Home Rule

The first part of the meeting we were involved in open combat with Intel. Intel was out to torpedo any standardization effort on the S-100 bus.

–George Morrow, founder of Morrow’s Microstuf

Although the spirit of sharing was well established in the early days of the microcomputer industry, its participants had a lot to learn about working together. One thing that accelerated the learning process was fear.

The Big Boys

A continuing concern in the developing microcomputing industry was that “the big boys” would come and spoil all the fun. “The big boys” sometimes meant IBM and the other mainframe-computer and minicomputer companies, but mostly the reference was to such companies as Commodore and other electronics companies that had waged Pyrrhic price-cutting wars in the calculator industry. And, most especially, it meant Texas Instruments, known for its ruthless price slashing. Lee Felsenstein summarized the dread of many hobbyist entrepreneurs: “Anyone but TI!”

Intel and some of the other semiconductor companies, although well situated to produce microcomputers from their own chips, had expressed reluctance to do anything that could be construed as competing with their own customers. By this time, the hobbyist-born microcomputer companies had developed just about enough clout to be taken seriously as semiconductor customers. Or so it seemed.

Then, in December 1976, Commodore International leaked information to Electronic Engineering Times about a new product. Commodore, the story went, was ready to release a machine very much like the Sol, but at a lower price and backed by all of Commodore’s marketing muscle. Proc Tech was just shipping the first Sols, and Marsh was thinking about the company’s next product, a new version of the Sol with an integrated keyboard and 64K of memory that would be sold for a cheap $1,000. Unfortunately, it was, in essence, the same as the Commodore machine.

Convinced that Commodore actually had its computer product on the launch pad and that Proc Tech could never compete with it, and worried by the news that National Semiconductor was also planning a microcomputer, Marsh scrapped the new-and-improved Sol project. Five years earlier, the rules of battle in the calculator wars demanded that companies cut prices to the baseline and push the technology relentlessly, even under threat of corporate extinction. Marsh and Ingram had no illusions about being able to compete with Commodore and National in bloody mortal combat. As it turned out, the Commodore machine would not appear for some time, and the National Semiconductor computer never materialized.

Parasitic Engineering

Despite their worries about the big boys, hobbyist-entrepreneurs kept right on launching companies. Many of these new hobbyist-born companies were starting to manufacture microcomputers, but most of them were turning out boards for the Altair or IMSAI, and practically all were small start-up companies like Proc Tech.

Howard Fulmer began such a firm in his Oakland basement. After reading an editorial by Ed Roberts in David Bunnell’s Computer Notes that attacked the Altair-compatible memory-board companies as “parasites,” he considered calling his own company Symbiotic Engineering to emphasize his conception of the proper relationship between MITS’s products and his own. But a group called the Symbionese Liberation Army was making a name for itself right about then, and he wanted to avoid confusion with the radical political group. Instead, he called his company Parasitic Engineering, sending a rather pointed message to Roberts.

Meanwhile, Marsh was wondering if Proc Tech shouldn’t do a Z80 machine as well. But it seemed irrational to dump a successful design in order to achieve a marginal improvement in performance. The Sol was a hit, and he believed the processor mattered much less than the software. The software made the computer work, and that would distinguish one machine from another. It was the software that really mattered.

And that led to the idea that programs—games, business applications, or anything, really—written specifically for the Sol might help sell the machines. But rather than simply commission software to be written for the Sol, Marsh did something subtler: he commissioned the tools to make it easier to write software for the machine. After all, most of Proc Tech’s customers were engineers who could write their own software.

Proc Tech called on two programmers, Jerry Kirk and Paul Greenfield of MicroTech in Sunnyvale, who had produced high-level language compilers for minicomputers. They were asked to create a set of programmer’s tools: programs that would make it easier to write, edit, and debug other programs on the Sol. Ingram developed their work into Software Package One, which made the Sol the easiest machine to program, giving it a huge advantage.

Questioning the Culture of Sharing

But software ownership was becoming an inflammatory issue in Silicon Valley and elsewhere. Processor Tech was aggressively pro-sharing, and its hobbyist founders swapped program tapes at Homebrew meetings along with everyone else. Gordon French, who after helping to start Homebrew became Proc Tech’s general factotum (his official title), argued for an open system—that is, free dissemination of software code and internal workings to anyone. He wanted outside programmers and peripheral manufacturers to be able to create compatible products and expand the market.

At the same time, Ed Roberts and the entire mainframe and minicomputer industry held the opposite view, that software should be proprietary. But the hobbyists were bringing their own values to bear in the industry. Most favored openness in hardware and software design. An open architecture—the publicly known, physical design of a machine—was one emerging ideal. An open operating system was another.

At Proc Tech, however, the idea of an open operating system was frowned upon. Marsh and Ingram wanted that particular component to be proprietary. In fact, Proc Tech had its own disk operating system very early on. The company bought PT-DOS from its author, 19-year-old Bill Levy, who developed it at the Lawrence Hall of Science at UC Berkeley. Levy modeled PT-DOS after Unix, a mainframe/minicomputer operating system in use at UC Berkeley. Marsh thought PT-DOS, with its rich set of tools, was much better than the CP/M disk operating system, which did only the bare minimum of what an operating system should do. Unfortunately, PT-DOS was slow to reach the market because of what came to be called “the drive fiasco.”

Incompatible Formats

In 1976, when the Sol was released, disk drives posed an alluring challenge. Although they were heavily used on mainframes and minicomputers, mounting disk drives on microcomputers was prohibitively expensive. Drives typically cost $3,500 or more. So Marsh was intrigued when George Comstock, Bob Mullen’s partner at Diablo Systems, announced at a Homebrew meeting one night that he wanted to develop a disk drive for microcomputers. Comstock thought that a drive, complete with a controller board and software, could be sold for around $1,000.

But Diablo was not yet involved in the growing microcomputer industry, and Comstock felt that close consultation with microcomputer companies was crucial. He proposed a joint effort to Marsh. Diablo would develop the drives, the physical mechanisms that read and write information from and to disks, and Processor Technology would write the software and develop an S-100 board to control the drives. He also proposed that Proc Tech could market the board on its own.

Disk drives were so clearly destined to be a part of any serious microcomputer system that engineers were already vying to develop a low-cost disk-drive system with software and a controller board. Shugart’s 1 1/4" disk drives seemed attractive, but they had one drawback. IBM had been using 8" disk drives and had established certain standards for the devices. No standards existed for small disk drives, and no one could guarantee that disks written on one brand of machine would be readable on another.

North Star, Grant and Greenberg’s company that had shared garage space with Proc Tech and Lee Felsenstein, had selected the Shugart disk drive and sold it for under $800. Using an idea borrowed from Eugene Fisher of Lawrence Livermore Labs, both George Morrow and San Francisco engineer Ben Cooper had begun developing relatively low-cost 8" disk drives. Cooper had perhaps the first commercial 8" disk-drive controller for microcomputers. Morrow, shortly thereafter, had the first one available for the $1,000 price Comstock was aiming for. He then negotiated with Digital Research and Microsoft for an operating system (CP/M) and BASIC to distribute free with the disk-drive system. Both Morrow and Cooper continued to develop disk products, and Cooper created the first hard-disk controller for microcomputers.

Disk storage, including hard-disk storage, was coming to microcomputers, a big step in making them truly useful, but as yet there was no standard for disk storage systems.

Meanwhile at Processor Tech, the disk-drive plans were crumbling. Diablo encountered trouble with the drives and dropped the project, leaving Proc Tech so far into development of the disk-drive controller that it had to continue with the work. Marsh and Ingram raised the price of Proc Tech’s disk-drive subsystem for the Sol to $1,700, substituting for the inexpensive Diablo disk drive the more expensive one offered by Persci. The price was too high, and worse, Proc Tech’s disk-drive systems didn’t always work. Customers could find better deals from Cooper, Morrow, and North Star.

A Room with a View

Despite such problems, Proc Tech still seemed to be thriving. The executives were recycling their profits into the company. (Lee Felsenstein was investing his in the Community Memory project.) The Proc Tech staff in Emeryville now numbered 85, not counting nonemployee/consultant Felsenstein, and the company’s headquarters was growing crowded. Proc Tech moved south to the bedroom community of Pleasanton. The new offices boasted a spacious executive suite with large windows looking out over the valley.

But the competition was heavy. As 1977 came to an end, Proc Tech found itself part of a more seriously run industry. The open trading of information, the shirt-sleeve management, the flashes of idealism, and the lack of detailed planning that had characterized the industry from the start still existed. But there was a growing belief that professional management might have its advantages. Still, scarcely anyone outside of IMSAI considered it the time to put such a radical idea into practice. The chief users, designers, and company presidents were still hobbyists at heart, and most of the world knew nothing of the revolution that was afoot.

New companies were sprouting like mushrooms overnight. Among the computer and computer-related companies in business at the end of 1977 were Apple Computer (which some insiders thought had great promise), Exidy, IMSAI, Digital Microsystems, Alpha Micro Systems, Commodore, Midwest Scientific, GNAT, Southwest Technical Products, MITS, Technical Design Labs, Vector Graphic, Ithaca Audio, Heathkit, Cromemco, MOS Technology, RCA, TEI, Ohio Scientific, The Digital Group, Micromation, PolyMorphic Systems, Parasitic Engineering, Godbout Engineering, Radio Shack, Dynabyte, North Star, Morrow’s Microstuf, and, of course, Processor Technology.

The Homebrew influence was still strong. Many of these companies were located in the Bay Area and were associated with the Homebrew Computer Club. The club had grown large and by 1977 tended to assemble in fairly predictable clusters. Up front, performing for everyone, was Lee Felsenstein. Bob Marsh and the Proc Tech group usually assembled along one wall. Steve Wozniak and his protégés and the other 6502 processor fans sat in the back. Jim Warren of Dr. Dobb’s Journal sat on the aisle three seats from the back, stage left, ready to rise during the Mapping session and do his Core Dump, an extemporaneous outpouring of all the news and rumors he had heard. The front row always had Gordon French, who maintained the software library, and Bob Reiling, who wrote the newsletter.

In December 1977, Reiling wrote, “The development of special-interest groups has probably been the biggest change during the past year. At the beginning of the year, the 6800 group was holding regular meetings. At the end of 1977, the groups include not only the 6800 group, but also the P8 Users, North Star Users Group, Sol Users Society, and PET Users.” At that time, the Homebrew attendees (the club did not have members) included key people from Apple, Cromemco, Commodore, Computer Faire, Dr. Dobb’s Journal, IBEX, Itty-Bitty Machine Company, M&R Enterprises, Mountain Hardware, Mullen Computer Boards, North Star, PCC, Proc Tech, and the Bay Area computer stores. The most prominent of them all was Proc Tech. Marsh had, to some extent, realized his dream. The company seemed golden.

Taking Over the Bus

Most of these companies were producing machines or boards that used the S-100 bus, the interface standard developed at MITS for the Altair, the same bus whose naming rights Roger Melen and Bob Marsh usurped from Ed Roberts on a transcontinental plane flight. The bus was becoming a problem, though, because no matter how disorganized and unprofessional the companies may have been, they couldn’t compare to the anarchy that prevailed among companies using the S-100 bus. The bus was the channel over which third-party boards communicated with the 8080 microprocessor in the Altair. Without clear specifications for how the bus worked, all such communication with the brain of the machine was unreliable, to say the least. MITS wasn’t eager to publish such specifications for the benefit of “parasitic” board makers.

In late 1977, Bob Stewart called a meeting to do something about the S-100 bus problem. A consultant in optics and electronics and a member of the Institute for Electrical and Electronics Engineers (IEEE), Stewart had bought an Altair and was frustrated with it. He called together some microcomputer-company presidents: Harry Garland of Cromemco, Howard Fulmer of Parasitic Engineering, Ben Cooper of Micromation, and George Morrow of what he then called Thinker Toys. Byte’s editor, Carl Helmers, was there, too. The idea was to cure the obvious problems of the S-100 bus and to establish common standards so that one company’s board could work with another’s.

Garland explained the virtues of his and Melen’s shielded bus, but Morrow thought he had a better approach. No immediate agreement was forthcoming. Stewart suggested petitioning the IEEE to make the group an official standards body charged with creating an IEEE standard for the bus. The petition won approval, and the group was now official.

Ed Roberts was invited to participate in the microcomputer standards subcommittee, but declined to send a representative or even respond directly. He did say in print that he felt MITS had the sole right to define the bus. The subcommittee ignored him. At first the meetings addressed the group’s contention with Intel, which fought standardization. Morrow got the impression that Intel wanted no standards unless Intel could set them. But when the subcommittee decided to formulate standards whether Intel liked them or not, the chip manufacturer acquiesced.

This was bold. A bunch of hobbyists-turned-entrepreneurs had simply ignored the biggest microcomputer company of that time and had faced down the leading chip manufacturer—and not been struck by lightning.

Despite its solidarity, the subcommittee had no guarantee that it could really create standards. It had 15 assertive, opinionated people disputing an issue about which they held legitimate and conceivably irresolvable differences of opinion. Each of the members had a product that would be incompatible with anything likely to be proposed. As the meetings progressed, Roger Melen came in for Cromemco. Alpha Micro was represented. Elwood Douglas appeared for Proc Tech and judged the standard against the memory board he was designing. George Millard spoke for North Star. Someone arrived from IMSAI to read its formal position, which resembled Ed Roberts’s. The subcommittee ignored that position, too. Most of its members had written off IMSAI as a place where training in est mattered more than training in engineering.

At times, whatever fondness the subcommittee members had for each other wasn’t apparent. They argued for hours, with no one yielding an inch. They would then return to their respective companies and discuss how they might compromise on their own designs to achieve a single standard. At each meeting, they would find themselves inching closer to an agreement. Little by little, these creative, independent people subordinated their egos and any short-term economic gains for the good of the entire microcomputer field.

The committee was trying a form of “guerrilla” design. In mainframes and minicomputers, the bus was always whatever the bus designer said it was. Independent companies were not about to get together to redesign something as complex as a bus. Timing parameters and other features were dictated by the designers. In fact, IBM and DEC worked this way. But the S-100 committee members dug into the Roberts bus, figured out how it worked, and scrapped it in favor of a new, independent bus that was open to all. This was a populist revolt against the tyranny of big business, with MITS, although hardly in the same league as IBM and DEC, held up as a symbol of the Big Company.

The revolution was here.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset