Nostalgia for the Future

Bob said he would pay me to design the video section of the Tom Swift Terminal. He knew how to manipulate me.

–Lee Felsenstein

In June 1975, Bob Marsh and Popular Electronics technical editor Les Solomon were contemplating an “intelligent terminal” kit. It would consist of a terminal with semiconductor circuitry that would perform certain display and keyboard decoding functions that another computer attached to it would have otherwise handled. Marsh had some ideas from his own experience and from discussions with Felsenstein about the Tom Swift Terminal. “If you can get me a working model in 30 days, I’ll give you a cover story,” Solomon said.

A Terminal with a Brain

Marsh put the proposition to Felsenstein this way: “Do you think it’s impossible?” Felsenstein appreciated Marsh’s careful phrasing of the question. To dodge the job, he would have to pronounce it impossible, a distasteful act to any self-respecting engineer.

Marsh said he would pay Felsenstein to design the video portion of his dream machine, the convivial terminal that Felsenstein saw as essential to releasing the power of computers to everyone. Felsenstein liked the idea, and agreed to do it. It soon became apparent that Marsh had a different project in mind. What he wanted was a terminal with a brain—the same Intel 8080 chip that was the brain of the Altair. They argued over the details of the design, with Marsh usually getting the better of the arguments. Felsenstein, Marsh, and Les Solomon didn’t realize it then, but the product they were designing would become something more than just a terminal.

Felsenstein had to withdraw from another project when he agreed to design the intelligent terminal. “The roof is falling in again,” he told his ex-customer. Until then, he paid his share of the rent by consulting for various people. But Proc Tech was expanding to take up the whole garage—all 1,100 square feet of it. Felsenstein was gradually being absorbed into Marsh’s enterprise.

Marsh had already developed the terminal’s architecture and continued to change the design requirements as Felsenstein worked. Felsenstein had enjoyed consulting, in part because he could get some distance between him and the person he was working for and concentrate without interruption on a problem. This advantage evaporated when he began to devote most of his time to the Proc Tech terminal. Marsh insisted on design changes on a daily basis and repeatedly forced Felsenstein to junk much of his careful work and start over. “The situation,” Felsenstein later said, “did call heavily on my sense of futility, absurdity, and ultimate irrelevance.”

Despite his complaints, Felsenstein was enjoying himself. His grumbling about being manipulated was more of a jab at himself than it was at Marsh, who, for all his entrepreneurial energy, was involved at least partly for the fun of it. At one point in the project, Felsenstein said, “Let’s advertise it as having ‘the wisdom of Solomon.’” He meant it as a sly reference to Les Solomon, and this whimsical slogan soon inspired them to name the machine “the Sol.”

images/images-by-chapter/chapter-4/Proc-Tech.jpg

Figure 32. Bob Marsh and Gary Ingram Founders Marsh (chin on fist) and Ingram dressed up to meet customers at Processor Technology’s booth at an early trade show. (Courtesy of Bob Marsh)

Marsh and Felsenstein argued ceaselessly over the design at Felsenstein’s workbench at one end of their garage and at the makeshift Proc Tech offices housed at the other end. They argued about it over meals and while driving across the San Francisco Bay to Homebrew meetings. Despite their constant wrangling over design, they got the goods out. On one drive to a Homebrew meeting, they redesigned an entire internal bus.

A Real Computer

It eventually dawned on Marsh and Felsenstein that they were designing a real computer. After all, it had an 8080 in it. But clearly it was also a terminal. Until then, computers typically consisted of rectangular boxes with accessory connections to terminals of some kind—Teletypes, cathode-ray tubes, typewriters, or printers. But theirs was a screen, a keyboard, and a computer all in one. Could they really pull this thing off?

The question had both technical and political implications. At this point, the Altair dominated the tiny microcomputer industry, and IMSAI had not yet made its entry. And here they were, developing this terminal under the auspices of the Altair’s biggest booster outside of Albuquerque—Leslie “Uncle Sol” Solomon. Would he rescind the cover-story agreement if they told him they were concocting a computer instead of a terminal?

They decided not to tell him.

And they continued to work. Despite all the arguments, Marsh, Ingram, and Felsenstein were enjoying themselves. “This is a company that’s going to have fun,” Felsenstein said, “no matter how miserable I have to be.” He described his partners as “nostalgic for the future,” like many computer hobbyists of the day, and their discussions were frequently those of visionaries. But the mundane, day-to-day decisions also had to be made. Marsh’s friend still had all that cheap walnut originally slated for the digital-clock business, and it seemed a shame to let it go to waste, so Marsh incorporated walnut side panels into the Sol’s design, giving it the appearance of a 1950s station wagon.

Felsenstein had originally expected to hand the finished schematic to a layout artist. As it turned out, he was the chief layout artist. Because they had long since filled all the available floor space in the garage, a light table for the layout work was installed in a loft above the Proc Tech offices. Felsenstein padded the forehead-level conduit, but couldn’t keep from bumping his head on the rafters as he worked with the other layout artist 14 to 17 hours a day, seven days a week. The other artist, pumping himself up with cola, dropped out before the end of the project, and Felsenstein had to finish the job alone, on orange juice.

Marsh kept the pressure on, and within 45 days of his initial discussion with Les Solomon, he had a circuit board. But Solomon had given the team a 30-day deadline, so as they neared completion Marsh booked a flight to New York and informed a bleary-eyed Lee Felsenstein that he was going, too. They stuffed the Sol into two brown paper bags and carried it with them on the plane.

The demonstration for Solomon at Popular Electronics was an utter disaster. The thing just didn’t work. They made what excuses they could and, feeling hopeless at this point, flew to an appointment at Byte, where the presentation was even more disastrous. Felsenstein, dead on his feet from the grueling work schedule, fell asleep during the Byte demonstration.

Well-rested and back in California at his workbench, he quickly located the problem, a short circuit. Marsh promptly put Felsenstein back on a plane to New York to demonstrate a working Sol with strict instructions to not reveal that it was actually a computer.

Felsenstein kept his mouth shut, but Solomon was no dummy. When Felsenstein showed him the Sol terminal, he watched it work for a while, and then asked Felsenstein what was to stop him from plugging in a memory board with BASIC on it and running the Sol as a bona fide computer.

“Beats me,” Felsenstein deadpanned.

Who Owns the Software?

Of course the Sol was a computer. And that meant, Marsh and Ingram realized, that it needed software, particularly BASIC. The two contracted with Chuck Grant and Mark Greenberg to write it. One-time partner George Morrow had had a falling out with Grant and Greenberg because he didn’t think they were taking their oral agreement with Bill Godbout seriously enough. Morrow decided to deal with Godbout alone, leaving Grant and Greenberg to go off on their own.

images/images-by-chapter/chapter-4/Grant-Greenberg.jpg

Figure 33. Chuck Grant and Mark Greenberg Grant (left) and Greenberg were involved in the personal-computer revolution from the start, and launched several companies, including Kentucky Fried Computers and North Star Computers. (Courtesy of North Star)

As they worked on the BASIC, Grant and Greenberg found they were having the most trouble with the floating-point routines: arithmetic on real numbers, not integers. They simply couldn’t process the operation as quickly as they wanted to. They finally decided to build the floating-point math into the hardware, and hired George Millard to help design a floating-point board.

Around this time, the issue of proprietary software came up. Conflict arose over ownership of an implementation of the BASIC computer language. Marsh asserted that the software was being developed for Proc Tech, whereas Grant and Greenberg, with growing ambition, insisted that it was theirs and began soliciting other customers for their BASIC. Proc Tech took Grant and Greenberg to court, and the case lumbered through discovery and delay, doing neither company any good.

The Problem of Storage

images/images-by-chapter/chapter-4/Grant.jpg

Figure 34. Chuck Grant In the early days of the personal-computer era, there was nothing unusual about a computer company’s founder demonstrating his product at a show in a T-shirt.

(Courtesy of David H. Ahl)

Grant and Greenberg had other hot projects going. They developed a cassette-tape interface that would allow microcomputers to save data to tape using cheap audio-tape recorders. But then Shugart, a Silicon Valley minicomputer disk-drive manufacturer, announced the introduction of a drive that used 1 1/4" disks—smaller than the 8" disks commonly used on big computers—that cost less than any other disk drive. Disk drives were the obvious answer for data storage, if they could be made affordable. So Grant and Greenberg dropped their interest in cassette storage and started designing a controller board to make the Shugart disk drive work with microcomputers.

When they had their disk system together, they gave themselves a new name, North Star, perhaps echoing the name Altair, another bright star in the sky. Simultaneously, as Applied Computer Technology, they contracted to sell IMSAIs bundled with their own BASIC and cassette interface to universities. But the market, they discovered, did not want configured systems, but rather raw computers, so they began selling IMSAIs out of Mark Greenberg’s garage. This operation, at Grant’s suggestion, was called Kentucky Fried Computers.

Meanwhile, their ex-partner, George Morrow, bought an Altair, studied it, and decided not to imitate it. He shared Godbout’s estimation of the Altair. The computer that he and Godbout planned to build, and that he began to design, would definitely be better. He would base it on National Semiconductor’s PACE, a microprocessor they hoped to get for $50 from National.

Godbout, however, had reservations about the project. He meditated over Altair’s sales figures and decided that memory boards for the Altair might do well after all. Morrow, with some reluctance, put aside the PACE machine and commenced designing a 4K memory board with his own name on it, joining Proc Tech and Seals in the memory market. Godbout sold the board for $189, well under Proc Tech’s price, and Morrow suddenly found himself making $1,800 a month in royalties.

Godbout now became intensely interested in selling microcomputer boards. But when he vetoed one of Morrow’s ideas, Morrow reevaluated their relationship. Couldn’t he sell his boards just as well as Godbout, he asked himself. The only difference, he decided, lay in who placed the magazine ads. Thus was born Morrow’s Microstuf.

There was no telling who would be successful among these entrepreneurs. Godbout already had a successful electronics business. Morrow was a bit older than some of these players, and with his bald head he came across as more of grown-up and hence more of a serious businessman. Marsh, on the other hand, looked like a kid, and Felsenstein was staunchly anticorporate. But Proc Tech was starting to look really promising. The market was crazy, according to Morrow. “You could start a company, announce a product, and people would throw money at you.”

Bob Marsh had already learned this lesson with Proc Tech’s memory boards, but was more than willing to take a refresher course. Marsh and Felsenstein took the Sol to the PC Computer show in Atlantic City, New Jersey, in June 1976 to unveil it to the world. It went over big.

When they returned to California, they continued to enhance and modify the Sol. While writing tutorial articles on computer design for PCC, Felsenstein added what they called, to use writer Don Lancaster’s term, a “personality module.” This tiny circuit board had a ROM (read-only memory) chip and could be plugged into the back of the machine, enabling its “personality” to be changed in a second. Felsenstein wryly imagined employees popping in game modules for the business modules while the boss was out of the office.

Competition

By late 1976, DEC was selling its LSI-11 bottom-of-the-line minicomputer for slightly over $1,000. In Southern California, Dick Wilcox gave hard thought to a suggestion in Dr. Dobb’s Journal about interfacing the LSI-11 with an Altair or IMSAI. What he came up with was the Alpha Micro, an LSI-like multiuser CPU board, which he demonstrated to Homebrew in December 1976.

New microprocessors continued to arrive. Toshiba released the first Japanese chip, the T3444. National Semiconductor issued a new microprocessor plus supplied the development tools hobbyists needed to start building real computers and writing software.

Scores of new microcomputer companies began to appear. Vector Graphic in Thousand Oaks, California, introduced an 8K memory board. Vector consisted of a Stanford engineering-school graduate and two businesswomen. Men had founded almost all the microcomputer companies, although some had recruited wives or girlfriends as business managers. But Vector’s Lore Harp quickly showed she was more than just a business manager as she guided the company with a shrewd sense of the market’s needs and the possibilities for growth.

However, Vector was not doing any better than Proc Tech. During the winter of 1976–1977, Proc Tech moved to a much larger facility, 14,000 square feet, next to a beef-rendering plant in nearby Emeryville. The atmosphere was uninviting, but the new location was far roomier than their former digs.

A month after Proc Tech moved out of the Fourth Street garage, Grant and Greenberg took over two-thirds of the space of the garage, Felsenstein reclaimed the other third, and their three company names were placed on the door: North Star, Applied Computer Technology, and Kentucky Fried Computers. As the last company, they were now marketing IMSAIs, PolyMorphic and Vector Graphic boards, and an Apple I kit that they were persuaded to take on consignment by a scraggly bearded young man named Steve Jobs. But soon, sales of their North Star disk system soared, and they closed Kentucky Fried Computers to concentrate fully on North Star. A letter from a certain fast-food chain that demanded they cease and desist from using the name Kentucky Fried Computers made the decision easier.

By the end of 1976, Processor Technology, Cromemco, North Star, Vector Graphic, and Godbout Engineering were prominent among the Silicon Valley enterprises, building an entire industry where none had existed two years before. And that industry was growing with amazing speed.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset