subscript upper N Baseline upper H Subscript upper N Baseline minus upper F Superscript upper N minus 1 Baseline right-parenthesis Superscript upper T 2nd Row 1st Column Blank 2nd Column Blank 3rd Column minus left-parenthesis script upper H Subscript upper N Baseline upper G Subscript upper N Baseline minus upper D overbar Subscript upper N Baseline right-parenthesis script upper Q Subscript upper N Baseline left-parenthesis script upper H Subscript upper N Baseline upper G Subscript upper N Baseline minus upper D overbar Subscript upper N Baseline right-parenthesis Superscript upper T minus script upper H Subscript upper N Baseline script upper R Subscript upper N Baseline script upper H Subscript upper N Superscript upper T 3rd Row 1st Column Blank 2nd Column Blank 3rd Column minus chi overTilde Subscript m Superscript upper F plus chi overTilde Subscript m Superscript upper F upper H Baseline script upper H Subscript upper N Superscript upper T plus script upper H Subscript upper N Baseline chi overTilde Subscript m Superscript upper H upper F minus script upper H Subscript upper N Baseline chi overTilde Subscript m Superscript upper H Baseline script upper H Subscript upper N Superscript upper T 4th Row 1st Column Blank 2nd Column Blank 3rd Column minus upper Q overTilde Subscript upper N Superscript upper D plus upper Q overTilde Subscript upper N Superscript upper D upper T Baseline script upper H Subscript upper N Superscript upper T plus script upper H Subscript upper N Baseline upper Q overTilde Subscript upper N Superscript upper T upper D minus script upper H Subscript upper N Baseline upper Q overTilde Subscript upper N Superscript upper T Baseline script upper H Subscript upper N Superscript upper T 5th Row 1st Column Blank 2nd Column Blank 3rd Column minus upper M overTilde Subscript upper N Superscript upper S Baseline plus upper M overTilde Subscript upper N Superscript upper S upper L Baseline script upper H Subscript upper N Superscript upper T Baseline plus script upper H Subscript upper N Baseline upper M overTilde Subscript upper N Superscript upper L upper S Baseline minus script upper H Subscript upper N Baseline upper M overTilde Subscript upper N Superscript upper L Baseline script upper H Subscript upper N Superscript upper T Baseline greater-than 0 EndLayout

and represent it with

where the introduced auxiliary matrices are given by

(9.148)script upper A equals upper F Superscript upper N minus 1 Baseline chi Subscript m Baseline upper F Superscript upper N minus 1 Super Superscript upper T Superscript Baseline plus upper D overbar Subscript upper N Baseline script upper Q Subscript upper N Baseline upper D overbar Subscript upper N Superscript upper T Baseline plus chi overTilde Subscript m Superscript upper F Baseline plus upper Q overTilde Subscript upper N Superscript upper D Baseline plus upper M overTilde Subscript upper N Superscript upper S Baseline comma
(9.149)script upper B equals upper H Subscript upper N Baseline chi Subscript m Baseline upper F Superscript upper N minus 1 Super Superscript upper T Superscript Baseline plus upper G Subscript upper N Baseline script upper Q Subscript upper N Baseline upper D overbar Subscript upper N Superscript upper T Baseline plus chi overTilde Subscript m Superscript upper F upper H Baseline plus upper Q overTilde Subscript upper N Superscript upper D upper T Baseline plus upper M overTilde Subscript upper N Superscript upper S upper L Baseline comma
(9.150)script upper C equals upper F Superscript upper N minus 1 Baseline chi Subscript m Baseline upper H Subscript upper N Superscript upper T Baseline plus upper D overbar Subscript upper N Baseline script upper Q Subscript upper N Baseline upper G Subscript upper N Superscript upper T Baseline plus chi overTilde Subscript m Superscript upper H upper F Baseline plus upper Q overTilde Subscript upper N Superscript upper T upper D Baseline plus upper M overTilde Subscript upper N Superscript upper L upper S Baseline comma
(9.151)script upper D equals upper H Subscript upper N Baseline chi Subscript m Baseline upper H Subscript upper N Superscript upper T Baseline plus normal upper Omega Subscript upper N Baseline minus chi overTilde Subscript m Superscript upper H Baseline minus upper Q overTilde Subscript upper N Superscript upper T Baseline minus upper M overTilde Subscript upper N Superscript upper L Baseline period

Using the Schur complement, we finally represent the inequality (9.147) with the following LMI

The gain script upper H Subscript upper N for the suboptimal upper H 2 FIR filter can now be computed numerically by solving the following minimization problem

As in other similar cases, the best candidate for starting solving (9.153) is the UFIR filter gain ModifyingAbove script upper H With Ì‚ Subscript upper N Baseline equals left-parenthesis upper C Subscript upper N Superscript upper T Baseline upper C Subscript upper N Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript upper N Superscript upper T. Provided that script upper H Subscript upper N is found numerically, the suboptimal upper H 2 FIR filtering estimate can be computed as

(9.154)ModifyingAbove x With caret Subscript k Baseline equals script upper H Subscript upper N Baseline upper Y Subscript m comma k

and the error matrix upper P can be computed by (9.73).

9.4.2 Bias‐Constrained Suboptimal upper H 2 FIR Filter

In a like manner, the gain for the bias‐constrained suboptimal upper H 2 FIR filter appears in LMI form, if we refer to (9.90) and introduce an auxiliary positive definite matrix script upper Z such that

where the error residual matrices are given by (8.16), (8.17), and (9.74)(9.76). Then we rewrite (9.155) as

StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column script upper Z minus left-parenthesis script upper H Subscript upper N Baseline upper G Subscript upper N Baseline minus upper D overbar Subscript upper N Baseline right-parenthesis script upper Q Subscript upper N Baseline left-parenthesis script upper H Subscript upper N Baseline upper G Subscript upper N Baseline minus upper D overbar Subscript upper N Baseline right-parenthesis Superscript upper T minus script upper H Subscript upper N Baseline script upper R Subscript upper N Baseline script upper H Subscript upper N Superscript upper T 2nd Row 1st Column Blank 2nd Column Blank 3rd Column minus chi overTilde Subscript m Superscript upper F plus chi overTilde Subscript m Superscript upper F upper H Baseline script upper H Subscript upper N Superscript upper T plus script upper H Subscript upper N Baseline chi overTilde Subscript m Superscript upper H upper F minus script upper H Subscript upper N Baseline chi overTilde Subscript m Superscript upper H Baseline script upper H Subscript upper N Superscript upper T 3rd Row 1st Column Blank 2nd Column Blank 3rd Column minus upper Q overTilde Subscript upper N Superscript upper D plus upper Q overTilde Subscript upper N Superscript upper D upper T Baseline script upper H Subscript upper N Superscript upper T plus script upper H Subscript upper N Baseline upper Q overTilde Subscript upper N Superscript upper T upper D minus script upper H Subscript upper N Baseline upper Q overTilde Subscript upper N Superscript upper T Baseline script upper H Subscript upper N Superscript upper T 4th Row 1st Column Blank 2nd Column Blank 3rd Column minus upper M overTilde Subscript upper N Superscript upper S Baseline plus upper M overTilde Subscript upper N Superscript upper S upper L Baseline script upper H Subscript upper N Superscript upper T Baseline plus script upper H Subscript upper N Baseline upper M overTilde Subscript upper N Superscript upper L upper S Baseline minus script upper H Subscript upper N Baseline upper M overTilde Subscript upper N Superscript upper L Baseline script upper H Subscript upper N Superscript upper T Baseline greater-than 0 EndLayout

and transform to

using the following auxiliary matrices,

(9.157)script upper A equals upper D overbar Subscript upper N Baseline script upper Q Subscript upper N Baseline upper D overbar Subscript upper N Superscript upper T Baseline plus chi overTilde Subscript m Superscript upper F Baseline plus upper Q overTilde Subscript upper N Superscript upper D Baseline plus upper M overTilde Subscript upper N Superscript upper S Baseline comma
(9.158)script upper B equals upper G Subscript upper N Baseline script upper Q Subscript upper N Baseline upper D overbar Subscript upper N Superscript upper T Baseline plus chi overTilde Subscript m Superscript upper F upper H Baseline plus upper Q overTilde Subscript upper N Superscript upper D upper T Baseline plus upper M overTilde Subscript upper N Superscript upper S upper L Baseline comma
(9.159)script upper C equals upper D overbar Subscript upper N Baseline script upper Q Subscript upper N Baseline upper G Subscript upper N Superscript upper T Baseline plus chi overTilde Subscript m Superscript upper H upper F Baseline plus upper Q overTilde Subscript upper N Superscript upper T upper D Baseline plus upper M overTilde Subscript upper N Superscript upper L upper S Baseline comma
(9.160)script upper D equals normal upper Omega Subscript upper N Baseline minus chi overTilde Subscript m Superscript upper H Baseline minus upper Q overTilde Subscript upper N Superscript upper T Baseline minus upper M overTilde Subscript upper N Superscript upper L Baseline period

Using the Schur complement, we represent (9.156) in the LMI form as

(9.161)Start 2 By 2 Matrix 1st Row 1st Column script upper Z minus script upper A plus script upper B script upper H Subscript upper N Superscript upper T Baseline plus script upper H Subscript upper N Baseline script upper C 2nd Column script upper H Subscript upper N Baseline 2nd Row 1st Column script upper H Subscript upper N Superscript upper T Baseline 2nd Column script upper D Superscript negative 1 Baseline EndMatrix greater-than 0

and determine the gain for the bias‐constrained suboptimal upper H 2 FIR filter by solving numerically the following minimization problem

Traditionally, we start the minimization with ModifyingAbove script upper H With Ì‚ Subscript upper N Baseline equals left-parenthesis upper C Subscript upper N Superscript upper T Baseline upper C Subscript upper N Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript upper N Superscript upper T. Provided that script upper H Subscript upper N is numerically available from (9.162), the suboptimal upper H 2 FIR filtering estimate is computed by

(9.163)ModifyingAbove x With caret Subscript k Baseline equals script upper H Subscript upper N Baseline upper Y Subscript m comma k

and the error matrix upper P is computed using (9.90). Note that the gain script upper H Subscript upper N obtained by solving (9.162) is more robust due to the rejection of the initial state requirement.

9.4.3 Suboptimal upper H 2 FIR Predictor

To find the suboptimal gain for the upper H 2 FIR predictor using LMI, we introduce an auxiliary positive definite matrix script upper Z to satisfy the inequality

We then use (8.60)–(8.62) and (9.128)(9.130) and transform (9.164) to

StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column script upper Z minus left-parenthesis script upper H Subscript upper N Superscript p Baseline upper H Subscript upper N Superscript p Baseline minus upper F Superscript upper N Baseline right-parenthesis chi Subscript m Baseline left-parenthesis script upper H Subscript upper N Superscript p Baseline upper H Subscript upper N Superscript p Baseline minus upper F Superscript upper N Baseline right-parenthesis Superscript upper T 2nd Row 1st Column Blank 2nd Column Blank 3rd Column minus left-parenthesis script upper H Subscript upper N Superscript p Baseline upper G Subscript upper N Superscript p Baseline minus upper D overbar Subscript upper N Baseline right-parenthesis script upper Q Subscript upper N Baseline left-parenthesis script upper H Subscript upper N Superscript p Baseline upper G Subscript upper N Superscript p Baseline minus upper D overbar Subscript upper N Baseline right-parenthesis Superscript upper T minus script upper H Subscript upper N Superscript p Baseline script upper R Subscript upper N Baseline script upper H Subscript upper N Superscript p Super Superscript upper T 3rd Row 1st Column Blank 2nd Column Blank 3rd Column minus chi overTilde Subscript m Superscript upper F plus chi overTilde Subscript m Superscript upper F upper H Baseline script upper H Subscript upper N Superscript p Super Superscript upper T plus script upper H Subscript upper N Superscript p Baseline chi overTilde Subscript m Superscript upper H upper F minus script upper H Subscript upper N Superscript p Baseline chi overTilde Subscript m Superscript upper H Baseline script upper H Subscript upper N Superscript p Super Superscript upper T 4th Row 1st Column Blank 2nd Column Blank 3rd Column minus upper Q overTilde Subscript upper N Superscript upper D plus upper Q overTilde Subscript upper N Superscript upper D upper T Baseline script upper H Subscript upper N Superscript p Super Superscript upper T plus script upper H Subscript upper N Superscript p Baseline upper Q overTilde Subscript upper N Superscript upper T upper D minus script upper H Subscript upper N Superscript p Baseline upper Q overTilde Subscript upper N Superscript upper T Baseline script upper H Subscript upper N Superscript p Super Superscript upper T 5th Row 1st Column Blank 2nd Column Blank 3rd Column minus upper M overTilde Subscript upper N Superscript upper S Baseline plus upper M overTilde Subscript upper N Superscript upper S upper L Baseline script upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline plus script upper H Subscript upper N Superscript p Baseline upper M overTilde Subscript upper N Superscript upper L upper S Baseline minus script upper H Subscript upper N Superscript p Baseline upper M overTilde Subscript upper N Superscript upper L Baseline script upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline greater-than 0 comma EndLayout

where the uncertain matrices are the same as for the upper H 2 FIR predictor. We next represent this inequality as

where the introduced auxiliary matrices are the following

(9.166)script upper A equals upper F Superscript upper N Baseline chi Subscript m Baseline upper F Superscript upper N Super Superscript upper T Superscript Baseline plus upper D overbar Subscript upper N Baseline script upper Q Subscript upper N Baseline upper D overbar Subscript upper N Superscript upper T Baseline plus chi overTilde Subscript m Superscript upper F Baseline plus upper Q overTilde Subscript upper N Superscript upper D Baseline plus upper M overTilde Subscript upper N Superscript upper S Baseline comma
(9.167)script upper B equals upper H Subscript upper N Superscript p Baseline chi Subscript m Baseline upper F Superscript upper N Super Superscript upper T Superscript Baseline plus upper G Subscript upper N Superscript p Baseline script upper Q Subscript upper N Baseline upper D overbar Subscript upper N Superscript upper T Baseline plus chi overTilde Subscript m Superscript upper F upper H Baseline plus upper Q overTilde Subscript upper N Superscript upper D upper T Baseline plus upper M overTilde Subscript upper N Superscript upper S upper L Baseline comma
(9.168)script upper C equals upper F Superscript upper N Baseline chi Subscript m Baseline upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline plus upper D overbar Subscript upper N Baseline script upper Q Subscript upper N Baseline upper G Subscript upper N Superscript p Super Superscript upper T Superscript Baseline plus chi overTilde Subscript m Superscript upper H upper F Baseline plus upper Q overTilde Subscript upper N Superscript upper T upper D Baseline plus upper M overTilde Subscript upper N Superscript upper L upper S Baseline comma
(9.169)script upper D equals upper H Subscript upper N Superscript p Baseline chi Subscript m Baseline upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline plus normal upper Omega Subscript upper N Baseline minus chi overTilde Subscript m Superscript upper H Baseline minus upper Q overTilde Subscript upper N Superscript upper T Baseline minus upper M overTilde Subscript upper N Superscript upper L Baseline period

Using the Schur complement, we represent (9.165) in the LMI form

that allows finding numerically the gain for the upper H 2 FIR predictor by solving the following minimization problem

(9.171)script upper H Subscript upper N Superscript p Baseline equals min Underscript script upper H Subscript upper N Superscript p Baseline comma script upper Z Endscripts trace script upper Z Underscript s u b j e c t t o left-parenthesis 9.170 right-parenthesis Endscripts

using ModifyingAbove script upper H With Ì‚ Subscript upper N Superscript p Baseline equals left-parenthesis upper C Subscript upper N Superscript p Super Superscript upper T Superscript Baseline upper C Subscript upper N Superscript p Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript upper N Superscript p Super Superscript upper T as an initial try. The suboptimal upper H 2 FIR prediction can finally be computed by

(9.172)x overTilde Subscript k plus 1 Baseline equals script upper H Subscript upper N Superscript p Baseline upper Y Subscript m comma k

and the error matrix upper P by (9.127).

9.4.4 Bias‐Constrained Suboptimal upper H 2 FIR Predictor

As before, to remove the requirement of the initial state, the gain for the bias‐constrained suboptimal upper H 2 FIR predictor can be computed using LMI. To do this, we traditionally look at (9.145) and introduce a positive definite matrix script upper Z such that

We then use the error residual matrices (8.61), (8.62), and (9.128)(9.130) and transform (9.173) to

StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column script upper Z minus left-parenthesis script upper H Subscript upper N Superscript p Baseline upper G Subscript upper N Superscript p Baseline minus upper D overbar Subscript upper N Baseline right-parenthesis script upper Q Subscript upper N Baseline left-parenthesis script upper H Subscript upper N Superscript p Baseline upper G Subscript upper N Superscript p Baseline minus upper D overbar Subscript upper N Baseline right-parenthesis Superscript upper T minus script upper H Subscript upper N Superscript p Baseline script upper R Subscript upper N Baseline script upper H Subscript upper N Superscript p Super Superscript upper T 2nd Row 1st Column Blank 2nd Column Blank 3rd Column minus chi overTilde Subscript m Superscript upper F plus chi overTilde Subscript m Superscript upper F upper H Baseline script upper H Subscript upper N Superscript p Super Superscript upper T plus script upper H Subscript upper N Superscript p Baseline chi overTilde Subscript m Superscript upper H upper F minus script upper H Subscript upper N Superscript p Baseline chi overTilde Subscript m Superscript upper H Baseline script upper H Subscript upper N Superscript p Super Superscript upper T 3rd Row 1st Column Blank 2nd Column Blank 3rd Column minus upper Q overTilde Subscript upper N Superscript upper D plus upper Q overTilde Subscript upper N Superscript upper D upper T Baseline script upper H Subscript upper N Superscript p Super Superscript upper T plus script upper H Subscript upper N Superscript p Baseline upper Q overTilde Subscript upper N Superscript upper T upper D minus script upper H Subscript upper N Superscript p Baseline upper Q overTilde Subscript upper N Superscript upper T Baseline script upper H Subscript upper N Superscript p Super Superscript upper T 4th Row 1st Column Blank 2nd Column Blank 3rd Column minus upper M overTilde Subscript upper N Superscript upper S Baseline plus upper M overTilde Subscript upper N Superscript upper S upper L Baseline script upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline plus script upper H Subscript upper N Superscript p Baseline upper M overTilde Subscript upper N Superscript upper L upper S Baseline minus script upper H Subscript upper N Superscript p Baseline upper M overTilde Subscript upper N Superscript upper L Baseline script upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline greater-than 0 comma EndLayout

which we further generalize as

using the auxiliary matrices

(9.175)script upper A equals upper D overbar Subscript upper N Baseline script upper Q Subscript upper N Baseline upper D overbar Subscript upper N Superscript upper T Baseline plus chi overTilde Subscript m Superscript upper F Baseline plus upper Q overTilde Subscript upper N Superscript upper D Baseline plus upper M overTilde Subscript upper N Superscript upper S Baseline comma
(9.176)script upper B equals upper G Subscript upper N Superscript p Baseline script upper Q Subscript upper N Baseline upper D overbar Subscript upper N Superscript upper T Baseline plus chi overTilde Subscript m Superscript upper F upper H Baseline plus upper Q overTilde Subscript upper N Superscript upper D upper T Baseline plus upper M overTilde Subscript upper N Superscript upper S upper L Baseline comma
(9.177)script upper C equals upper D overbar Subscript upper N Baseline script upper Q Subscript upper N Baseline upper G Subscript upper N Superscript p Super Superscript upper T Superscript Baseline plus chi overTilde Subscript m Superscript upper H upper F Baseline plus upper Q overTilde Subscript upper N Superscript upper T upper D Baseline plus upper M overTilde Subscript upper N Superscript upper L upper S Baseline comma
(9.178)script upper D equals normal upper Omega Subscript upper N Baseline minus chi overTilde Subscript m Superscript upper H Baseline minus upper Q overTilde Subscript upper N Superscript upper T Baseline minus upper M overTilde Subscript upper N Superscript upper L Baseline period

Using the Schur complement, (9.174) can now be substituted by the LMI

(9.179)Start 2 By 2 Matrix 1st Row 1st Column script upper Z minus script upper A plus script upper B script upper H Subscript upper N Superscript p Super Superscript upper T Baseline plus script upper H Subscript upper N Superscript p Baseline script upper C 2nd Column script upper H Subscript upper N Superscript p Baseline 2nd Row 1st Column script upper H Subscript upper N Superscript p Super Superscript upper T Baseline 2nd Column script upper D Superscript negative 1 Baseline EndMatrix greater-than 0

and the gain for the bias‐constrained suboptimal upper H 2 FIR predictor can be numerically found by solving the minimization problem

(9.180)script upper H Subscript upper N Superscript p Baseline equals min Underscript script upper H Subscript upper N Superscript p Baseline comma script upper Z Endscripts trace script upper Z Underscript s u b j e c t t o left-parenthesis 9.179 right-parenthesis and upper I equals script upper H Subscript upper N Superscript p Baseline upper C Subscript upper N Superscript p Baseline Endscripts comma

if we start with ModifyingAbove script upper H With Ì‚ Subscript upper N Superscript p Baseline equals left-parenthesis upper C Subscript upper N Superscript p Super Superscript upper T Superscript Baseline upper C Subscript upper N Superscript p Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript upper N Superscript p Super Superscript upper T. Finally, the bias‐constrained suboptimal upper H 2 prediction can be obtained as

(9.181)x overTilde Subscript k plus 1 Baseline equals script upper H Subscript upper N Superscript p Baseline upper Y Subscript m comma k

and the error matrix upper P can be computed using (9.145).

9.5 upper H Subscript infinity FIR State Estimation for Uncertain Systems

To obtain various robust upper H Subscript infinity FIR state estimators for uncertain systems, we will start with the estimation errors of the FIR filter (9.49) and the FIR predictor (9.101) and will follow the lines previously developed to estimate the state under disturbances. Namely, using the induced norm parallel-to script upper T parallel-to defined by (8.90), we will find the gain for the upper H Subscript infinity FIR estimator corresponding to uncertain systems by numerically solving the familiar suboptimal problem

where the scalar factor gamma squared, which indicates the part of the maximized uncertainty energy that goes to the output, should preferably be small. In what follows, we will develop an upper H Subscript infinity filter and an upper H Subscript infinity predictor for uncertain systems operating under disturbances, initial errors, and measurement errors.

9.5.1 The a posterioriupper H Subscript infinity FIR Filter

Consider an uncertain system operating under a bounded zero mean disturbance w Subscript k and measurement error v Subscript k. Put u Subscript k Baseline equals 0 and represent this system with the BE‐based state‐space model (9.1)(9.2) as

where upper F Subscript k Superscript u Baseline equals upper F plus normal upper Delta upper F Subscript k, upper B Subscript k Superscript u Baseline equals upper B plus normal upper Delta upper B Subscript k, upper H Subscript k Superscript u Baseline equals upper H plus normal upper Delta upper H Subscript k, and upper D Subscript k Superscript u Baseline equals upper D plus normal upper Delta upper D Subscript k. Note that the uncertain increments normal upper Delta upper F Subscript k, normal upper Delta upper B Subscript k, normal upper Delta upper H Subscript k, and normal upper Delta upper D Subscript k represent time‐varying bounded parameters specified after (9.2).

We rewrite model (9.183) and (9.184) in the form of (9.3) and (9.4) as

where the zero mean uncertain error vectors xi Subscript k and zeta Subscript k are defined by

(9.187)xi Subscript k Baseline equals normal upper Delta upper F Subscript k Baseline x Subscript k minus 1 Baseline plus upper B Subscript k Superscript u Baseline w Subscript k Baseline comma
(9.188)zeta Subscript k Baseline equals normal upper Delta upper H Subscript k Baseline x Subscript k Baseline plus upper D Subscript k Superscript u Baseline w Subscript k Baseline plus v Subscript k

to play the role of zero mean errors in the model in (9.185) and (9.186).

Following (9.13) and (9.17), we next extend the model in (9.185) and (9.186) to left-bracket m comma k right-bracket as

(9.189)x Subscript k Baseline equals left-parenthesis upper F Superscript upper N minus 1 Baseline plus upper F overTilde overbar Subscript m comma k Baseline right-parenthesis x Subscript m Baseline plus left-parenthesis upper D overbar Subscript upper N Baseline plus upper D overTilde overbar Subscript m comma k Baseline right-parenthesis upper W Subscript m comma k Baseline comma
(9.190)upper Y Subscript m comma k Baseline equals left-parenthesis upper H Subscript upper N Baseline plus upper H overTilde Subscript m comma k Baseline right-parenthesis x Subscript m Baseline plus left-parenthesis upper T Subscript upper N Baseline plus upper T overTilde Subscript m comma k Baseline right-parenthesis upper W Subscript m comma k Baseline plus upper V Subscript m comma k Baseline comma

where upper F overTilde overbar Subscript m comma k and upper D overTilde overbar Subscript m comma k are the last row vectors in the uncertain matrices upper F overTilde Subscript m comma k Baseline equals ModifyingAbove upper F With caret Subscript upper N Baseline upper F Subscript m comma k Superscript u and upper D overTilde Subscript m comma k Baseline equals ModifyingAbove upper F With caret Subscript upper N Baseline upper D Subscript m comma k Superscript u, respectively. Note that the matrix ModifyingAbove upper F With caret Subscript upper N is given by (9.8), upper F Subscript m comma k Superscript u and upper D Subscript m comma k Superscript u by (9.10), upper H overTilde Subscript m comma k by (9.18) using (9.16), and upper T overTilde Subscript m comma k by (9.20) using (9.16).

The upper H Subscript infinity FIR filter can now be derived for uncertain systems if we write the estimation error (9.43) for u Subscript k Baseline equals 0 as

(9.191)epsilon Subscript k Baseline equals left-parenthesis script upper B Subscript upper N Baseline plus script upper B overTilde Subscript m comma k Baseline right-parenthesis x Subscript m Baseline plus left-parenthesis script upper W Subscript upper N Baseline plus script upper W overTilde Subscript m comma k Baseline right-parenthesis upper W Subscript m comma k Baseline minus script upper V Subscript upper N Baseline upper V Subscript m comma k Baseline comma

where the error residual matrices are given by (8.15)–(8.17), (9.44), and (9.46),

(9.193)script upper W Subscript upper N Baseline equals upper D overbar Subscript upper N Baseline minus script upper H Subscript upper N Baseline upper T Subscript upper N Baseline comma
(9.194)script upper V Subscript upper N Baseline equals script upper H Subscript upper N Baseline comma
(9.195)script upper B overTilde Subscript m comma k Baseline equals upper F overTilde overbar Subscript m comma k Baseline minus script upper H Subscript upper N Baseline upper H overTilde Subscript m comma k Baseline comma

and the vectors upper W Subscript m comma k and upper V Subscript m comma k can be written using lemma 8.1 as

where the sparse matrices upper A Subscript w and upper B Subscript w are defined by (8.19).

Using (9.197), (9.198), and the augmented vectors z Subscript k Baseline equals left-bracket upper W Subscript m comma k Superscript upper T Baseline upper V Subscript m comma k Superscript upper T Baseline i Subscript k Superscript upper T Baseline right-bracket Superscript upper T, where i Subscript k Baseline equals x Subscript m, and xi Subscript k Baseline equals left-bracket w Subscript k Superscript upper T Baseline v Subscript k Superscript upper T Baseline right-bracket Superscript upper T, we write the uncertainty‐to‐error state space model in the standard form

where the sparse matrices upper F overTilde Subscript final sigma and upper B overTilde Subscript final sigma are given by (8.109) as

and all terms containing gain script upper H Subscript upper N are collected in the matrix upper C overTilde Subscript final sigma,

which is a very important algorithmic property of this model. Indeed, there is only one matrix upper C overTilde Subscript final sigma, whose components are functions of script upper H Subscript upper N, which makes the model in (9.199) and (9.200) computationally efficient.

Using (9.199) and (9.200), we can now apply the BRL lemma 8.2 and develop an a posteriori upper H Subscript infinity FIR filter using LMI for uncertain systems operating under disturbances and measurement errors. Traditionally, we will look at the solutions taking notice of the necessity to have a numerical gain script upper H Subscript upper N such that gamma greater-than 0 satisfying (9.182) reaches a minimum for maximized uncertainties. The following options are available:

  • Apply lemma 8.2 to (9.199) and (9.200) and observe that upper D equals 0, upper P Subscript y Baseline equals upper P, and upper P Subscript w Baseline equals upper P Subscript xi. For some symmetric matrix upper X greater-than 0, find the gain script upper H Subscript upper N, which is a variable of the matrix upper C overTilde Subscript zeta (9.202), by minimizing gamma greater-than 0 to satisfy the following LMI
  • Consider (8.101), assign normal upper Psi equals upper K plus upper C overTilde Subscript final sigma Superscript upper T Baseline upper P upper C overTilde Subscript final sigma, and solve for script upper H Subscript upper N the following LMI problem by minimizing gamma,
    (9.204)StartLayout 1st Row 1st Column Start 2 By 2 Matrix 1st Row 1st Column upper F overTilde Subscript final sigma Superscript upper T Baseline normal upper Psi upper F overTilde Subscript final sigma Baseline minus upper K 2nd Column upper F overTilde Subscript final sigma Superscript upper T Baseline normal upper Psi upper B overTilde Subscript final sigma Baseline 2nd Row 1st Column upper B overTilde Subscript final sigma Superscript upper T Baseline normal upper Psi upper F overTilde Subscript final sigma Baseline 2nd Column upper B overTilde Subscript final sigma Superscript upper T Baseline normal upper Psi upper B overTilde Subscript final sigma Baseline minus gamma squared upper P Subscript xi Baseline EndMatrix less-than 0 comma 2nd Column Blank 3rd Column Blank 2nd Row 1st Column upper B overTilde Subscript final sigma Superscript upper T Baseline normal upper Psi upper B overTilde Subscript final sigma Baseline minus gamma squared upper P Subscript xi Baseline less-than 0 period 2nd Column Blank 3rd Column Blank EndLayout
  • Solve for script upper H Subscript upper N the following DARE by minimizing gamma,

The robust a posteriori upper H Subscript infinity FIR filtering estimate and the error matrix can now be suboptimally computed for maximized zero mean uncertainties, disturbances, data errors, and initial errors by, respectively,

using the gain script upper H Subscript upper N, obtained by one of the previous algorithmic options, and the error residual matrices in (9.192)(9.196). It is worth noting that, although all of the previous algorithmic options are feasible, the LMI form (9.203) is the most elaborate.

9.5.2 upper H Subscript infinity FIR Predictor

Robust prediction based on the upper H Subscript infinity FIR approach can be organized for uncertain systems in the same way as for systems operating under disturbances and measurement errors. To find a suboptimal gain for the upper H Subscript infinity FIR predictor, we traditionally use the FE‐based model in (9.21) and (9.22) with u Subscript k Baseline equals 0,

(9.208)x Subscript k plus 1 Baseline equals upper F Subscript k Superscript u Baseline x Subscript k Baseline plus upper B Subscript k Superscript u Baseline w Subscript k Baseline comma
(9.209)y Subscript k Baseline equals upper H Subscript k Superscript u Baseline x Subscript k Baseline plus upper D Subscript k Superscript u Baseline w Subscript k Baseline plus v Subscript k Baseline comma

and represent it by reorganizing the terms as

where the uncertain error vectors are given by

(9.212)xi Subscript k Superscript p Baseline equals normal upper Delta upper F Subscript k Baseline x Subscript k Baseline plus upper B Subscript k Superscript u Baseline w Subscript k Baseline comma
(9.213)zeta Subscript k Superscript p Baseline equals normal upper Delta upper H Subscript k Baseline x Subscript k Baseline plus upper D Subscript k Superscript u Baseline w Subscript k Baseline plus v Subscript k Baseline period

We extend the model in (9.210) and (9.211) to left-bracket m comma k right-bracket as

(9.214)x Subscript k plus 1 Baseline equals left-parenthesis upper F Superscript upper N Baseline plus upper F overTilde overbar Subscript m comma k Superscript p Baseline right-parenthesis x Subscript m Baseline plus left-parenthesis upper D overbar Subscript upper N Baseline plus upper D overTilde overbar Subscript m comma k Superscript p Baseline right-parenthesis upper W Subscript m comma k Baseline comma
(9.215)upper Y Subscript m comma k Baseline equals left-parenthesis upper H Subscript upper N Superscript p Baseline plus upper H overTilde overbar Subscript m comma k Superscript p Baseline right-parenthesis x Subscript m Baseline plus left-parenthesis upper T Subscript upper N Superscript p Baseline plus upper T overTilde overbar Subscript m comma k Superscript p Baseline right-parenthesis upper W Subscript m comma k Baseline plus upper V Subscript m comma k Baseline comma

where the matrix upper F overTilde overbar Subscript m comma k Superscript p is the last row vector in matrix upper F overTilde Subscript m comma k Superscript p Baseline equals ModifyingAbove upper F With caret Subscript upper N Baseline upper F Subscript m comma k Superscript p u defined using (9.8) and (9.29), upper D overTilde overbar Subscript m comma k Superscript p is specified after (9.13), upper H overTilde overbar Subscript m comma k Superscript p by (9.36), and upper T overTilde overbar Subscript m comma k Superscript p by (9.38). We next take the regular error residual matrices script upper B Subscript upper N Superscript p, script upper W Subscript upper N Superscript p, and script upper V Subscript upper N Superscript p from (8.60)–(8.62) and rewrite the estimation error (9.95) as

(9.216)epsilon Subscript k plus 1 Baseline equals left-parenthesis script upper B Subscript upper N Superscript p Baseline plus script upper B overTilde Subscript m comma k Superscript p Baseline right-parenthesis x Subscript m Baseline plus left-parenthesis script upper W Subscript upper N Superscript p Baseline plus script upper W overTilde Subscript m comma k Superscript p Baseline right-parenthesis upper W Subscript m comma k Baseline minus script upper V Subscript upper N Superscript p Baseline upper V Subscript m comma k Baseline comma

where the remaining uncertain error residual matrices are given by

(9.217)script upper B Subscript upper N Superscript p Baseline equals upper F Superscript upper N Baseline minus script upper H Subscript upper N Superscript p Baseline upper H Subscript upper N Superscript p Baseline comma
(9.218)script upper W Subscript upper N Superscript p Baseline equals upper D overbar Subscript upper N Baseline minus script upper H Subscript upper N Superscript p Baseline upper T Subscript upper N Superscript p Baseline comma
(9.219)script upper V Subscript upper N Superscript p Baseline equals script upper H Subscript upper N Superscript p Baseline comma
(9.220)script upper B overTilde Subscript m comma k Superscript p Baseline equals upper F overTilde overbar Subscript m comma k Superscript p Baseline minus script upper H Subscript upper N Superscript p Baseline upper H overTilde Subscript m comma k Superscript p Baseline comma
(9.221)script upper W overTilde Subscript m comma k Superscript p Baseline equals upper D overTilde overbar Subscript m comma k Baseline minus script upper H Subscript upper N Superscript p Baseline upper T overTilde Subscript m comma k Superscript p Baseline period

Using lemma 8.1, we also represent upper W Subscript m comma k and upper V Subscript m comma k as (8.105) and (8.106),

StartLayout 1st Row 1st Column upper W Subscript m comma k 2nd Column equals 3rd Column upper A Subscript w Baseline upper W Subscript m minus 1 comma k minus 1 Baseline plus upper B Subscript w Baseline w Subscript k Baseline comma 2nd Row 1st Column upper V Subscript m comma k 2nd Column equals 3rd Column upper A Subscript w Baseline upper V Subscript m minus 1 comma k minus 1 Baseline plus upper B Subscript w Baseline v Subscript k Baseline comma EndLayout

where matrices upper A Subscript w and upper B Subscript w are defined by (8.19).

Now, we assign vectors z Subscript k Baseline equals left-bracket upper W Subscript m comma k Superscript upper T Baseline upper V Subscript m comma k Superscript upper T Baseline i Subscript k Superscript upper T Baseline right-bracket Superscript upper T, where i Subscript k Baseline equals x Subscript m, and xi Subscript k Baseline equals left-bracket w Subscript k Superscript upper T Baseline v Subscript k Superscript upper T Baseline right-bracket Superscript upper T, follow the lines developed after (9.184), and obtain the uncertainty‐to‐error state‐space model

in which the sparse matrices upper F overTilde Subscript final sigma and upper B overTilde Subscript final sigma are given after (8.108) and matrices upper C overTilde Subscript final sigma Superscript p and upper D overTilde Subscript final sigma Superscript p are defined by (8.133) as

where the matrix modifying above upper C with caret Subscript final sigma Superscript p is given by

This model does not reveal any new features, and we simply note that, as in upper H Subscript infinity FIR filtering, the error residual matrices are collected here in the modified observation matrix modifying above upper C with caret Subscript final sigma Superscript p (9.226), which is thus completely responsible for the performance of the upper H Subscript infinity FIR predictor.

We can now apply the BRL lemma 8.3 to (9.222) and (9.223) and develop a suboptimal upper H Subscript infinity FIR predictor by satisfying the performance criterion (9.182). By avoiding repeating the details of the steps above, we simply list the three main options here:

  • Apply lemma 8.3 to (9.224) and (9.225) and note that upper P Subscript y Baseline equals upper P and upper P Subscript w Baseline equals upper P Subscript xi. For some symmetric matrix upper X, solve for script upper H Subscript upper N Superscript p the LMI problem starting with ModifyingAbove script upper H With Ì‚ Subscript upper N Superscript p Baseline equals left-parenthesis upper C Subscript upper N Superscript p Super Superscript upper T Superscript Baseline upper C Subscript upper N Superscript p Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript upper N Superscript p Super Superscript upper T.
  • Refer to (8.136) and solve the following LMI problem
    (9.228)StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column Start 2 By 2 Matrix 1st Row 1st Column upper C overTilde Subscript final sigma Superscript p Super Superscript upper T Superscript Baseline upper P upper C overTilde Subscript final sigma Superscript p Baseline plus upper F overTilde Subscript final sigma Superscript upper T Baseline upper K upper F overTilde Subscript final sigma Baseline minus upper K 2nd Column upper C overTilde Subscript final sigma Superscript p Super Superscript upper T Superscript Baseline upper P upper D overTilde Subscript final sigma Superscript p Baseline plus upper F overTilde Subscript final sigma Superscript upper T Baseline upper K upper B overTilde Subscript final sigma Baseline 2nd Row 1st Column upper D overTilde Subscript final sigma Superscript p Super Superscript upper T Superscript Baseline upper P upper C overTilde Subscript final sigma Superscript p Baseline plus upper B overTilde Subscript final sigma Superscript upper T Baseline upper K upper F overTilde Subscript final sigma Baseline 2nd Column upper D overTilde Subscript final sigma Superscript p Super Superscript upper T Superscript Baseline upper P upper D overTilde Subscript final sigma Superscript p Baseline plus upper B overTilde Subscript final sigma Superscript upper T Baseline upper K upper B overTilde Subscript final sigma Baseline minus gamma squared upper P Subscript xi Baseline EndMatrix less-than 0 comma 2nd Row 1st Column Blank 2nd Column Blank 3rd Column upper D overTilde Subscript final sigma Superscript p Super Superscript upper T Superscript Baseline upper P upper D overTilde Subscript final sigma Superscript p Baseline plus upper B overTilde Subscript final sigma Superscript upper T Baseline upper K upper B overTilde Subscript final sigma Baseline minus gamma squared upper P Subscript xi Baseline less-than 0 period EndLayout
    starting with the same initial ModifyingAbove script upper H With Ì‚ Subscript upper N Superscript p as in (9.227).
  • Solve the DARE subject to upper D overTilde Subscript final sigma Superscript p Super Superscript upper T Baseline upper P upper C overTilde Subscript final sigma Superscript p Baseline plus upper B overTilde Subscript final sigma Superscript upper T Baseline upper K upper B overTilde Subscript final sigma Baseline minus gamma squared upper P Subscript xi Baseline less-than 0.

The upper H Subscript infinity FIR predictor can finally be summarized with the following estimate and error matrix, respectively,

(9.230)x overTilde Subscript k plus 1 Baseline equals script upper H Subscript upper N Superscript p Baseline upper Y Subscript m comma k Baseline comma

where all the error residual matrices are functions of the gain script upper H Subscript upper N Superscript p, which must be computed numerically by solving the LMI problem using one of three options (9.227)(9.229).

9.6 Hybrid upper H 2 slash upper H Subscript infinity FIR Structures

In an effort to achieve the highest robustness in estimating uncertain systems, the design of hybrid structures that combine the properties of different estimators is considered a top priority. As we will show, such structures can be created taking into account disturbances, initial errors, and data errors.

The a posterioriupper H 2 slash upper H Subscript infinity FIR Filter

A hybrid LMI‐based algorithm to numerically compute the suboptimal gain script upper H Subscript upper N for the a posteriori upper H 2 slash upper H Subscript infinity FIR filter can be developed by solving the following minimization problem subject to constraints (9.152) and (9.203),

(9.232)StartLayout 1st Row 1st Column script upper H Subscript upper N 2nd Column left double arrow 3rd Column inf Underscript script upper H Subscript upper N Baseline comma upper Z Endscripts left-brace right-brace comma separator trZ comma greater-than greater-than gamma 0 2nd Row 1st Column Blank 2nd Column Blank 3rd Column s u b j e c t t o 3rd Row 1st Column 0 2nd Column less-than 3rd Column Start 2 By 2 Matrix 1st Row 1st Column script upper Z minus script upper A plus script upper B script upper H Subscript upper N Superscript upper T Baseline plus script upper H Subscript upper N Baseline script upper C 2nd Column script upper H Subscript upper N Baseline 2nd Row 1st Column script upper H Subscript upper N Superscript upper T Baseline 2nd Column script upper D Superscript negative 1 Baseline EndMatrix comma 4th Row 1st Column 0 2nd Column greater-than 3rd Column Start 4 By 4 Matrix 1st Row 1st Column upper X 2nd Column upper X upper F overTilde Subscript final sigma Baseline 3rd Column upper X upper B overTilde Subscript final sigma Baseline 4th Column 0 2nd Row 1st Column upper F overTilde Subscript final sigma Superscript upper T Baseline upper X 2nd Column negative upper X 3rd Column 0 4th Column upper F overTilde Subscript final sigma Superscript upper T Baseline upper C overTilde Subscript final sigma Superscript upper T Baseline 3rd Row 1st Column upper B overTilde Subscript final sigma Superscript upper T Baseline upper X 2nd Column 0 3rd Column minus gamma upper P Subscript xi Baseline 4th Column upper B overTilde Subscript final sigma Superscript upper T Baseline upper C overTilde Subscript final sigma Superscript upper T Baseline 4th Row 1st Column 0 2nd Column upper C overTilde Subscript final sigma Baseline upper F overTilde Subscript final sigma Baseline 3rd Column upper C overTilde Subscript final sigma Baseline upper B overTilde Subscript final sigma Baseline 4th Column minus gamma upper P Superscript negative 1 Baseline EndMatrix comma EndLayout

for which all matrices can be taken from the definitions given for (9.152) and (9.203). Initialization must be started with some symmetric matrix upper X greater-than 0 and ModifyingAbove script upper H With Ì‚ Subscript upper N Baseline equals left-parenthesis upper C Subscript upper N Superscript upper T Baseline upper C Subscript upper N Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript upper N Superscript upper T. Since both constraints serve to minimize gamma, such a hybrid FIR structure is considered more robust than either of the upper H 2 and upper H Subscript infinity FIR filters.

Suboptimal upper H 2 slash upper H Subscript infinity FIR Predictor

Similarly to the upper H 2 slash upper H Subscript infinity filter, a hybrid LMI‐based algorithm for numerically computing the suboptimal gain script upper H Subscript upper N Superscript p for the upper H 2 slash upper H Subscript infinity FIR predictor can be developed by solving the following minimization problem subject to constraints (9.170) and (9.227),

(9.233)StartLayout 1st Row 1st Column script upper H Subscript upper N Superscript p 2nd Column left double arrow 3rd Column inf Underscript script upper H Subscript upper N Superscript p Baseline comma upper Z Superscript p Baseline Endscripts left-brace right-brace comma separator trZp comma greater-than greater-than gamma 0 2nd Row 1st Column Blank 2nd Column Blank 3rd Column s u b j e c t t o 3rd Row 1st Column 0 2nd Column less-than 3rd Column Start 2 By 2 Matrix 1st Row 1st Column script upper Z minus script upper A plus script upper B script upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline plus script upper H Subscript upper N Superscript p Baseline script upper C 2nd Column script upper H Subscript upper N Superscript p Baseline 2nd Row 1st Column script upper H Subscript upper N Superscript p Super Superscript upper T Superscript Baseline 2nd Column script upper D Superscript negative 1 Baseline EndMatrix comma 4th Row 1st Column 0 2nd Column greater-than 3rd Column Start 4 By 4 Matrix 1st Row 1st Column negative upper X 2nd Column upper X upper F overTilde Subscript final sigma Baseline 3rd Column upper X upper B overTilde Subscript final sigma Baseline 4th Column 0 2nd Row 1st Column upper F overTilde Subscript final sigma Superscript upper T Baseline upper X 2nd Column negative upper X 3rd Column 0 4th Column upper C overTilde Subscript final sigma Superscript p Super Superscript upper T Superscript Baseline 3rd Row 1st Column upper B overTilde Subscript final sigma Superscript upper T Baseline upper X 2nd Column 0 3rd Column minus gamma upper I 4th Column upper D overTilde Subscript final sigma Superscript p Super Superscript upper T Superscript Baseline 4th Row 1st Column 0 2nd Column upper C overTilde Subscript final sigma Superscript p Baseline 3rd Column upper D overTilde Subscript final sigma Superscript p Baseline 4th Column minus gamma upper I EndMatrix comma EndLayout

for which all matrices can be taken from the definitions given for (9.170) and (9.227). Initialization of the minimization procedure must be started using some symmetric matrix upper X greater-than 0 and ModifyingAbove script upper H With Ì‚ Subscript upper N Superscript p Baseline equals left-parenthesis upper C Subscript upper N Superscript p Super Superscript upper T Superscript Baseline upper C Subscript upper N Superscript p Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript upper N Superscript p Super Superscript upper T. Like the hybrid upper H 2 slash upper H Subscript infinity FIR filter, the hybrid upper H 2 slash upper H Subscript infinity FIR predictor is also considered more robust than the upper H 2 FIR predictor and the upper H Subscript infinity FIR predictor.

9.7 Generalized upper H 2 FIR Structures for Uncertain Systems

In Chapter, we developed the robust generalized upper H 2 approach for FIR state estimators operating under disturbances. Originally formulated in [213] and discussed in detail in [188], the approach suggests minimizing the peak error for the maximized disturbance energy in the energy‐to‐peak or script upper L 2‐to‐script upper L Subscript infinity algorithms using LMI. We also showed that using the energy‐to‐peak lemma the gain for the corresponding FIR state estimator can be obtained by solving the following optimization problem

Now it is worth noting that if we consider w in a broader sense, then the problem (9.234) can be extended to uncertain systems operating under disturbances, initial errors, and measurement errors. Following the same reasoning as for systems affected by disturbances, next we will use the FE‐ and BE‐based state space models modified for uncertain systems and develop robust algorithms using LMI to numerically compute the gains for script upper L 2‐to‐script upper L Subscript infinity FIR filter and predictor.

9.7.1 The a posterioriscript upper L 2‐to‐script upper L Subscript infinity FIR Filter

Unlike the standard upper H 2 approach, the robust generalized upper H 2 approach does not require the matrix upper D to be necessarily zero. Therefore, we modify the BE‐based state‐space model (8.143) and (8.144) for the system Start 2 By 2 Matrix 1st Row 1st Column upper F 2nd Column upper B 2nd Row 1st Column upper H 2nd Column upper D EndMatrixand write

where the uncertain matrices upper F Subscript k Superscript u, upper B Subscript k Superscript u, upper H Subscript k Superscript u, and upper D Subscript k Superscript u are defined after (9.1) and (9.2). We assume that the disturbance w Subscript k and the data error v Subscript k are norm‐bounded, parallel-to w Subscript k Baseline parallel-to less-than infinity and parallel-to v Subscript k Baseline parallel-to less-than infinity, reorganize the terms, and represent the model in (9.235) and (9.236) in the standard LTI form

where the newly introduced zero mean uncertain errors are given by

(9.239)xi Subscript k Baseline equals normal upper Delta upper F Subscript k Baseline x Subscript k minus 1 Baseline plus upper B Subscript k Superscript u Baseline w Subscript k Baseline comma
(9.240)zeta Subscript k Baseline equals normal upper Delta upper H Subscript k Baseline x Subscript k Baseline plus upper D Subscript k Superscript u Baseline w Subscript k Baseline plus v Subscript k Baseline period

We next extend the model in (9.237) and (9.238) to left-bracket m comma k right-bracket as

(9.241)x Subscript k Baseline equals left-parenthesis upper F Superscript upper N minus 1 Baseline plus upper F overTilde overbar Subscript m comma k Baseline right-parenthesis x Subscript m Baseline plus left-parenthesis upper D overbar Subscript upper N Baseline plus upper D overTilde overbar Subscript m comma k Baseline right-parenthesis upper W Subscript m comma k Baseline comma
(9.242)upper Y Subscript m comma k Baseline equals left-parenthesis upper H Subscript upper N Baseline plus upper H overTilde Subscript m comma k Baseline right-parenthesis x Subscript m Baseline plus left-parenthesis upper T Subscript upper N Baseline plus upper T overTilde Subscript m comma k Baseline right-parenthesis upper W Subscript m comma k Baseline plus upper V Subscript m comma k Baseline comma

where the matrices upper F overTilde overbar Subscript m comma k and upper D overTilde overbar Subscript m comma k are the last row vectors in the uncertain matrices upper F overTilde Subscript m comma k Baseline equals ModifyingAbove upper F With caret Subscript upper N Baseline upper F Subscript m comma k Superscript u and upper D overTilde Subscript m comma k Baseline equals ModifyingAbove upper F With caret Subscript upper N Baseline upper D Subscript m comma k Superscript u, respectively. Matrix ModifyingAbove upper F With caret Subscript upper N is given by (9.8), upper F Subscript m comma k Superscript u and upper D Subscript m comma k Superscript u by (9.10), upper H overTilde Subscript m comma k by (9.18) using (9.16), and upper T overTilde Subscript m comma k by (9.20) using (9.16).

The estimation error (9.43) can now be rewritten for u Subscript k Baseline equals 0 as

where the error residual matrices are given by (8.15)–(8.17), (9.44), and (9.46),

StartLayout 1st Row 1st Column script upper B Subscript upper N 2nd Column equals 3rd Column upper F Superscript upper N minus 1 Baseline minus script upper H Subscript upper N Baseline upper H Subscript upper N Baseline comma script upper W Subscript upper N Baseline equals upper D overbar Subscript upper N Baseline minus script upper H Subscript upper N Baseline upper T Subscript upper N Baseline comma 2nd Row 1st Column script upper V Subscript upper N 2nd Column equals 3rd Column script upper H Subscript upper N Baseline comma 3rd Row 1st Column script upper B overTilde Subscript m comma k 2nd Column equals 3rd Column upper F overTilde overbar Subscript m comma k Baseline minus script upper H Subscript upper N Baseline upper H overTilde Subscript m comma k Baseline comma script upper W overTilde Subscript m comma k Baseline equals upper D overTilde overbar Subscript m comma k Baseline minus script upper H Subscript upper N Baseline upper T overTilde Subscript m comma k Baseline comma EndLayout

and the vectors upper W Subscript m comma k and upper V Subscript m comma k can be represented using lemma 8.1 by (9.197) and (9.198), respectively.

Using (9.243), (9.197), (9.198), and the augmented vectors z Subscript k Baseline equals left-bracket upper W Subscript m comma k Superscript upper T Baseline upper V Subscript m comma k Superscript upper T Baseline i Subscript k Superscript upper T Baseline right-bracket Superscript upper T, where i Subscript k Baseline equals x Subscript m, and xi Subscript k Baseline equals left-bracket w Subscript k Superscript upper T Baseline v Subscript k Superscript upper T Baseline right-bracket Superscript upper T, we obtain the uncertainty‐to‐error state‐space model in the standard form

where the constant sparse matrices upper F overTilde Subscript final sigma and upper B overTilde Subscript final sigma are given by (9.201) and the script upper H Subscript upper N‐varying matrix upper C overTilde Subscript final sigma is defined by (9.202) as

Using the model (9.244) and (9.245) and the energy‐to‐peak lemma 8.4, we can finally design of a numerical algorithm using LMI for computing the suboptimal gain for the a posteriori script upper L 2‐to‐script upper L Subscript infinity FIR filter for uncertain systems operating under disturbances, initial errors, and measurement errors. Taking into account upper D overTilde Subscript zeta Baseline equals 0 in (9.245), the algorithm becomes as follows.

Solve for script upper H Subscript upper N the following minimization problem,

by initializing the minimization with ModifyingAbove script upper H With Ì‚ Subscript upper N Baseline equals left-parenthesis upper C Subscript upper N Superscript upper T Baseline upper C Subscript upper N Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript upper N Superscript upper T. Provided that script upper H Subscript upper N is numerically available, the a posteriori script upper L 2‐to‐script upper L Subscript infinity FIR filtering estimate and the error matrix can be computed by, respectively,

where the error residual matrices are introduced after (9.243). What should not be left behind is that the algorithm (9.247) can also be included in hybrid structures to improve robustness.

9.7.2 script upper L 2‐to‐script upper L Subscript infinity FIR Predictor

Similar to the filtering counterpart, we can develop the script upper L 2‐to‐script upper L Subscript infinity FIR predictor for uncertain systems. To make it possible to avoid the details, we start with the FE‐based state‐space model (9.21) and (9.22) and rewrite it as

where w Subscript k is a bounded disturbance, parallel-to w Subscript k Baseline parallel-to less-than infinity. By reorganizing the terms, we represent (9.250) and (9.251) as

where the uncertain zero mean vectors are defined by

(9.254)xi Subscript k Superscript p Baseline equals normal upper Delta upper F Subscript k Baseline x Subscript k Baseline plus upper B Subscript k Superscript u Baseline w Subscript k Baseline comma
(9.255)zeta Subscript k Superscript p Baseline equals normal upper Delta upper H Subscript k Baseline x Subscript k Baseline plus upper D Subscript k Superscript u Baseline w Subscript k Baseline plus v Subscript k Baseline period

Using the same from as before, we extend the model (9.252) and (9.253) to left-bracket m comma k right-bracket as

(9.256)x Subscript k plus 1 Baseline equals left-parenthesis upper F Superscript upper N Baseline plus upper F overTilde overbar Subscript m comma k Superscript p Baseline right-parenthesis x Subscript m Baseline plus left-parenthesis upper D overbar Subscript upper N Baseline plus upper D overTilde overbar Subscript m comma k Baseline right-parenthesis upper W Subscript m comma k Baseline comma
(9.257)upper Y Subscript m comma k Baseline equals left-parenthesis upper H Subscript upper N Superscript p Baseline plus upper H overTilde Subscript m comma k Superscript p Baseline right-parenthesis x Subscript m Baseline plus left-parenthesis upper T Subscript upper N Superscript p Baseline plus upper T overTilde Subscript m comma k Superscript p Baseline right-parenthesis upper W Subscript m comma k Baseline plus upper V Subscript m comma k Baseline comma

where upper F overTilde overbar Subscript m comma k Superscript p is the last row vectors in the uncertain matrix upper F overTilde Subscript m comma k Superscript p and upper D overTilde overbar Subscript m comma k is defined after (9.13). The uncertain matrices upper H overTilde Subscript m comma k Superscript p and upper T overTilde Subscript m comma k Superscript p are given by (9.36) and (9.38), respectively.

We now write the prediction error as

(9.258)StartLayout 1st Row 1st Column epsilon Subscript k plus 1 2nd Column equals 3rd Column left-parenthesis script upper B Subscript upper N Superscript p Baseline plus script upper B overTilde Subscript m comma k Superscript p Baseline right-parenthesis x Subscript m plus left-parenthesis script upper W Subscript upper N Superscript p Baseline plus script upper W overTilde Subscript m comma k Superscript p Baseline right-parenthesis upper W Subscript m comma k 2nd Row 1st Column Blank 2nd Column Blank 3rd Column minus script upper V Subscript upper N Superscript p Baseline upper V Subscript m comma k Baseline comma EndLayout

for which the regular and uncertain error residual matrices script upper B Subscript upper N Superscript p, script upper W Subscript upper N Superscript p, script upper V Subscript upper N Superscript p, script upper B overTilde Subscript m comma k Superscript p, and script upper W overTilde Subscript m comma k Superscript p are listed here

(9.260)script upper W Subscript upper N Superscript p Baseline equals upper D overbar Subscript upper N Baseline minus script upper H Subscript upper N Superscript p Baseline upper T Subscript upper N Superscript p Baseline comma
(9.261)script upper V Subscript upper N Superscript p Baseline equals script upper H Subscript upper N Superscript p Baseline comma
(9.262)script upper B overTilde Subscript m comma k Superscript p Baseline equals upper F overTilde overbar Subscript m comma k Superscript p Baseline minus script upper H Subscript upper N Superscript p Baseline upper H overTilde Subscript m comma k Superscript p Baseline comma

and the matrices upper W Subscript m comma k and upper V Subscript m comma k are given by (9.197) and (9.198),

StartLayout 1st Row 1st Column upper W Subscript m comma k 2nd Column equals 3rd Column upper A Subscript w Baseline upper W Subscript m minus 1 comma k minus 1 Baseline plus upper B Subscript w Baseline w Subscript k Baseline comma 2nd Row 1st Column upper V Subscript m comma k 2nd Column equals 3rd Column upper A Subscript w Baseline upper V Subscript m minus 1 comma k minus 1 Baseline plus upper B Subscript w Baseline w Subscript k Baseline comma EndLayout

where the sparse matrices upper A Subscript w and upper B Subscript w are defined by (8.19).

Combining the augmented vectors z Subscript k Baseline equals left-bracket upper W Subscript m comma k Superscript upper T Baseline upper V Subscript m comma k Superscript upper T Baseline i Subscript k Superscript upper T Baseline right-bracket Superscript upper T, where i Subscript k Baseline equals x Subscript m, and xi Subscript k Baseline equals left-bracket w Subscript k Superscript upper T Baseline v Subscript k Superscript upper T Baseline right-bracket Superscript upper T, we come up with the uncertainty‐to‐error state model

where the matrices upper F overTilde Subscript final sigma and upper B overTilde Subscript final sigma are given by (8.109).

Referring to (9.259)(9.263), we next represent the prediction error (8.158) in the compact form

where the matrix modifying above upper C with caret Subscript zeta Superscript p is defined by

By combining epsilon Subscript k Baseline equals modifying above upper C with caret Subscript final sigma Superscript p Baseline z Subscript k minus 1 taken from (9.265) and z Subscript k minus 1 Baseline equals upper F overTilde Subscript final sigma Superscript negative 1 Baseline z Subscript k Baseline minus upper F overTilde Subscript final sigma Superscript negative 1 Baseline upper B overTilde Subscript final sigma Baseline xi Subscript k taken from (9.264), we finally obtain the estimation error as

(9.267)epsilon Subscript k Baseline equals modifying above upper C with caret Subscript final sigma Superscript p Baseline upper F overTilde Subscript final sigma Superscript negative 1 Baseline z Subscript k Baseline minus modifying above upper C with caret Subscript final sigma Superscript p Baseline upper F overTilde Subscript final sigma Superscript negative 1 Baseline upper B overTilde Subscript final sigma Baseline xi Subscript k Baseline period

At this point, we replace in (9.264) the time index k with k plus 1, accept xi Subscript k Baseline equals xi Subscript k minus 1 that is not very critical, and arrive at the disturbance‐to‐error state‐space model in the desired form of (8.117) and (8.118),

where the sparse matrices upper F overTilde Subscript final sigma and upper B overTilde Subscript final sigma are given by (8.109) and the matrices upper C overTilde Subscript final sigma Superscript p and upper D overTilde Subscript final sigma Superscript p are defined by

Now, the script upper L 2‐to‐script upper L Subscript infinity FIR predictor can be developed for uncertain systems operating under disturbances, initial errors, and measurement errors if we apply lemma 8.4 to the model in (9.268) and (9.269). This results in the following numerical procedure to numerically compute the suboptimal gain script upper H Subscript upper N Superscript p.

For some positive define matrix upper P, solve the minimization problem

where matrices upper C overTilde Subscript final sigma Superscript p and upper D overTilde Subscript final sigma Superscript p are specified by (9.270). Initialize the minimization with ModifyingAbove script upper H With Ì‚ Subscript upper N Superscript p Baseline equals left-parenthesis upper C Subscript upper N Superscript p Super Superscript upper T Superscript Baseline upper C Subscript upper N Superscript p Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript upper N Superscript p Super Superscript upper T. Provided that script upper H Subscript upper N Superscript p is available from (9.271), the script upper L 2‐to‐script upper L Subscript infinity FIR prediction appears as x overTilde Subscript k plus 1 Baseline equals script upper H Subscript upper N Superscript p Baseline upper Y Subscript m comma k with the error matrix

where the error residual matrices defined by (9.259)(9.263) are functions of script upper H Subscript upper N Superscript p computed numerically by solving the minimization problem (9.271). Finally note that this algorithm can also be included in robust hybrid FIR predictive algorithms.

9.8 Robust script upper L 1 FIR Structures for Uncertain Systems

When system uncertainty is caused by sudden, unpredictable and abrupt changes [37,112], then the upper H 2 and upper H Subscript infinity approaches may not be as efficient as the robust script upper L 1 state estimation that provides peak‐to‐peak or script upper L Subscript infinity‐to‐script upper L Subscript infinity filtering and prediction. Using the approach developed in Chapter for systems operating under disturbances, next we will develop more general script upper L Subscript infinity‐to‐script upper L Subscript infinity FIR state estimators for uncertain systems operating under disturbances, initial errors, and measurement errors.

We will view the robust peak‐to‐peak FIR state estimation problem as minimization of the script upper L 1 norm (8.178) of the induced script upper T represented by the ratio of the squared norms of the peak uncertainty w Subscript k and the peak error epsilon Subscript k. Accordingly, we will determine the gain script upper H Subscript upper N for this estimator by satisfying the cost function (8.180) represented as

(9.273)script upper H Subscript upper N Baseline left double arrow sup Underscript parallel-to w parallel-to less-than infinity Endscripts StartFraction parallel-to epsilon Subscript k Baseline parallel-to Over mu parallel-to w Subscript k Baseline parallel-to EndFraction less-than gamma squared comma

where mu is a constant scalar and the minimum value of gamma greater-than 0 guarantees the gain suboptimality.

9.8.1 The a posterioriscript upper L Subscript infinity‐to‐script upper L Subscript infinity FIR Filter

To develop an script upper L 1 FIR filter for uncertain systems, we start with the familiar uncertainty‐to‐error state space model (9.244) and (9.245),

StartLayout 1st Row 1st Column z Subscript k 2nd Column equals 3rd Column upper F overTilde Subscript final sigma Baseline z Subscript k minus 1 Baseline plus upper B overTilde Subscript final sigma Baseline w Subscript k Baseline comma 2nd Row 1st Column epsilon Subscript k 2nd Column equals 3rd Column upper C overTilde Subscript final sigma Baseline z Subscript k Baseline comma EndLayout

where the sparse matrices upper F overTilde Subscript final sigma and upper B overTilde Subscript final sigma are defined by (9.201), the matrix upper C overTilde Subscript final sigma is given by (9.246) as

and all other definitions can be adopted from (9.238).

We next apply lemma 8.5 to (9.244) and (9.245), note that upper D overTilde Subscript zeta Baseline equals 0, and arrive at the following algorithm to compute a suboptimal gain script upper H Subscript upper N for the robust script upper L Subscript infinity‐to‐script upper L Subscript infinity a posteriori FIR filter.

Solve the minimization problem,

where the matrix upper C overTilde Subscript final sigma is given by (9.274) and the sparse matrices upper F overTilde Subscript final sigma and upper B overTilde Subscript final sigma are defined by (9.201). The initialization should be started with ModifyingAbove script upper H With Ì‚ Subscript upper N Baseline equals left-parenthesis upper C Subscript upper N Superscript upper T Baseline upper C Subscript upper N Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript upper N Superscript upper T. For the gain script upper H Subscript upper N obtained by solving (9.275), the a posteriori script upper L Subscript infinity‐to‐script upper L Subscript infinity FIR filtering estimate is computed by (9.248) and the error matrix by (9.249).

9.8.2 script upper L Subscript infinity‐to‐script upper L Subscript infinity FIR Predictor

Similarly, we develop the script upper L Subscript infinity‐to‐script upper L Subscript infinity FIR predictor using the uncertainty‐to‐error state‐space model (9.268) and (9.269),

StartLayout 1st Row 1st Column z Subscript k plus 1 2nd Column equals 3rd Column upper F overTilde Subscript final sigma Baseline z Subscript k Baseline plus upper B overTilde Subscript final sigma Baseline xi Subscript k Baseline comma 2nd Row 1st Column epsilon Subscript k 2nd Column equals 3rd Column upper C overTilde Subscript final sigma Superscript p Baseline z Subscript k Baseline plus upper D overTilde Subscript final sigma Superscript p Baseline xi Subscript k Baseline comma EndLayout

where the sparse matrices upper F overTilde Subscript final sigma and upper B overTilde Subscript final sigma are given by (9.201) and the matrices upper C overTilde Subscript final sigma Superscript p and upper D overTilde Subscript final sigma Superscript p are defined by (9.270) using the matrix modifying above upper C with caret Subscript final sigma Superscript p defined by (9.266). The lemma 8.6 applied to the previous state‐space model finally gives the algorithm to numerically compute the suboptimal gain script upper H Subscript upper N Superscript p for the robust script upper L Subscript infinity‐to‐script upper L Subscript infinity FIR predictor.

Solve the minimization problem,

starting the minimization with ModifyingAbove script upper H With Ì‚ Subscript upper N Superscript p Baseline equals left-parenthesis upper C Subscript upper N Superscript p Super Superscript upper T Superscript Baseline upper C Subscript upper N Superscript p Baseline right-parenthesis Superscript negative 1 Baseline upper C Subscript upper N Superscript p Super Superscript upper T. Provided that script upper H Subscript upper N Superscript p is available from (9.276), the script upper L Subscript infinity‐to‐script upper L Subscript infinity FIR prediction is computed by x overTilde Subscript k plus 1 Baseline equals script upper H Subscript upper N Superscript p Baseline upper Y Subscript m comma k and the error matrix by (9.272).

We finally notice that all robust FIR algorithms developed in this chapter for uncertain systems can be modified to be bias‐constrained (suboptimally unbiased) if we remove the terms with chi Subscript m and subject the LMI‐based algorithms to the unbiasedness constraint. That can be done similarly to the bias‐constrained suboptimal upper H 2 FIR state estimator. Moreover, all algorithms can be extended to general state‐space models with control inputs. It is also worth noting that all of the FIR predictors discussed in this chapter become the RH FIR filters needed for state feedback control by changing the time variable from k to k minus 1.

9.9 Summary

In this chapter, we have presented various types of robust FIR state estimators, which minimize estimation errors for maximized system uncertainties and other errors. Uncertainties in systems can occur naturally and artificially due to external and internal reasons, which sometimes lead to unpredictable changes in matrices. Since uncertainties cannot be described in terms of distributions and covariances, robust state estimators are required. To cope with such effects, robust methods assume that the undefined matrix increments have zero mean and are norm‐bounded. Because a robust FIR state estimation of uncertain systems must be performed in practice in the presence of possible disturbances, initial errors, and measurement errors, this approach is considered the most general. Its obvious advantage is that algorithms can be easily simplified for specific errors.

An efficient way to obtain robust FIR estimates is to reorganize the state‐space model by moving all components with undefined matrices into errors. This makes it possible to use the state‐space models previously created for disturbances, and the results obtained in Chapter can be largely extended to uncertain systems.

The errors in such estimators are multivariate, since their variables are not only undefined matrix components, but also disturbances, initial errors, data errors, and uncertain increments in the control signal matrix. In view of that, each error residual matrix acquires an additional increment, which depends on specific uncertain components. Accordingly, the error matrix of the FIR estimator is generally combined by six submatrices associated with disturbances, errors, and uncertainties.

As other FIR structures, FIR state estimators for uncertain systems can be developed to be bias‐constrained. This property is achieved by neglecting the terms with initial errors and embedding the unbiasedness constraint using the Lagrange method. Since the derivation procedure is the same for all FIR structures, we postponed the development of bias‐constrained FIR estimators for uncertain systems to “Problems”. Another useful observation can be made if we recall that the robust approach for uncertain systems has been developed in the transform domain. This means that by replacing k with k minus 1, all of the FIR predictors obtained in this chapter can easily be converted into the RH FIR predictive filters needed for state feedback control.

We finally notice that the algorithms presented in this chapter cover most of the robust FIR solutions available. However, higher robustness is achieved by introducing additional tuning factors, and efforts should be made to properly maximize uncertainties and other errors. Otherwise, the estimator performance can degrade dramatically.

9.10 Problems

  1. An uncertain system is represented by the discrete‐time state‐space model in (9.1) and (9.2),
    StartLayout 1st Row 1st Column x Subscript k 2nd Column equals 3rd Column upper F Subscript k Superscript u Baseline x Subscript k minus 1 Baseline plus upper E Subscript k Superscript u Baseline u Subscript k Baseline plus upper B Subscript k Superscript u Baseline w Subscript k Baseline comma 2nd Row 1st Column y Subscript k 2nd Column equals 3rd Column upper H Subscript k Superscript u Baseline x Subscript k Baseline plus upper D Subscript k Superscript u Baseline w Subscript k Baseline plus v Subscript k Baseline comma EndLayout

    where the uncertain matrices are modeled as upper F Subscript k Superscript u Baseline equals left-parenthesis 1 plus a Subscript k Baseline right-parenthesis upper F, upper E Subscript k Superscript u Baseline equals left-parenthesis 1 plus b Subscript k Baseline right-parenthesis upper E, upper B Subscript k Superscript u Baseline equals left-parenthesis 1 plus c Subscript k Baseline right-parenthesis upper B, upper H Subscript k Superscript u Baseline equals left-parenthesis 1 plus d Subscript k Baseline right-parenthesis upper H, and upper D Subscript k Superscript u Baseline equals left-parenthesis 1 plus e Subscript k Baseline right-parenthesis upper D. The known matrices upper F, upper E, upper B, upper H, and upper D are constant, and the uncertain parameters a Subscript k, b Subscript k, c Subscript k, d Subscript k, and e Subscript k have zero mean and are norm‐bounded. Extend this model to left-bracket m comma k right-bracket and modify the upper H 2 FIR filtering algorithms.

  2. Consider the following discrete‐time state‐space model with multiplicative noise components [56],
    StartLayout 1st Row 1st Column x Subscript k plus 1 2nd Column equals 3rd Column left-parenthesis upper F Subscript k Baseline plus ModifyingAbove upper F With breve Subscript k Baseline rho Subscript k Baseline right-parenthesis x Subscript k Baseline plus left-parenthesis upper E Subscript k Baseline plus ModifyingAbove upper E With breve Subscript k Baseline eta Subscript k Baseline right-parenthesis u Subscript k Baseline plus upper B Subscript k Baseline w Subscript k Baseline comma 2nd Row 1st Column y Subscript k 2nd Column equals 3rd Column left-parenthesis upper H Subscript k Baseline plus ModifyingAbove upper H With breve Subscript k Baseline zeta Subscript k Baseline right-parenthesis x Subscript k Baseline plus upper D Subscript k Baseline v Subscript k Baseline comma EndLayout

    where w Subscript k is a bounded disturbance and rho Subscript k, zeta Subscript k, and eta Subscript k are standard scalar white noise sequences with zero mean and the properties:

    StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column script upper E left-brace rho Subscript k Baseline rho Subscript j Baseline right-brace equals delta Subscript k j Baseline comma script upper E left-brace zeta Subscript k Baseline zeta Subscript j Baseline right-brace equals delta Subscript k j Baseline comma script upper E left-brace eta Subscript k Baseline eta Subscript j Baseline right-brace equals delta Subscript k j Baseline comma 2nd Row 1st Column Blank 2nd Column Blank 3rd Column script upper E left-brace eta Subscript k Baseline rho Subscript j Baseline right-brace equals beta Subscript k Baseline delta Subscript k j Baseline comma script upper E left-brace zeta Subscript k Baseline eta Subscript j Baseline right-brace equals sigma Subscript k Baseline delta Subscript k j Baseline comma script upper E left-brace zeta Subscript k Baseline rho Subscript j Baseline right-brace equals alpha Subscript k Baseline delta Subscript k j Baseline comma EndLayout

    where StartAbsoluteValue beta Subscript k Baseline EndAbsoluteValue less-than 1, StartAbsoluteValue alpha Subscript k Baseline EndAbsoluteValue less-than 1, and StartAbsoluteValue sigma Subscript k Baseline EndAbsoluteValue less-than 1 and delta Subscript k j is the Kronecker delta. Convert this model to a more general model in (9.1) and (9.2) and modify the suboptimal FIR predictor.

  3. An uncertain LTV system is represented by the following discrete‐time state‐space model [98]
    StartLayout 1st Row 1st Column x Subscript k plus 1 2nd Column equals 3rd Column left-parenthesis upper F Subscript k Baseline plus normal upper Delta upper F Subscript k Baseline right-parenthesis x Subscript k Baseline plus upper B Subscript k Baseline w Subscript k Baseline comma 2nd Row 1st Column y Subscript k 2nd Column equals 3rd Column left-parenthesis upper H Subscript k Baseline plus normal upper Delta upper H Subscript k Baseline right-parenthesis x Subscript k Baseline plus upper D Subscript k Baseline w Subscript k Baseline comma EndLayout

    where w Subscript k is a bounded disturbance and upper F Subscript k, upper B Subscript k, upper H Subscript k, and upper D Subscript k are known time‐varying matrices such that

    and normal upper Delta upper F Subscript k and normal upper Delta upper H Subscript k are time‐varying parameter uncertainties obeying the following structure

    where upper A Subscript k is an unknown real time‐varying matrix satisfying upper A Subscript k Superscript upper T Baseline upper A Subscript k Baseline less-than-or-slanted-equals upper I and upper H 1 and upper H 2 are known real constant matrices with appropriate dimensions. Note that this model is widely used in the design of robust recursive estimators for uncertain systems. Consider this model as a special case of the general model in (9.1) and (9.2) and show that the conditions (9.277) and (9.278) can be too strict in applications. Find a way to avoid these conditions.

  4. The estimation error of an FIR filter is given by (9.43) as
    StartLayout 1st Row 1st Column epsilon Subscript k 2nd Column equals 3rd Column left-parenthesis script upper B Subscript upper N Baseline plus script upper B overTilde Subscript m comma k Baseline right-parenthesis x Subscript m plus script upper U overTilde Subscript m comma k Baseline upper U Subscript m comma k 2nd Row 1st Column Blank 2nd Column Blank 3rd Column plus left-parenthesis script upper W Subscript upper N Baseline plus script upper W overTilde Subscript m comma k Baseline right-parenthesis upper W Subscript m comma k Baseline minus script upper V Subscript upper N Baseline upper V Subscript m comma k Baseline comma EndLayout

    where the residual error matrices script upper B Subscript upper N, script upper W Subscript upper N, and script upper V Subscript upper N are given by (8.15)–(8.17) and the uncertain residual matrices specified by (9.44)(9.46). Taking notice that the a posteriori upper H Subscript infinity FIR filter is obtained in this chapter for u Subscript k Baseline equals 0, rederive this filter for u Subscript k Baseline not-equals 0.

  5. Consider the upper H Subscript infinity FIR filter (9.206), the gain script upper H Subscript upper N for which is computed numerically using the algorithm in (9.203)(9.205). Modify this algorithm for the estimate to be bias‐constrained and make corrections in the error matrix (9.207).
  6. Solve the problem described in item 5 for the upper H Subscript infinity FIR predictor and modify accordingly the inequalities (9.227)(9.229) and the error matrix (9.231).
  7. A Markov jump LTV uncertain system is represented with the following discrete‐rime state‐space model [228]
    (9.279)x Subscript k plus 1 Baseline equals upper F Subscript k Baseline left-parenthesis r Subscript k Baseline right-parenthesis x Subscript k minus 1 Baseline plus upper B Subscript k Baseline left-parenthesis r Subscript k Baseline right-parenthesis w Subscript k Baseline comma
    (9.280)y Subscript k Baseline equals upper H Subscript k Baseline left-parenthesis r Subscript k Baseline right-parenthesis x Subscript k Baseline plus v Subscript k Baseline comma

    where r Subscript k is a discrete Markov chain taking values from a finite space double-struck upper M equals StartSet 1 comma 2 comma period period period comma upper M EndSet with the transition probability pi Subscript i j Baseline delta-equals p left-parenthesis r Subscript k Baseline equals j vertical-bar r Subscript k minus 1 Baseline equals i right-parenthesis for any i comma j element-of double-struck upper M. Matrices upper F Subscript k Baseline left-parenthesis r Subscript k Baseline right-parenthesis, upper B Subscript k Baseline left-parenthesis r Subscript k Baseline right-parenthesis, and upper H Subscript k Baseline left-parenthesis r Subscript k Baseline right-parenthesis are r Subscript k‐varying and the random sequences are white Gaussian, w Subscript k Baseline tilde script upper N left-parenthesis 0 comma upper Q Subscript k Baseline right-parenthesis and v Subscript k Baseline tilde script upper N left-parenthesis 0 comma upper R Subscript k Baseline right-parenthesis. Transform this model to the general form (9.21) and (9.22), extend to left-bracket m comma k right-bracket, and develop an upper H 2 FIR predictor.

  8. Consider the problem described in item 7 and derive the upper H Subscript infinity, script upper L 2‐to‐script upper L Subscript infinity, and script upper L Subscript infinity‐to‐script upper L Subscript infinity FIR predictors.
  9. Given an uncertain system represented with the state‐space model x Subscript k Baseline equals upper F Subscript k Superscript u Baseline x Subscript k minus 1 Baseline plus upper B w Subscript k and y Subscript k Baseline equals upper H x Subscript k Baseline plus v Subscript k, where the matrices are specified as
    upper F Subscript k Superscript u Baseline equals Start 2 By 2 Matrix 1st Row 1st Column 1 2nd Column tau Subscript k Baseline 2nd Row 1st Column 0 2nd Column 1 EndMatrix comma upper B equals StartBinomialOrMatrix tau Choose 1 EndBinomialOrMatrix comma upper H equals Start 1 By 2 Matrix 1st Row 1st Column 1 2nd Column 0 EndMatrix comma

    and tau Subscript k is an uncertain nonconstant time step. Suppose that tau Subscript k has zero mean and is bounded. Derive the upper H 2‐OFIR and upper H 2‐OUFIR filters.

  10. A harmonic model is given in discrete‐time state‐space with the following equations x Subscript k plus 1 Baseline equals upper F Subscript k Superscript u Baseline x Subscript k Baseline plus upper B w Subscript k and y Subscript k Baseline equals upper H x Subscript k Baseline plus v Subscript k, where matrices are specified as
    upper F Subscript k Superscript u Baseline equals Start 2 By 2 Matrix 1st Row 1st Column cosine phi plus xi Subscript k Baseline 2nd Column sine phi 2nd Row 1st Column minus sine phi 2nd Column cosine phi plus xi Subscript n Baseline EndMatrix comma upper B equals StartBinomialOrMatrix 1 Choose 1 EndBinomialOrMatrix comma upper H equals Start 1 By 2 Matrix 1st Row 1st Column 1 2nd Column 0 EndMatrix comma

    phi is a constant angle, xi Subscript k is an undefined bounded scalar, StartAbsoluteValue xi Subscript k Baseline EndAbsoluteValue less-than 0.2, and w Subscript k Baseline tilde script upper N left-parenthesis 0 comma sigma Subscript w Superscript 2 Baseline right-parenthesis and v Subscript k Baseline tilde script upper N left-parenthesis 0 comma sigma Subscript v Superscript 2 Baseline right-parenthesis are scalar white Gaussian sequences. Derive the script upper L 2‐to‐script upper L Subscript infinity and script upper L Subscript infinity‐to‐script upper L Subscript infinity FIR predictors for this model.

  11. An uncertain system is represented with the following discrete‐rime state‐space model
    StartLayout 1st Row 1st Column x Subscript k plus 1 2nd Column equals 3rd Column upper F x Subscript k minus 1 Baseline plus upper B w Subscript k Baseline comma 2nd Row 1st Column z Subscript k 2nd Column equals 3rd Column y Subscript 1 k Baseline plus y Subscript 2 k Baseline comma EndLayout

    where y Subscript 1 k Baseline equals left-parenthesis upper H plus normal upper Delta upper H Subscript 1 k Baseline right-parenthesis x Subscript k Baseline plus v Subscript 1 k, y Subscript 2 k Baseline equals left-parenthesis upper H plus normal upper Delta upper H Subscript 2 k Baseline right-parenthesis x Subscript k Baseline plus v Subscript 2 k, and normal upper Delta upper H Subscript 1 k and normal upper Delta upper H Subscript 2 k are undefined and uncorrelated norm‐bounded increments. Noise sequences w Subscript k Baseline tilde script upper N left-parenthesis 0 comma upper Q Subscript k Baseline right-parenthesis, v Subscript 1 k Baseline tilde script upper N left-parenthesis 0 comma upper R Subscript 1 k Baseline right-parenthesis, and v Subscript 2 k Baseline tilde script upper N left-parenthesis 0 comma upper R Subscript 2 k Baseline right-parenthesis are white Gaussian. Convert this model to the general form (9.21) and (9.22), extend to left-bracket m comma k right-bracket, and develop an upper H Subscript infinity FIR predictor.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset