Power to the People

It had its genetic coding in the ’60s…antiestablishment, antiwar, profreedom, antidiscipline attitudes.

–Jim Warren, microcomputer industry pioneer

The San Francisco Bay Area in the late 1960s and early 1970s was a hotbed for political activists, but it also had a large and active community of electrical engineers. The two groups overlapped, and it was where the overlap occurred that the spark ignited.

Radical Politics and Electrical Engineering

Lee Felsenstein had dropped out of engineering school at the end of the 1960s and had gone to work for a company called Ampex as a junior engineer. Ampex didn’t require him to work with computers, and that was fine with Felsenstein, who had been cool toward computers ever since an overly ambitious attempt in high school to build one of his own. But while Felsenstein enjoyed the work, he rebelled at pouring his efforts into projects for the benefit of corporate America. He left Ampex in 1969 to write for the Berkeley Barb, a famous and influential counterculture publication, where for a time he was listed on the masthead as “Friday,” as in Robinson Crusoe’s man Friday.

images/images-by-chapter/chapter-4/Felsenstein-1.jpg

Figure 28. Lee Felsenstein Felsenstein embodied all the technical savvy and counterculture spirit of the early days of personal computing. Here he poses with a minicomputer at UC Berkeley in 1971. (Courtesy of Lee Felsenstein)

Eventually Felsenstein returned to Ampex. There, in 1970, he designed an interface for a Data General Nova computer and began to think that maybe computers weren’t so bad after all. Felsenstein saved his money and in 1971 reenrolled at UC Berkeley, where he completed his engineering degree. In 1972, he gathered up his engineering degree and counterculture credentials and went to work for Resource One.

Resource One was an attempt to bring computer networking to nonprofits and radical groups in the San Francisco Bay Area. It was run by people from the San Francisco Switchboard, a volunteer referral agency, along with other computer junkies who had left UC Berkeley in protest of the American invasion of Cambodia. Many of these people lived in an urban commune in a factory building in San Francisco, which was a magnet for counterculture engineers, including Felsenstein.

Amazingly, Resource One had a computer—a large, $120,000 XDS 940. It was a remnant of Xerox Corporation’s abortive attempt to enter the mainframe-computer industry. Resource One had inherited it from the Stanford Research Institute, where it ran “Shakey,” one of the first computer-controlled robots. Felsenstein moved in as part of the second generation at Resource One, signing on as chief engineer to run the computer, a job that paid “$350 a month and all the recrimination you can eat.” It was a frustrating job, but he believed in the project and would later recall being annoyed when two UC Berkeley graduate students, Chuck Grant and Mark Greenberg, refused to get off the system so he could do maintenance on it.

Resource One put Felsenstein in touch with Cal students and faculty, as well as researchers at other sites. He visited Xerox’s Palo Alto Research Center (PARC) and saw innovations that dazzled him. However, Felsenstein’s sympathies lay less with technological dazzle than with a growing, grass-roots, computer-power-to-the-people movement.

That movement was developing in the San Francisco Bay Area out of the spirit of the times and the frustration of those who, like Felsenstein, knew something of the power of computers. Resenting that such immense power resided in the hands of a few and was so jealously guarded, these technological revolutionaries were actively working to overthrow the computer-industry hegemony of IBM and other companies, and to defrock the “computer priesthood” of programmers, engineers, and computer operators who controlled access to these machines.

Ironically, many of those technological revolutionaries had themselves been part of the priesthood.

Rebelling Against the Priesthood

Bob Albrecht had left Control Data Corporation in the 1960s because of its reluctance to consider the idea of a personal computer, and had, with friends, started a nonprofit alternative-education organization called the Portola Institute. From Portola sprang The Whole Earth Catalog, under the orchestration of Stewart Brand, with its emphasis on access to tools. This, in turn, inspired actress Celeste Holm’s son Ted Nelson to write a book similar in spirit but about access to computers. Nelson’s Computer Lib proclaimed, well before the Altair was announced, “You can and must understand computers NOW!” Nelson was the Tom Paine and his book the Common Sense of this revolution.

The other significant publication at the time that brought information about computers to the Bay Area general public was a tabloid called People’s Computer Company (PCC), another of Albrecht’s projects. Albrecht said that PCC was a company in the same sense that Janis Joplin’s band Big Brother and the Holding Company was a company.

images/images-by-chapter/chapter-4/ComputerLibAndDreamMachines.jpg

Figure 29. Computer Lib and Dream Machines “You can and must understand computers NOW,” Ted Nelson’s Computer Lib proclaimed. To Homebrewers it was the manifesto of the revolution. The second half of Computer Lib was printed upside down and had its own front cover.

(Courtesy of Ted Nelson)

Albrecht was a passionate promoter of computer power to the people. He wanted to teach children, in particular, about the machines. So, he split off from the Portola Institute to form Dymax, an organization dedicated to informing the general public about computers. Dymax gave rise to a walk-in computer center in Menlo Park and to the thoroughly irreverent PCC.

Computers had been mainly used against people, PCC said. Now they were going to be used for people.

Albrecht was never paid, and others worked for little. The 1960s values that pervaded the company exalted accomplishing something worthwhile beyond attaining money, power, or prestige. If Computer Lib had the most revolutionary philosophy and the most brilliantly original ideas, PCC had solid, practical advice for people who wanted to learn more about computers.

Albrecht and company were not writing about personal computers yet, because personal computers didn’t exist. Instead, they wrote about personal access to computers. In the early 1970s, users typically gained access to computers via time-sharing.

These big machines were getting smaller, though, and cheaper. DEC sold a PDP-8/F minicomputer that could be programmed in BASIC and that featured a 110 Teletype machine for under $6,000, a remarkably low price for a minicomputer. To the most visionary contemporary observer, this may have been a hint of what was to come, but consumers weren’t buying the minicomputer and installing it in their dens. At this point, virtually no individual person owned a computer.

Computers like the DEC minicomputer could, nevertheless, be purchased by schools. David Ahl, editor of EDU, DEC’s newsletter on educational uses of computers, spent a lot of time writing about small computers such as the $6,000 system. He argued that children learning about computers should be able to get their hands on the real machines, not just terminals connected to a remote, impersonal time-sharing system.

Making Technology Convivial

Lee Felsenstein was working hard to humanize those same time-sharing systems. He helped organize Community Memory, an offshoot of Resource One that installed public terminals in storefronts. The terminals gave anyone who walked in the front door immediate, free access to a public computer network. They were similar to those message boards you see in sandwich shops and other public places. Except that these message boards could be updated electronically, had an unlimited number of responses attached to them, and could be read all over town.

There were problems, though. People didn’t know how to use the Community Memory terminals, and they frequently broke down. To really bring the power of the computer to the people, access wasn’t enough: it was necessary to make the thing understandable, and to free users from having to depend on a trained repair person.

Felsenstein had a distinct approach to technological problems. Instead of merely fixing the terminals, he began looking for the inherent problem in their design. What was the basic shortcoming of the Community Memory terminals? He decided that they weren’t “convivial.”

Lee’s father had once recommended the book Tools for Conviviality by Ivan Illich, author of Deschooling Society. Pointing to radio as an example, Illich argued that technologies become useful only when people can teach themselves about those technologies. As a child in Philadelphia, Felsenstein had built his own radio, so he appreciated the comparison. Truly useful tools, Illich said, must be convivial. They have to stand up under the abuse people put them through as they’re learning how to use and repair them.

Felsenstein took Illich’s message to heart. He wanted computer technology to spread like crystal radio technology had done. He began soliciting ideas for a convivial terminal, and in true 1960s spirit, he sought a communal design. He placed notices in PCC and on the Community Memory boards, calling for a meeting to discuss the “Tom Swift Terminal,” a computer terminal that would appeal to technology-dazzled teenagers who read the ads in the back of science-fiction magazines. The terminals would be as easy to build and repair as a crystal radio.

Stumbling into a Start-up

One of those responding to the Community Memory message was Bob Marsh. Marsh and Felsenstein discovered they had already met, but this meeting via computer was the important one.

Bob Marsh had been an engineering student at UC Berkeley. Both he and Felsenstein lived in Oxford Hall, the University Students’ Cooperative Association building. With his familiar boyish grin and locks of dark hair falling across his forehead, Bob Marsh looked much the same as he did during his days at Berkeley, but Felsenstein could see that his college chum had done some growing up.

While Felsenstein had not been as serious about school as he was about political events, Marsh never seemed to be serious about anything. Pool playing and beer drinking got more of his attention than did classwork, and he had dropped out in 1965 to take a job clerking in a grocery store. Marsh labored there just long enough to save up sufficient cash for a trip to Europe.

When he returned, though, it was with an altered outlook and the motivation to get a degree. He went to a community college to build up a grade-point average that would allow him to return to UC Berkeley. He planned to be a biology teacher—but one visit to a teachers’ meeting ended that dream. Marsh didn’t care for the way principals and administrators treated teachers, and he switched back to an engineering major.

Marsh began working on a series of engineering projects with his friend Gary Ingram. Marsh and Ingram had known each other since 1971, when they collaborated on their first project together. The project was based on a Popular Electronics article by Harry Garland and Roger Melen. Marsh had also read the Don Lancaster TV Typewriter article in Radio-Electronics and had tried to devise an improved version of it, with some success.

Ingram was now working at Dictran International, an importer of dictation equipment, and landed his friend Marsh a job there. When Ingram quit Dictran a month later, Marsh suddenly became chief engineer. Somewhat to his surprise, he found that he liked the position. That job eventually disappeared, but Marsh later said that his stint as chief engineer had changed his life. Experiencing life as a Berkeley student in the 1960s, being on his own in Europe, seeing what it was like to be a teacher working under others, and getting a shot at being an engineer and manager at Dictran—these experiences had all contributed to turning Marsh into the prototype for a generation of Silicon Valley entrepreneurs.

But in 1974, Marsh was broke and jobless. As Felsenstein put it, Marsh had worked himself up to the exalted level of an unemployed electronics engineer. With house payments to make, a family to support, and a child on the way, Marsh was looking for a project around which he could build a company.

The Fourth Street Garage

Marsh’s meeting with Felsenstein about the Tom Swift Terminal led to a discussion about electronic products and launching a corporation. But unlike Marsh, Felsenstein wasn’t interested in starting his own company. He was busy fomenting a revolution.

Marsh decided he needed some work space if he was going to get his company going. He talked Felsenstein into splitting the cost to lease a space. Although Felsenstein still had no plans to start his own venture, he did need to move his home office out of his 276-square-foot apartment. In January 1975, the two rented a 1,100-square-foot garage at 2465 Fourth Street in Berkeley for $170 a month.

Marsh could barely afford his half of the modest rent, but set up shop nevertheless. Felsenstein laid claim to a workbench and took on freelance engineering projects that came his way. He remained involved in Community Memory while the Tom Swift Terminal project was on hold. Marsh then connected with a friend who had access to cheap walnut planks and with an electronics distributor named Bill Godbout. He planned to use these contacts as part of an effort to build and market digital clocks.

Then the January 1975 issue of Popular Electronics announced the introduction of the Altair computer. Although they didn’t realize it at the time, this would change the lives of Felsenstein, the technological revolutionary, and Marsh, the unemployed engineer. It did so in part because it brought into existence the Homebrew Computer Club, an extraordinary gathering of people with engineering expertise and a revolutionary spirit, from whom would spring dozens of computer companies and eventually a multibillion-dollar industry.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset