References

1. J. Manyika, M. Chui, B. Brown, et al. (2011) Big data: The next frontier for innovation, competition and productivity. http://www.mckinsey.com, June 2011. McKinsey Global Institute, Research Report.

2. R. Qiu, N. Guo, H. Li, et al. (2009) A unified multi-functional dynamic spectrum access framework: tutorial, theory and multi-ghz wideband testbed, Sensors 9(8): 6530–6603.

3. S. Haykin (2005) Cognitive radio: Brain-empowered wireless communications, IEEE Journal on Selected Areas in Communications 23(2): 201–20.

4. S. Haykin (2006) Cognitive radar, IEEE Signal Processing Magazine, Jan.: 30–40.

5. IEEE (2011) IEEE Std 802.22-2011, IEEE Standard for information technology—telecommunications and information exchange between systems—wireless regional area networks (WRAN)—specific requirements—Part 22: cognitive wireless ran medium access control (MAC) and physical layer (phy) specifications: policies and procedures for operation in the TV bands, IEEE Standard, July 2011, 672 pp.

6. M. Murroni, R. Prasad, P. Marques, et al. (2011) IEEE 1900.6: Spectrum sensing interfaces and data structures for dynamic spectrum access and other advanced radio communication systems standard: technical aspects and future outlook, Communications Magazine, IEEE 49(12): 118–27.

7. R. Qiu, Z. Hu, Z. Chen, et al. (2011) Cognitive radio network for the smart grid: Experimental system architecture, control algorithms, security, and microgrid testbed, IEEE Transactions on Smart Grid 99: 1–18.

8. S. Boyd and L. Vandenberghe (2004) Convex Optimization. Cambridge: Cambridge University Press.

9. N. El Karoui (2008) Spectrum estimation for large dimensional covariance matrices using random matrix theory, The Annals of Statistics 36(6): 2757–90.

10. Z. Bai (1999) Methodologies in spectral analysis of large-dimensional random matrices, a review, Statistica Sinica 9(3): 611–77.

11. F. Hiai and D. Petz (2000) The Semicircle Law, Free Random Variables, and Entropy. Los Angeles: American Mathematical Society.

12. R. Couillet and M. Debbah (2011) Random Matrix Methods for Wireless Communications. Cambridge: Cambridge University Press, 2011.

13. A. Tulino and S. Verdu (2004) Random Matrix Theory and Wireless Communications. Hanover, MA: Now Publishers Inc.

14. Z. Bai and J. Silverstein (2010) Spectral Analysis of Large Dimensional Random Matrices, 2nd edn. Berlin: Springer Verlag.

15. P.J. Forrester (2010) Log-gases and Random Matrices, No. 34. New Jersey: Princeton University Press.

16. G.W. Anderson, A. Guionnet, and O. Zeitouni (2010) An Introduction to Random Matrices. Cambridge: Cambridge University Press.

17. V. Girko (1998) An Introduction to Statistical Analysis of Random Arrays. The Netherlands: VSP.

18. A. Edelman and N. Rao (2005) Random matrix theory, Acta Numerica 14(233–97): 139.

19. I. Johnstone (2006) High dimensional statistical inference and random matrices, Arxiv preprint math/0611589.

20. O. Ledoit and M. Wolf (2004) A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis 88(2): 365–411.

21. G. Akemann, J. Baik, and P. Di Francesco (eds) (2011) The Oxford Handbook of Random Matrix Theory. Oxford: Oxford University Press.

22. I. Johnstone (2001) On the distribution of the largest eigenvalue in principal components analysis, The Annals of Statistics 29(2): 295–327.

23. K. Johansson (2000) Shape fluctuations and random matrices, Communications in Mathematical Physics 209(2): 437–76.

24. C. Tracy and H. Widom (1996) On orthogonal and symplectie matrix ensembles, Communications in Mathematical Physics 177: 727–54.

25. C. Tracy and H. Widom (1994) Level-spacing distributions and the airy kernel, Communications in Mathematical Physics 159(1): 151–74.

26. J. Baik and J. Silverstein (2006) Eigenvalues of large sample covariance matrices of spiked population models, Journal of Multivariate Analysis 97(6): 1382–1408.

27. D. Paul (2007) Asymptotics of sample eigenstructure for a large dimensional spiked covariance model, Statistica Sinica 17(4): 1617.

28. A. Soshnikov (2002) A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices, Journal of Statistical Physics 108(5): 1033–56.

29. B. Nadler (2008) Finite sample approximation results for principal component analysis: A matrix perturbation approach, The Annals of Statistics 36(6): 2791–2817.

30. D. Hoyle and M. Rattray (2007) Statistical mechanics of learning multiple orthogonal signals: asymptotic theory and fluctuation effects, Physical Review E 75(1): 016101.

31. D. Hoyle and M. Rattray (2004) Principal-component-analysis eigenvalue spectra from data with symmetry-breaking structure, Physical Review E 69(2): 026124.

32. D. Hoyle and M. Rattray (2003) Limiting form of the sample covariance eigenspectrum in PCA and kernel PCA, in Proceedings of Neural Information Processing Systems (NIPS, 16).

33. I. Dhillon and J. Tropp (2007) Matrix nearness problems with Bregman divergences, SIAM Journal on Matrix Analysis and Applications 29(4): 1120–46.

34. D. Petz (2010) Quantum Information Theory and Quantum Statistics. New York: Springer.

35. N.J. Higham (2008) Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics.

36. Y. Zeng, Y.C. Liang, E. Peh, and A.T. Hoang (2009) Cooperative covariance and eigenvalue based detections for robust sensing, in Global Telecommunications Conference, Globecom, IEEE, pp. 1–6.

37. M. Naraghi-Pour and T. Ikuma, Autocorrelation-based spectrum sensing for cognitive radios, IEEE Transactions on Vehicular Technology 59(2): 718–33.

38. H. Urkowitz (1967) Energy detection of unknown deterministic signals, Proceedings of the IEEE 55(4): 523–31.

39. J. Ma, G.Y. Li, and B.H. Juang (2009) Signal processing in cognitive radio, Proceedings of the IEEE 97(5): 805–23.

40. V.I. Kostylev (2002) Energy detection of a signal with random amplitude, in IEEE International Conference on Communications, ICC'02, vol. 3, pp. 1606–10.

41. F.F. Digham, M.S. Alouini, and M.K. Simon (2003) On the energy detection of unknown signals over fading channels, in IEEE International Conference on Communications, ICC'03. vol. 5, pp. 3575–9.

42. F.F. Digham, M.S. Alouini, and M.K. Simon (2007) On the energy detection of unknown signals over fading channels, IEEE Transactions on Communications 55(1): 21–4.

43. J.G. Proakis (2001) Digital Communications, 4th edn. New York: McGraw Hill.

44. C.E. Shannon (1949) Communication in the presence of noise, Proceedings of the IRE 37(1): 10–21.

45. M. Abramowitz and I. Stegun (eds.) (1965) Handbook of Mathematical Functions. National Bureau of Standards.

46. A. Hald (1952) Statistical Tables and Formulas. New York: John Wiley & Sons, Inc.

47. R.A. Fisher and F. Yates (1953) Statistical Tables for Agricultural, Biological and Medical Research, Edinburgh: Oliver & Boyd, Ltd.

48. I. Gradshteyn and I. Ryzhik (eds.) (1994) Tables of Integral, Series, and Products. New York: Academic Press.

49. A.H. Nuttall (1972) Some integrals involving the QM-function, Technical report, Naval Underwater Systems Center (NUSC).

50. W.B. Davenport and W.L. Root (1958) An Introduction to the Theory of Random Signals and Noise, vol. 11. New York: McGraw-Hill.

51. C.W. Helstrom (1960) Statistical Theory of Signal Detection. London: Pergamon.

52. E.J. Kelly, I.S. Reed, and W.L. Root (1960) Detection of radar echoes in noise, I, Journal of the Society for Industrial and Applied Mathematics 8(2): 309–41.

53. E.J. Kelly, I.S. Reed, and W.L. Root (1960) Detection of radar echoes in noise, II, Journal of the Society for Industrial and Applied Mathematics 8(3): 481–507.

54. H.L. Van Trees (1968) Detection, Estimation, and Modulation Theory. New York: John Wiley & Sons, Inc.

55. H. Stark and J.W. Woods (2002) Probability and Random Processes with Applications to Signal Processing, vol. 3. Upper Saddle River, NJ: Prentice Hall.

56. H.J. Landau (1967) Necessary density conditions for sampling and interpolation of certain entire functions, Acta Mathematica 117(1): 37–52.

57. H.J. Landau (1965) The eigenvalue behavior of certain convolution equations, Transactions of the American Mathematics Society 115: 242–56.

58. H.J. Landau and H.O. Pollak (1962) Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals, Bell System Technical Journal 41(4): 1295–1336.

59. H.J. Landau and H.O. Pollak (1961) Prolate spheroidal wave functions, Fourier analysis and uncertainty II, Bell System Technical Journal 40(1): 65–84.

60. H.J. Landau and H. Widom (1980) Eigenvalue distribution of time and frequency limiting, Journal of Mathematical Analysisand Applications 77(2): 469–81.

61. D. Slepian (1983) Some comments on Fourier analysis, uncertainty and modeling, SIAM Review, 379–93.

62. D. Slepian (1978) Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V—The discrete case, Bell System Technical Journal 57: 1371–1430.

63. D. Slepian (1976) On bandwidth, Proceedings of the IEEE 64(3): 292–300.

64. D. Slepian (1962) Prolate spheroidal wave functions, Fourier analysis and uncertainty. IV: Extensions to many dimensions; generalized prolate spheroidal functions, Bell System Technical Journal 43: 3009–57.

65. D. Slepian (1954) Estimation of signal parameters in the presence of noise, Transactions of IRE 3(1): 68–89.

66. H.J. Landau and H.O. Pollak (1961) Prolate spheroidal wave functions, Fourier analysis and uncertainty II, Bell System Technical Journal 40(1): 65–84.

67. R. Brunelli and T. Poggio (1993) Face recognition: Features versus templates, IEEE Transactions on Pattern Analysis and Machine Intelligence 15(10): 1042–52.

68. A. Goldsmith (2005) Wireless Communications. Cambridge: Cambridge University Press.

69. S.M. Kay (1998) Fundamentals of Statistical Signal Processing, Volume II: Detection Theory, vol. 7. New Jersey: Prentice Hall.

70. Z. Quan, S.J. Shellhammer, W. Zhang, and A.H. Sayed (2009) Spectrum sensing by cognitive radio at very low SNR, in Globecom'09, pp. 1–6.

71. A. Leon-Garcia (2008) Probability, Statistics, and Random Processes for Electrical Engineering, 3rd edn. Upper Saddle River, New Jersey: Prentice Hall.

72. C.W. Therrien (1992) Discrete Random Signals and Statistical Signal Processing. New Jersey: Prentice Hall PTR.

73. S.M. Kay (1988) Modern Spectral Estimation: Theory and Application, vol. 1. Englewood Cliffs, NJ: Prentice Hall.

74. L. Marple (1987) Digital Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall.

75. P. Stoica and R.L. Moses (1997) Introduction to Spectral Analysis, vol. 51. Upper Saddle River, NJ: Prentice Hall.

76. Y. Zeng, Y. Liang, A. Hoang, and R. Zhang (2011) A Review on Spectrum Sensing Techniques for Cognitive Radio: Challenges and Solutions, EURASIP Journal on Advances in Signal Processing, Hindawi Publishing Corporation, vol. 2010, Article ID 381465, 1–15.

77. T. Lim, R. Zhang, Y. Liang, and Y. Zeng (2008) GLRT-based spectrum sensing for cognitive radio, in IEEE Globecom'08, New Orleans, LA, pp. 1–5.

78. H.V. Poor (1994) An Introduction to Signal Detection and Estimation. New York: Springer.

79. D.S. Bernstein (2009) Matrix Mathematics: Theory, Facts, and Formulas. New Jersey: Princeton University Press.

80. R.M. Gray (2006) Toeplitz and Circulant Matrices: A Review. Hanover, MA: Now Publishers Inc.

81. I. Selin (1965) Detection Theory. New Jersey: Princeton University Press.

82. G. Berkooz, P. Holmes, and J. Lumley (1993) The proper orthogonal decomposition in the analysis of turbulent flows, Annual Review of Fluid Mechanics 25(1): 539–75.

83. P. Holmes, J. Lumley, G. Berkooz, J. Mattingly, and R. Wittenberg (1997) Low-dimensional models of coherent structures in turbulence, Physics Reports 287(4): 337–84.

84. P. Zhang, R. Qiu, and N. Guo (2011) Demonstration of spectrum sensing with blindly learned features, Communications Letters, IEEE 15(99): 548–50.

85. S. Hou and R. Qiu (2011) Spectrum sensing for cognitive radio using kernel-based learning, Arxiv preprint arXiv:1105.2978, submitted to IEEE Transactions on Communications.

86. B. Scholkopf, A. Smola, and K. Muller (1998) Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation 10(5): 1299–1319.

87. V. Tawil (2006) 51 captured DTV signal. http://grouper.ieee.org/groups/802/22/Meeting documents/2006 May/Informal Documents.

88. J. Ma, G.Y. Li, and B.H. Juang (2009) Signal processing in cognitive radio, Proceedings of the IEEE 97(5): 805–23.

89. W.A. Gardner, A. Napolitano, and L. Paura (2006) Cyclostationarity: Half a century of research, Signal Processing. 86(4): 639–97.

90. W.A. Gardner (1991) Exploitation of spectral redundancy in cyclostationary signals, Signal Processing Magazine, IEEE 8(2): 14–36.

91. W.A. Gardner (1991) Two alternative philosophies for estimation of the parameters of time-series, IEEE Transactions on Information Theory 37(1): 216–18.

92. A. Sahai and D. Cabric (2005) Cyclostationary feature detection. Tutorial presented at the IEEE DySPAN 2005.

93. W.A. Gardner and C.M. Spooner (1992) Signal interception: performance advantages of cyclic-feature detectors, IEEE Transactions on Communications 40(1): 149–59.

94. M. Derakhshani, M. Nasiri-Kenari, and T. Le-Ngoc (2010) Cooperative cyclostationary spectrum sensing in cognitive radios at low SNR regimes, in IEEE International Conference on Communications (ICC), 2010.

95. A. Fehske, J. Gaeddert, and J.H. Reed (2005) A new approach to signal classification using spectral correlation and neural networks, in New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005, IEEE, pp. 144–50.

96. H. Hu, Y. Wang, and J. Song (2008) Signal classification based on spectral correlation analysis and SVM in cognitive radio, in Proceedings of the 22nd International Conference on Advanced Information Networking and Applications, IEEE Computer Society, pp. 883–7.

97. A. Tani and R. Fantacci (2010) A low-complexity cyclostationary-based spectrum sensing for UWB and WiMAX coexistence with noise uncertainty, IEEE Transactions on Vehicular Technology 59(6): 2940–50.

98. J. Lunden, V. Koivunen, A. Huttunen, and H.V. Poor (2009) Collaborative cyclostationary spectrum sensing for cognitive radio systems, IEEE Transactions on Signal Processing 57(11): 4182–95.

99. K.W. Choi, W.S. Jeon, and D.G. Jeong (2009) Sequential detection of cyclostationary signal for cognitive radio systems, IEEE Transactions on Wireless Communications 8(9): 4480–5.

100. R.W. Heath Jr and G.B. Giannakis (1999) Exploiting input cyclostationarity for blind channel identification in OFDM systems, IEEE Transactions on Signal Processing 47(3): 848–56.

101. H. Bolcskei (2001) Blind estimation of symbol timing and carrier frequency offset in wireless OFDM systems, IEEE Transactions on Communications 49(6): 988–99.

102. P.D. Sutton, K.E. Nolan, and L.E. Doyle (2008) Cyclostationary signatures in practical cognitive radio applications, IEEE Journal on Selected Areas in Communications 26(1): 13–24.

103. K. Abed-Meraim, Y. Xiang, J.H. Manton, and Y. Hua (2001) Blind source-separation using second-order cyclostationary statistics, IEEE Transactions on Signal Processing 49(4): 694–701.

104. R.S. Prendergast and T.Q. Nguyen (2006) Minimum mean-squared error reconstruction for generalized undersampling of cyclostationary processes, IEEE Transactions on Signal Processing 54(8): 3237–42.

105. H. Yan and H.H. Fan (2007) Signal-selective DOA tracking for wideband cyclostationary sources, IEEE Transactions on Signal Processing 55(5).

106. Z. Huang, Y. Zhou, and W. Jiang (2008) TDOA and Doppler estimation for cyclostationary sgnals based on multi-cycle frequencies, IEEE Transactions on Aerospace and Electronic Systems 44(4): 1251–64.

107. R. Vershynin (2011) Introduction to the non-asymptotic analysis of random matrices, Arxiv preprint arXiv:1011.3027v5, July.

108. C.W. Therrien (1992) Discrete Random Signals and Statistical Signal Processing. New Jersey: Prentice-Hall.

109. R. Bhatia (2007) Positive Definite Matrices. New Jersey: Princeton University Press.

110. K. Mardia, J. Kent, and J. Bibby (1979) Multivariate Analysis. New York: Academic Press.

111. V.L. Girko (1990) Theory of Random Determinant. Dordrecht: Kluwer Academic Publishers.

112. K. Abadir and J. Magnus (2005) Matrix Algebra. Cambridge: Cambridge University Press.

113. J. Steele (2004) The Cauthy-Schwarz Master Class. Cambridge: Cambridge University Press.

114. F. Zhang (1999) Matrix Theory. New York: Springer.

115. D.S. Bernstein (2009) Matrix Mathematics: Theory, Facts, and Formulas. New Jersey: Princeton University Press.

116. J.A. Tropp (2011) User-friendly Tail Bounds for Sums of Random Matrices. In Foundations of Computational Mathematics, New York: Springer, pp. 1–46.

117. H. Nagaoka and M. Hayashi (2007) An information-spectrum approach to classical and quantum hypothesis testing for simple hypotheses, IEEE Transactions on Information Theory 53(2): 534–49.

118. S.M. Kay (1998) Fundamentals of Statistical Signal Processing. New Jersey: Prentice Hall.

119. Y. Zeng and Y. Liang (2007) Covariance based signal detections for cognitive radio, in New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2007, pp. 202–7.

120. T.J. Lim, R. Zhang, Y. Liang, and Y. Zeng (2008) Glrt-based spectrum sensing for cognitive radio, in Global Telecommunications Conference, Globecom'08, IEEE, pp. 1–5.

121. P. Zhang, R. Qiu, and N. Guo (2011) Demonstration of spectrum sensing with blindly learned feature, IEEE Communications Letters 15: 548–50.

122. F. Lin, R.C. Qiu, Z. Hu, S. Hou, J.P. Browning, and M.C. Wicks (2012) Generalized FMD detection for spectrum sensing under low signal-to-noise ratio. Accepted by IEEE Communications Letters.

123. L.L. Scharf (1991) Statistical Signal Processing. Boston, MA: Addison-Wesley.

124. B. Levy (2008) Principles of Signal Detection and Parameter Estimation. Berlin: Springer Verlag.

125. P. Schreier (2008) A unifying discussion of correlation analysis for complex random vectors, IEEE Transactions on Signal Processing 56(4): 1327–36.

126. P.J. Schreiner and L.L. Scharf (2010) Statistical Signal Processing of Complex-Valued Data: The Theory of Improper and Noncircular Signals. Cambridge: Cambridge University Press.

127. G. Jaeger (2007) Quantum Information: An Overview. New York: Springer.

128. M.A. Nielsen and I.L. Chuang (2010) Quantum Computation and Quantum Information, 10th edn. Cambridge: Cambridge University Press.

129. M. Hayashi (2006) Quantum Information: An Introduction. New York: Springer.

130. R. Bhatia (1997) Matrix Analysis. New York: Springer.

131. A.W. Marshall, I. Olkin, and B.C. Arnold (2011) Inequalities: Theory of Majorization and Its Applications. New York: Springer.

132. M. Shaked and J.G. Shanthikumar (2007) Stochastic Order. New York: Springer.

133. X.Z. Zhan (2002) Matrix Inequality. Berlin: Springer Verlag.

134. M. Loss and M.B. Ruskai (eds.) (2002) Inequalities: Selecta of Elliott H. Lieb. Berlin: Springer Verlag.

135. T. Kosem (2006) Inequalities between kf(A + B)k and kf(A) + f(B)k, Linear Algebra and Its Applications 418(1): 153–60.

136. J. Bourin and M. Uchiyama (2007) A matrix subadditivity inequality for f (a + b) and f (a) + f (b), Arxiv preprint math/0702475.

137. R. Ahlswede and A. Winter (2002) Strong converse for identification via quantum channels, IEEE Transactions on Information Theory 48(3): 569–79.

138. O. Bratteli and D.W. Robinson (1979) Operator Algebras amd Quantum Statistical Mechanics I. Berlin: Springer Verlag.

139. J. Lawson and Y. Lim (2001) The geometric mean, matrices, metrics, and more, The American Mathematical Monthly 108(9): 797–812.

140. A.S. Holevo (1972) An analogue of the theory of statistical decisions in non-commutative probability theory, Transactions of the Moscow Mathematics Society (English translation) 26: 133–49. Trudy Moskov. Mat. Obc (in Russian).

141. C.W. Helstrom (1976) Quantum Detection and Estimation Theory. New York: Academic Press.

142. K.M.R. Audenaert, J. Calsamiglia, R. Munoz-Tapia, et al. (2007) Discriminating states: The quantum Chernoff bound, Physical Review Letters 98: 160501, Apr.

143. M. Nussbaum and A. Szkola (2009) The Chernoff lower bound for symmetric quantum hypothesis testing, Annals of Statistics 37(2): 1040–57.

144. K. Audenaert, M. Nussbaum, A. Szkoaa, and F. Verstraete (2008) Asymptotic error rates in quantum hypothesis testing. Communications in Mathematical Physics 279, pp. 251–83, 2008. 10.1007/s00220-008-0417-5.

145. K.M.R. Audenaert (2007) Quantum hypothesis testing non-commutative Chernoff and Hoeffding bounds, February 2007. Presentation Slides.

146. D. Bacon, I. Chuang, and A. Harrow (2006) Efficient quantum circuits for Schur and Clebsch-Gordan transforms, Physical Review Letters 97(17): 1705021–1705024.

147. S. Barnett and S. Croke (2009) On the conditions for discrimination between quantum states with minimum error, Journal of Physics A: Mathematical and Theoretical 42: 0620011–0620014.

148. S. Barnett and S. Croke (2008) Quantum state discrimination, Arxiv preprint arXiv:0810.1970.

149. V. Belavkin (1975) Optimal multiple quantum statistical hypothesis testing, Stochastics 1: 315–45.

150. I. Bjelakovic (2006) Limit theorems for quantum entropies and applications, in Turbo Codes & Related Topics: 6th International ITG-Conference on Source and Channel Coding (TURBOCODING), pp. 1–6.

151. I. Bjelakovic and H. Boche (2009) Classical capacities of compound and averaged quantum channels, IEEE Transactions on Information Theory 55(7): 3360–74.

152. I. Bjelakovic and H. Boche (2008) Classical capacities of compound quantum channels, in Information Theory Workshop, ITW'08. IEEE, pp. 373–7.

153. I. Bjelakovic, J. Deuschel, T. Kruger, R. Seiler, R. Siegmund-Schultze, and A. Szkola (2005) A quantum version of Sanov's theorem, Communications in Mathematical Physics 260(3): 659–71.

154. I. Bjelakovic, T. Kruger, R. Siegmund-Schultze, and A. Szkola (2004) The Shannon-McMillan theorem for ergodic quantum lattice systems, Inventiones Mathematicae 155(1): 203–22.

155. S. Broadbent (1955) Quantum hypotheses, Biometrika 42(1/2): 45–57.

156. J. Calsamiglia, R. Munoz-Tapia, L. Masanes, A. Acin, and E. Bagan (2008) Quantum Chernoff bound as a measure of distinguishability between density matrices: Application to Qubit and Gaussian states, Physical Review A 77(3): 0323111–03231115.

157. G. Cariolaro and G. Pierobon (2010) Performance of quantum data transmission systems in the presence of thermal noise, IEEE Transactions on Communications 58(2): 623–30.

158. G. Cariolaro and G. Pierobon (2010) Theory of quantum pulse position modulation and related numerical problems, IEEE Transactions on Communications 58(4): 1213–22.

159. A. Chefles (2000) Quantum state discrimination, Contemporary Physics 41(6): 401–24.

160. A. Chefles (1998) Unambiguous discrimination between linearly independent quantum states, Physics Letters A 239(6): 339–47.

161. H. Chernoff (1952) A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, The Annals of Mathematical Statistics, 493–507.

162. N. Datta (2009) Min-and max-relative entropies and a new entanglement monotone, IEEE Transactions on Information Theory 55(6): 2816–26.

163. Y. Eldar (2003) Mixed-quantum-state detection with inconclusive results, Physical Review A 67(4): 0423091–04230914.

164. Y. Eldar (2003) A semidefinite programming approach to optimal unambiguous discrimination of quantum states, IEEE Transactions on Information Theory 49(2): 446–56.

165. Y. Eldar and G. Forney Jr (2001) On quantum detection and the square-root measurement, IEEE Transactions on Information Theory 47(3): 858–72.

166. Y. Eldar, A. Megretski, and G. Verghese (2004) Optimal detection of symmetric mixed quantum states, IEEE Transactions on Information Theory 50(6): 1198–1207.

167. Y. Eldar, A. Megretski, and G. Verghese (2003) Designing optimal quantum detectors via semidefinite programming, IEEE Transactions on Information Theory 49(4): 1007–12.

168. Y. Eldar, M. Stojnic, and B. Hassibi (2004) Optimal quantum detectors for unambiguous detection of mixed states, Physical Review A 69(6): 0623181–0623189.

169. J. Fiurášek and M. Ježek (2003) Optimal discrimination of mixed quantum states involving inconclusive results, Physical Review A 67(1): 0123211–0123215.

170. R. Gill (2001) Asymptotics in quantum statistics, Lecture Notes. Monograph Series, pp. 255–85.

171. R. Gill and S. Massar (2000) State estimation for large ensembles, Physical Review A 61(4): 0423121–04231216.

172. P. Hausladen and W. Wootters (1994) A “pretty good” measurement for distinguishing quantum states, Journal of Modern Optics 41: 2385–90.

173. M. Hayashi (2009) Discrimination of two channels by adaptive methods and its application to quantum system, IEEE Transactions on Information Theory 55(8): 3807–20.

174. M. Hayashi (2007) Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding, Physical Review A 76(6): 0623011–0623014.

175. M. Hayashi (2002) Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing, Journal of Physics A: Mathematical and General 35.

176. M. Hayashi (2001) Asymptotics of quantum relative entropy from a representation theoretical viewpoint, Journal of Physics A: Mathematical and General 34.

177. M. Hayashi (2001) Optimal sequence of povms in the sense of Stein's lemma in quantum hypothesis testing, Arxiv preprint quant-ph/0107004.

178. M. Hayashi and K. Matsumoto (2004) Asymptotic performance of optimal state estimation in quantum two level system, Arxiv preprint quant-ph/0411073.

179. M. Hayashi and H. Nagaoka (2003) General formulas for capacity of classical-quantum channels, IEEE Transactions on Information Theory 49(7): 1753–68.

180. C. Helstrom (1982) Bayes-cost reduction algorithm in quantum hypothesis testing (corresp.), IEEE Transactions on Information Theory 28(2): 359–66.

181. C. Helstrom (1973) Resolution of point sources of light as analyzed by quantum detection theory, IEEE Transactions on Information Theory 19(4): 389–98.

182. C. Helstrom (1969) Quantum detection and estimation theory, Journal of Statistical Physics 1(2): 231–52.

183. C. Helstrom (1967) Detection theory and quantum mechanics, Information and Control 10(3): 254–91.

184. U. Herzog and J. Bergou (2005) Optimum unambiguous discrimination of two mixed quantum states, Physical Review A 71(5): 0503011–0503014.

185. U. Herzog and J. Bergou (2004) Distinguishing mixed quantum states: Minimum-error discrimination versus optimum unambiguous discrimination, Physical Review A 70(2): 0223021–0223026.

186. F. Hiai, M. Mosonyi, and M. Hayashi (2009) Quantum hypothesis testing with group symmetry, Journal of Mathematical Physics 50: 1033041–10330431.

187. W. Hoeffding (1965) Asymptotically optimal tests for multinomial distributions, The Annals of Mathematical Statistics, 369–401.

188. A. Holevo (1973) Statistical decision theory for quantum systems, Journal of Multivariate Analysis 3(4): 337–94.

189. V. Kargin (2005) On the Chernoff bound for efficiency of quantum hypothesis testing, Annals of Statistics, 959–76.

190. K. Kato and O. Hirota (2003) Square-root measurement for quantum symmetric mixed state signals, IEEE Transactions on Information Theory 49(12): 3312–17.

191. K. Kato, M. Osaki, M. Sasaki, and O. Hirota (1999) Quantum detection and mutual information for QAM and PSK signals, IEEE Transactions on Communications 47(2): 248–54.

192. G. Kimura, T. Miyadera, and H. Imai (2009) Optimal state discrimination in general probabilistic theories, Physical Review A 79(6): 0623061–0623069.

193. R. Konig, R. Renner, and C. Schaffner (2009) The operational meaning of min-and max-entropy, IEEE Transactions on Information Theory 55(9): 4337–47.

194. M. Mohseni, A. Steinberg, and J. Bergou (2004) Optical realization of optimal unambiguous discrimination for pure and mixed quantum states, Physical Review Letters 93(20): 2004031–2004034.

195. M. Mosonyi (2009) Hypothesis testing for Gaussian states on Bosonic lattices, Journal of Mathematical Physics 50: 0321051–03210517.

196. M. Mosonyi and N. Datta (2009) Generalized relative entropies and the capacity of classical-quantum channels, Journal of Mathematical Physics 50: 0721041–07210414.

197. H. Nagaoka (2006) The converse part of the theorem for quantum Hoeffding bound, Arxiv preprint quant-ph/0611289.

198. M. Nussbaum and A. Szkola (2008) A lower bound of Chernoff type for symmetric quantum hypothesis testing, Arxiv preprint quant-ph/0607216.

199. M. Nussbaum and A. Szkola (2010) Exponential error rates in multiple state discrimination on a quantum spin chain, Journal of Mathematical Physics 51: 0722031–07220311.

200. M. Nussbaum and A. Szkola (2011) Asymptotically optimal discrimination between pure quantum states, Theory of Quantum Computation, Communication, and Cryptography, pp. 1–8.

201. T. Ogawa and M. Hayashi (2004) On error exponents in quantum hypothesis testing, IEEE Transactions on Information Theory 50(6): 1368–72.

202. T. Ogawa and H. Nagaoka (2007) Making good codes for classical-quantum channel coding via quantum hypothesis testing, IEEE Transactions on Information Theory 53(6): 2261–6.

203. T. Ogawa and H. Nagaoka (2002) A new proof of the channel coding theorem via hypothesis testing in quantum information theory, IEEE International Symposium on Information Theory, 2002, p. 73.

204. T. Ogawa and H. Nagaoka (2000) Strong converse and Stein's lemma in quantum hypothesis testing, IEEE Transactions on Information Theory 46(7): 2428–33.

205. T. Ogawa and H. Nagaoka (1999) Strong converse theorems in the quantum information theory, in Information Theory and Networking Workshop, IEEE, p. 54.

206. T. Ogawa and H. Nagaoka (1999) Strong converse to the quantum channel coding theorem, IEEE Transactions on Information Theory 45(7): 2486–9.

207. A. Peres and D. Terno (1998) Optimal distinction between non-orthogonal quantum states, Journal of Physics A: Mathematical and General 31.

208. R. Renner (2005) Security of quantum key distribution, Arxiv preprint quant-ph/0512258.

209. E. Robinson (1982) A historical perspective of spectrum estimation, Proceedings of the IEEE 70(9): 885–907.

210. B. Roysam and M. Miller (1989) A unified approach for hierarchical imaging based on joint hypothesis testing and parameter estimation, in International Conference on Acoustics, Speech, and Signal Processing, ICASSP-89, pp. 1779–82.

211. N. Salikhov (1999) On one generalization of Chernov's distance, Theory of Probability and its Applications, vol. 43, Society for Industrial and Applied Mathematics, pp. 239–55.

212. R. Stratonovich (1965) Information capacity of a quantum communication channel, ii, Radiophysics and Quantum Electronics 8(1): 92–101.

213. R. Stratonovich (1965) Information capacity of a quantum communications channel. i., Radiophysics and Quantum Electronics 8(1): 82–91.

214. M. Takeoka, M. Sasaki, and M. Ban (2003) Design of an optimal quantum receiver for interferometric sensing devices, in Quantum Electronics Conference, EQEC'03, p. 375.

215. L. Wang and R. Renner (2010) One-shot classical-quantum capacity and hypothesis testing, Arxiv preprint arXiv:1007.5456.

216. H. Yuen, R. Kennedy, and M. Lax (1975) Optimum testing of multiple hypotheses in quantum detection theory, IEEE Transactions on Information Theory 21(2): 125–34.

217. S. Zhao, F. Gao, X. Dong, and B. Zheng (2010) Detection scheme for quantum multiple access channel with noisy coherent state, in International Conference on Wireless Communications and Signal Processing (WCSP), 2010, IEEE, pp. 1–4.

218. C.A. Fuchs (1995) Distinguishability and Accessible Information in Quantum Theory. PhD thesis, Albuquerque, NM: University of New Mexico.

219. A. Peres (1995) Quantum Theory: Concepts and Methods. Dordrecht: Kluwer Academic Publishers.

220. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Wootters (1996) Mixed-state entanglement and quantum error correction, Physical Review A 54(5): 3824–51.

221. B. Schumacher and M.A. Nielsen (1996) Quantum data processing and error correction, Arxiv preprint quant-ph/9604022.

222. R. Derka, V. Buzek, and A.K. Ekert (1998) Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement, Physical Review Letters 80(8): 1571–5.

223. D. Loss and D.P. DiVincenzo (1998) Quantum computation with quantum dots, Physical Review A 57(1): 120–6.

224. M.A. Nielsen (1998) Quantum Information Theory. PhD thesis, Albuquerque, New Mexico: The University of New Mexico.

225. M.A. Nielsen, C.M. Caves, B. Schumacher, and H. Barnum (1998) Information-theoretic approach to quantum error correction and reversible measurement. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454(1969): 277–304.

226. A. Steane (1998) Quantum computing. Reports on Progress in Physics 61.

227. K. Banaszek, G.M. DAriano, M.G.A. Paris, and M.F. Sacchi (1999) Maximum-likelihood estimation of the density atrix, Physical Review A 61(1): 0103041–0103044.

228. H.E. Brandt (1999) Positive operator valued measure in quantum information processing, American Journal of Physics 67: 434–9.

229. C.M. Caves (1999) Quantum error correction and reversible operations, Journal of Superconductivity 12(6): 707–18.

230. A. Imamoglu, D.D. Awschalom, G. Burkard, et al. (1999) Quantum information processing using quantum dot spins and cavity qed, Physical Review Letters 83(20): 4204–7.

231. E. Knill, R. Laamme, and G.J. Milburn (1999) A scheme for efficient quantum computation with linear optics, Clusters of Galaxies 320: 296–9.

232. G.G. Amosov, A.S. Holevo, and R.F. Werner (2000) On some additivity problems in quantum information theory, Arxiv preprint math-ph/0003002.

233. C.H. Bennett and D.P. DiVincenzo (2000) Quantum information and computation, Nature 404(6775): 247–55.

234. G.M. D'Ariano and P. Lo Presti (2000) Tomography of quantum operations, arXiv:quant-ph/0012071v1.

235. S.B. Zheng and G.C. Guo (2000) Efficient scheme for two-atom entanglement and quantum information processing in cavity qed, Physical Review Letters 85(11): 2392–5.

236. D. Bouwmeester, A.K. Ekert, A. Zeilinger, et al., The Physics of Quantum Information. Berlin: Springer.

237. A.S. Holevo (2001) Statistical Structure of Quantum Theory. New York: Springer, 2001.

238. M.D. Lukin, M. Fleischhauer, R. Cote, et al. (2001) Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Physical Review Letters 87(3): 379011–379014.

239. A.I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller (2001) Quantum state reconstruction of the single-photon fock state, Physical Review Letters 87(5): 504021–504024.

240. M. Keyl (2002) Fundamentals of quantum information theory, Physics Reports 369(5): 431–548.

241. M.A. Nielsen, I. Chuang, and L.K. Grover (2002) Quantum computation and quantum information, American Journal of Physics 70: 558–60.

242. V. Vedral (2002) The role of relative entropy in quantum information theory, Reviews of Modern Physics 74(1): 197–234, 2002. [110]

243. G. D'Ariano, M. Paris, and M. Sacchi (2003) Quantum tomography, Advances in Imaging and Electron Physics 128: 205–308.

244. F. De Martini, A. Mazzei, M. Ricci, G.M. D Ariano, et al. (2003) Exploiting quantum parallelism of entanglement for a complete experimental quantum characterization of a single-qubit device, Physical Review-Series A 67(6): 62307.

245. I. Chuang (2004) Quantum information joining the foundations of physics and computer science, MIT Physics Annual.

246. N.K. Langford, R.B. Dalton, M.D. Harvey, et al. (2004) Measuring entangled qutrits and their use for quantum bit commitment, Physical Review Letters 93(5): 536011–536014.

247. J.M. Renes, R. Blume-Kohout, A.J. Scott, and C.M. Caves (2004) Symmetric informationally complete quantum measurements, Journal of Mathematical Physics 45: 2171–80.

248. P.W. Shor (2004) Equivalence of additivity questions in quantum information theory, Communications in Mathematical Physics 246(3): 453–72.

249. S.E. Ahnert and M.C. Payne (2005) General implementation of all possible positive-operator-value measurements of single photon polarization states, Physical Review A 71(1): 0123301–0123304.

250. C.J. O'Loan (2010) Topics in estimation of quantum channels, Arxiv preprint arXiv:1001.3971.

251. V. Marchenko and L. Pastur (1967) Distributions of eigenvalues for some sets of random matrices, Mathematics of the USSR-Sbornik 1: 457–83.

252. A. Guionnet (2009) Large Random Matrices: Lectures on Macroscopic Asymptotics. Berlin: Springer Verlag.

253. F. Penna and R. Garello (2009) Theoretical performance analysis of eigenvalue-based detection, Arxiv preprint arXiv:0907.1523,

254. N. Rao and A. Edelman (2006) Free probability, sample covariance matrices, and signal processing, in IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006, vol. 5, p. V.

255. L. Cardoso, M. Debbah, P. Bianchi, and J. Najim (2008) Cooperative spectrum sensing using random matrix theory, in 3rd International Symposium on Wireless Pervasive Computing, ISWPC 2008, pp. 334–8.

256. L. Wang, B. Zheng, J. Cui, S. Tang, and H. Dou (2009) Cooperative spectrum sensing using free probability theory, in Global Telecommunications Conference, Globecom'09, IEEE, pp. 1–5.

257. Y. Zeng and Y. Liang (2007) Maximum-minimum eigenvalue detection for cognitive radio, in IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) 2007, pp. 1–5.

258. Y. Zeng and Y. Liang (2009) Eigenvalue-based spectrum sensing algorithms for cognitive radio, IEEE Transactions on Communications 57(6): 1784–93.

259. J. Baik, G. Ben Arous, and S. Péché (2005) Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, The Annals of Probability 33(5): 1643–97.

260. F. Penna, R. Garello, and M. Spirito (2009) Cooperative spectrum sensing based on the limiting eigenvalue ratio distribution in Wishart matrices, Communications Letters, IEEE 13(7): 507–9.

261. O. Feldheim and S. Sodin (2010) A universality result for the smallest eigenvalues of certain sample covariance matrices, Geometric And Functional Analysis 20(1): 88–123.

262. O. Ryan and M. Debbah (2007) Free deconvolution for signal processing applications, IEEE Transactions on Information Theory 1: 1–15.

263. R. Dozier and J. Silverstein (2007) On the empirical distribution of eigenvalues of large dimensional information-plus-noisetype matrices, Journal of Multivariate Analysis 98(4): 678–94.

264. Z. Bai and Y. Yin (1988) Convergence to the semicircle law, The Annals of Probability 16(2): 863–75.

265. U. Grenander and J. Silverstein (1977) Spectral analysis of networks with random topologies, SIAM Journal on Applied Mathematics, 499–519.

266. D. Jonsson (1982) Some limit theorems for the eigenvalues of a sample covariance matrix, Journal of Multivariate Analysis 12(1): 1–38.

267. K. Wachter (1978) The strong limits of random matrix spectra for sample matrices of independent elements, The Annals of Probability, pp. 1–18.

268. Yin, Y. (1986) Limiting spectral distribution for a class of random matrices, Journal of Multivariate Analysis 20(1): 50–68.

269. Z. Bai and Y. Yin (1986) Limiting behavior of the norm of products of random matrices and two problems of Geman-Hwang, Probability Theory and Related Fields. 73(4): 555–69.

270. S. Geman (1980) A limit theorem for the norm of random matrices, The Annals of Probability 8(2): 252–61.

271. Z. Bai and Y. Yin (1993) Limit of the smallest eigenvalue of a large dimensional sample covariance matrix, The Annals of Probability, pp. 1275–94.

272. T. Tao and V. Vu (2011) Random matrices: Universality of eigenvectors, Arxiv preprint arXiv:1103.2801.

273. S. Geman (1986) The spectral radius of large random matrices, The Annals of Probability 14(4): 1318–28.

274. Z.D. Bai (1997) Circular law, The Annals of Probability 25: 494–529.

275. Z.D. Bai (1993) Convergence rate of expected spectral distributions of large random matrices. Part II. Sample covariance matrices, The Annals of Probability, pp. 649–72.

276. Z. Bai, B. Miao, and J. Tsay (1997) A note on the convergence rate of the spectral distributions of large random matrices, Statistics & Probability Letters 34(1): 95–101.

277. Z. Bai, J. Hu, and W. Zhou (2012) Convergence rates to the Marchenko–Pastur type distribution, Stochastic Processes and Their Applications 122: 68–92.

278. R. Müller (2003) Applications of large random matrices in communications engineering, in Proceedings of the International Conference on Advances in Internet, Processing, Systems, and Interdisciplinary Research (IPSI), Sveti Stefan, Montenegro.

279. W. Hachem, P. Loubaton, and J. Najim (2011) Applications of large random matrices to digital communications and statistical signal processing. EUSIPCO, September. Presentation (133 slides).

280. L. Pastur (2005) A simple approach to the global regime of Gaussian ensembles of random matrices, Ukrainian Mathematical Journal 57(6): 936–6.

281. W. Hachem, P. Loubaton, and J. Najim (2007) Deterministic equivalents for certain functionals of large random matrices, The Annals of Applied Probability 17(3): 875–930.

282. P. Vallet (2011) Random matrix theory and applications to statistical signal processing. PhD Dissertation, Université Paris-Est.

283. J. Silverstein and Z. Bai (1995) On the empirical distribution of eigenvalues of a class of large dimensional random matrices, Journal of Multivariate Analysis 54(2): 175–92.

284. G. Pan (2010) Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix, Journal of Multivariate Analysis 101(6): 1330–8.

285. S. Kritchman and B. Nadler (2009) Non-parametric detection of the number of signals: hypothesis testing and random matrix theory, IEEE Transactions on Signal Processing 57(10): 3930–41.

286. A. Gittens and J. Tropp (2011) Tail bounds for all eigenvalues of a sum of random matrices, Arxiv preprint arXiv:1104.4513.

287. W. Bryc, A. Dembo, and T. Jiang (2006) Spectral measure of large random Hankel, Markov and Toeplitz matrices, The Annals of Probability 34(1): 1–38.

288. A. Bose, S. Chatterjee, and S. Gangopadhyay (2003) Limiting spectral distrbution of large dimensional random matrices, Journal of the Indian Statistical Association 41: 221–59.

289. A. Bose and A. Dey (2010) The wonderful world of eigenvalues, in C.S. Yogananda (ed.), Math Unlimited: Essays in Mathematics, Enfield, New Hampshire: Science Publishers.

290. A. Bose, S. Gangopadhyay, and A. Sen (2010) Limiting spectral distribution of xx'matrices, in Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, vol. 46, pp. 677–707, Institut Henri Poincaré.

291. A. Bose, R. Hazra, and K. Saha (2010) Patterned random matrices and method of moments, in Proceedings of the International Congress of Mathematicians, Hyderabad, pp. 2203–30.

292. A. Bose and J. Mitra (2002) Limiting spectral distribution of a special circulant, Statistics & Probability Letters 60(1): 111–20.

293. A. Bose and A. Sen (2008) Another look at the moment method for large dimensional random matrices, Electronic Journal of Probability 13(21): 588–628.

294. A. Bose and A. Sen (2007) Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices, Electronic Journal of Probability 12: 29–35.

295. C. Hammond and S. Miller (2005) Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices, Journal of Theoretical Probability 18(3): 537–66.

296. A. Massey, S. Miller, and J. Sinsheimer (2007) Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices, Journal of Theoretical Probability 20(3): 637–62.

297. L. Pastur and V. Vasilchuk (2000) On the law of addition of random matrices, Communications in Mathematical Physics 214(2): 249–86.

298. V. Girko (2001) Theory of Stochastic Canonical Equations. Dordrecht: Kluwer Academic Publishers.

299. W. Hachem, P. Loubaton, J. Najim, and P. Vallet (2010) On bilinear forms based on the resolvent of large random matrices, Arxiv preprint arXiv:1004.3848.

300. R. Dozier and J. Silverstein (2007) Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices, Journal of Multivariate Analysis 98(6): 1099–1122.

301. W. Hachem, P. Loubaton, X. Mestre, J. Najim, and P. Vallet (2011) A subspace estimator for fixed rank perturbations of large random matrices, Arxiv preprint arXiv:1106.1497.

302. P. Bianchi, M. Debbah, M. Maïda, and J. Najim (2011) Performance of statistical tests for single-source detection using random matrix theory, IEEE Transactions on Information Theory 57(4): 2400–19.

303. T. Anderson (1963) Asymptotic theory for principal component analysis, The Annals of Mathematical Statistics 34(1): 122–48.

304. M. Wax and T. Kailath (1985) Detection of signals by information theoretic criteria, IEEE Transactions on Speech and Signal Processing (SSSP) 33: 387–92.

305. B. Nadler (2011) On the distribution of the ratio of the largest eigenvalue to the trace of a Wishart matrix, Journal of Multivariate Analysis 102(2): 363–71.

306. A. Bejan (2005) Largest eigenvalues and sample covariance matrices. Tracy-Widom and Painlevé. II: Computational aspects and realization in S-plus with applications, Preprint.

307. F. Bornemann (2010) Asymptotic independence of the extreme eigenvalues of Gaussian unitary ensemble, Journal of Mathematical Physics 51: 023514.

308. C. Tracy and H. Widom (2002) Distribution functions for largest eigenvalues and their applications, Arxiv preprint mathph/0210034.

309. C. Tracy and H. Widom (1998) Correlation functions, cluster functions, and spacing distributions for random matrices, Journal of Statistical Physics 92(5): 809–35.

310. C. Tracy and H. Widom (1994) Level spacing distributions and the Bessel kernel, Communications in Mathematical Physics 161(2): 289–309.

311. C. Tracy and H. Widom (1993) Introduction to random matrices, Geometric and Quantum Aspects of Integrable Systems, pp. 103–30.

312. I. Johnstone and A. Lu (2009) Sparse principal components analysis, Arxiv preprint arXiv:0901.4392.

313. I. Johnstone and Z. Ma (2011) Fast approach to the Tracy-Widom law at the edge of goe and gue, Arxiv preprint arXiv:1110.0108.

314. N. El Karoui (2010) The spectrum of kernel random matrices, The Annals of Statistics 38(1): 1–50.

315. N. El Karoui (2009) Concentration of measure and spectra of random matrices: applications to correlation matrices, elliptical distributions and beyond, The Annals of Applied Probability 19(6): 2362–2405.

316. N. El Karoui (2007) On spectral properties of large dimensional correlation matrices and covariance matrices computed from elliptically distributed data. Technical report from Department of Statistics, University of California, Berkeley.

317. N. El Karoui (2007) Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices, The Annals of Probability, 35(2): 663–714.

318. N. El Karoui (2006) A rate of convergence result for the largest eigenvalue of complex white Wishart matrices, The Annals of Probability 34(6): 2077–2117.

319. P. Bianchi, J. Najim, M. Maida, and M. Debbah (2009) Performance analysis of some eigen-based hypothesis tests for collaborative sensing, in IEEE/SP 15th Workshop on Statistical Signal Processing, SSP'09, pp. 5–8.

320. Y. Yin, Z. Bai, and P. Krishnaiah (1988) On the limit of the largest eigenvalue of the large dimensional sample covariance matrix, Probability Theory and Related Fields 78(4): 509–21.

321. A. Van der Vaart (1998) Asymptotic Statistics. Cambridge: Cambridge University Press.

322. R. Nadakuditi and A. Edelman (2008) Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples, IEEE Transactions on Signal Processing 56(7): 2625–38.

323. R. Nadakuditi (2006) Applied stochastic eigen-analysis. PhD dissertation, Massachusetts Institute of Technology.

324. B. Nadler and I. Johnstone (2011) Detection performance of Roy's largest root test when the noise covariance matrix is arbitrary, in Statistical Signal Processing Workshop (SSP), IEEE, pp. 681–4.

325. I. Johnstone (2008) Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy–Widom limits and rates of convergence, Annals of Statistics 36(6): 2638.

326. A. James (1964) Distributions of matrix variates and latent roots derived from normal samples, The Annals of Mathematical Statistics, 475–501.

327. I. Johnstone (2009) Approximate null distribution of the largest root in multivariate analysis, The Annals of Applied Statistics 3(4): 1616.

328. R. Muirhead (2005) Aspects of Mutivariate Statistical Theory. New York: John Wiley & Sons, Inc.

329. M. Debbah (2008) Random matrix theory and free probability, WP 2.1–Paradigms Collection and Foundations, pp. 161–90. http://www.bionets.eu/docs/BIONETS_D2_1_1.pdf

330. R. Couillet, J. Silverstein, Z. Bai, and M. Debbah (2011) Eigen-inference for energy estimation of multiple sources, IEEE Transactions on Information Theory 57(4): 2420–39.

331. J. Dumont, W. Hachem, S. Lasaulce, P. Loubaton, and J. Najim (2010) On the capacity achieving covariance matrix for Rician mimo channels: an asymptotic approach, IEEE Transactions on Information Theory 56(3): 1048–69.

332. M. Dieng (2005) Distribution functions for edge eigenvalues in orthogonal and symplectic ensembles: Painlevé representations, International Mathematics Research Notices 2005(37): 2263–87.

333. P. Vallet, P. Loubaton, and X. Mestre (2010) Improved subspace estimation for multivariate observations of high dimension: the deterministic signals case, Arxiv preprint arXiv:1002.3234.

334. B. Nadler (2010) Nonparametric detection of signals by information theoretic criteria: performance analysis and an improved estimator, IEEE Transactions on Signal Processing 58(5): 2746–56.

335. F. Benaych-Georges and R. Nadakuditi (2011) The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices, Advances in Mathematics.

336. J. Garnier (2011) Use of random matrix theory for target detection, localization, and reconstruction, Contemporary Mathematics 548 pp. 1–19.

337. F. Pasqualetti, R. Carli, and F. Bullo (2011) A distributed method for state estimation and false data detection in power networks. IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 469–74.

338. P. Vallet, W. Hachem, P. Loubaton, X. Mestre, and J. Najim (2011) An improved music algorithm based on low rank perturbation of large random matrices, in Statistical Signal Processing Workshop (SSP), IEEE, pp. 689–92.

339. P. Vallet, P. Loubaton, and X. Mestre (2009) Improved subspace doa estimation methods with large arrays: The deterministic signals case, in IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, pp. 2137–40.

340. H. Li and H. Poor (2009) Large system spectral analysis of covariance matrix estimation, IEEE Transactions on Information Theory 55(3): 1395–1422.

341. Z. Bai and J. Silverstein (2004) Clt for linear spectral statistics of large-dimensional sample covariance matrices, The Annals of Probability 32(1A): 553–605.

342. W. Hachem, P. Loubaton, and J. Najim (2008) A clt for information-theoretic statistics of gram random matrices with a given variance profile, The Annals of Applied Probability 18(6): 2071–30.

343. W. Hachem, M. Kharouf, J. Najim, and J. Silverstein (2011) A clt for information-theoretic statistics of non-centered gram random matrices, Arxiv preprint arXiv:1107.0145.

344. G. Anderson and O. Zeitouni (2008) A clt for regularized sample covariance matrices, The Annals of Statistics 36(6): 2553–76.

345. R. Couillet and W. Hachem (2011) Local failure detection and diagnosis in large sensor networks, Arxiv preprint arXiv:1107.1409.

346. P. Bickel and E. Levina (2008) Regularized estimation of large covariance matrices, The Annals of Statistics 36(1): 199–227.

347. P. Bickel and E. Levina (2008) Covariance regularization by thresholding. The Annals of Statistics 36(6): 2577–2604.

348. V. Marčenko and L. Pastur (1967) Distribution of eigenvalues for some sets of random matrices, Mathematics of the USSRSbornik 1, p. 457.

349. P. Bickel and E. Levina (2004) Some theory for Fisher's linear discriminant function, ‘naive Bayes’, and some alternatives when there are many more variables than observations, Bernoulli 10(6): 989–1010.

350. U. Grenander and G. Szego (1984) Toeplitz Forms and Their Applications. New York: Chelsea Publishing Company.

351. T. Cai, C. Zhang, and H. Zhou (2010) Optimal rates of convergence for covariance matrix estimation, The Annals of Statistics 38(4): 2118–44.

352. W. Wu and M. Pourahmadi (2003) Nonparametric estimation of large covariance matrices of longitudinal data, Biometrika 90(4): 831–44.

353. W. Wu and M. Pourahmadi (2009) Banding sample autocovariance matrices of stationary processes, Statistica Sinica 19(4): 1755–68.

354. E. Hannan and M. Deistler (1988) The Statistical Theory of Linear Systems. New York: John Wiley & Sons, Inc.

355. W. Wu (2005) Nonlinear system theory: Another look at dependence, Proceedings of the National Academy of Sciences of the United States of America 102(40): 14150.

356. D. Voiculescu, K. Dykema, and A. Nica (1992) Free random variables. American Mathematical Society.

357. P. Biane (1998) Free probability for probabilists, Quantum Probability Communications 11: 55–71.

358. D. Tse and S. Hanly (1999) Linear multiuser receivers: Effective interference, effective bandwidth and user capacity, IEEE Transactions on Information Theory 45(2): 641–57.

359. D. Tse (1999) Multiuser receivers, random matrices and free probability, in Proceedings of the Annual Allerton Conference on Communication Control and Computing 37: 1055–64.

360. R. Speicher (1997) Free probability theory and non-crossing partitions. 39 Seminaire Lotharingien de Combinatoire.

361. N. Rao and A. Edelman (2008) The polynomial method for random matrices, Foundations of Computational Mathematics 8(6): 649–702.

362. N. Rao (2006) Rmtool: A random matrix and free probability calculator in Matlab. Users Guide from Department of EECS, Massachusetts Institute of Technology.

363. N. Rao (2007) The analytic computability of the Shannon transform for a large class of random matrix channels, Arxiv preprint arXiv:0712.0305.

364. N. Rao, J. Mingo, R. Speicher, and A. Edelman (2008) Statistical eigen-inference from large Wishart matrices, The Annals of Statistics 36(6): 2850–85.

365. O. Ryan and M. Debbah (2009) Asymptotic behavior of random Vandermonde matrices with entries on the unit circle, IEEE Transactions on Information Theory 55(7): 3115–47.

366. O. Ryan and M. Debbah (2008) Channel capacity estimation using free-probability theory, IEEE Transactions on Signal Processing 56(11): 5654–67.

367. M. McClure, R.C. Qiu, and L. Carin (1997) On the superresolution of observables from swept-frequency scattering data, IEEE Transactions on Antenna Propagation 45: 631–41.

368. R.C. Qiu and I.T. Lu (1999) Multipath resolving with frequency dependence for broadband wireless channel modeling, IEEE Transactions on Vehicular Technology 48: 273–85.

369. R.C. Qiu (2002) A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design (Part 1), IEEE Journal of Selected Areas in Commun. (JSAC), the 1st JASC special issue on UWB Radio 20: 1628–37.

370. R.C. Qiu (2004) A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design: Part 2 Wave-based system analysis, IEEE Transactions on Wireless Communications 3: 2312–24.

371. R.C. Qiu (2006) A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design: Part 3 System performance analysis, IEEE Transactions on Wireless Communications 5(10): 2685–95.

372. C. Qiu, C. Zhou, and Q. Liu (2005) Physics-based pulse distortion for ultra-wideband signals,, IEEE Transactions on Vehicular Technology 54: 1546–54.

373. C.M. Zhou and R.C. Qiu (2007) Pulse distortion caused by cylinder diffraction and its impact on UWB communications,, IEEE Transactions on Vehicular Technology 56: 2384–91.

374. A. Nordio, C. Chiasserini, and E. Viterbo (2008) Reconstruction of multidimensional signals from irregular noisy samples, IEEE Transactions on Signal Processing 56(9): 4274–85.

375. C. Bordenave (2008) Eigenvalues of Euclidean random matrices, Random Structures & Algorithms 33(4): 515–32.

376. G. Tucci and P. Whiting (2011) Eigenvalue results for large scale random Vandermonde matrices with unit complex entries, IEEE Transactions on Information Theory 57(6): 3938–54.

377. O. Ryan and M. Debbah (2011) Convolution operations arising from Vandermonde matrices, IEEE Transactions on Information Theory 57(7): 4647–59.

378. X. Mestre (2008) Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates, IEEE Transactions on Information Theory 54(11): 5113–29.

379. O. Ryan, A. Masucci, S. Yang, and M. Debbah (2011) Finite dimensional statistical inference, IEEE Transactions on Information Theory 57(4): 2457–73.

380. D. Voiculescu (1986) Addition of certain non-commuting random variables, Journal of Functional Analysis 66(3): 323–46.

381. F. Benaych-Georges and M. Debbah (2008) Free deconvolution: from theory to practice, submitted to IEEE Transactions on Information Theory.

382. O. Ryan (2007) Tools for convolution with finite Gaussian matrices. http://folk.uio.no/oyvindry/finitegaussian/

383. Z. Burda, J. Jurkiewicz, and B. Waclaw (2004) Spectral moments of correlated wishart matrices, Arxiv preprint condmat/0405263.

384. S. Ji, Y. Xue, and L. Carin (2008) Bayesian compressive sensing, IEEE Transactions on Signal Processing 56(6): 2346–56.

385. S. Ji, D. Dunson, and L. Carin (2009) Multi-task compressive sensing, IEEE Transactions on Signal Processing 57(1): 92–106.

386. L.C. Potter, E. Ertin, J.T. Parker, and M. Çetin (2010) Sparsity and compressed sensing in radar imaging, Proceedings of the IEEE 98(6): 1006–20.

387. J.M. Duarte-Carvajalino and G. Sapiro (2009) Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization, IEEE Transactions on Image Processing 18(7): 1395–1408.

388. G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L.E. Ghaoui, and M.I. Jordan (2004) Learning the kernel matrix with semidefinite programming, The Journal of Machine Learning Research 5: 27–72.

389. M.J. Choi, V. Chandrasekaran, and A.S. Willsky (2009) Exploiting sparse Markov and covariance structure in multiresolution models, in Proceedings of the 26th Annual International Conference on Machine Learning (Montreal, QC, Canada), ACM, pp. 177–84.

390. D.S. Bernstein (2009) Matrix Mathematics: Theory, Facts, and Formulas. New Jersey: Princeton University Press.

391. L. Vandenberghe and S. Boyd (1996) Semidefinite programming, SIAM Review 38(1): 49–95.

392. M. Chiang (2005) Geometric Programming for Communication Systems. Hanover, MA: Now Publishers Inc.

393. Wikipedia, “Interior point method–Wikipedia, The Free Encyclopedia.” http://en.wikipedia.org/wiki/Interior point method.

394. Z. Hu, R. Qiu, and D. Singh (2009) Spectral efficiency for MIMO UWB channel in rectangular metal cavity, Journal of Networks 4: 42–52.

395. Wikipedia, Particle swarm optimization—Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Particle swarm optimization.

396. A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization. New Jersey: Princeton University Press.

397. P. Setoodeh and S. Haykin (2009) Robust transmit power control for cognitive radio, Proceedings of IEEE 97(5): 915–39.

398. A.D. Maio and A. Farina (2009) Waveform Diversity: Past, Present, and Future. A Lecture Series on Waveform Diversity for Advanced Radar Systems, July.

399. N. Guo, J.Q. Zhang, P. Zhang, Z. Hu, Y. Song, and R.C. Qiu (2008) UWB real-time testbed with waveform-based precoding, in IEEE Military Conference (San Diego, USA).

400. N. Guo, Z. Hu, A.S. Saini, and R.C. Qiu (2009) Waveform-level Precoding with Simple Energy Detector Receiver for Wideband Communication, in IEEE Southeastern Symposium on System Theory (Tullahoma, USA).

401. Z. Hu, N. Guo, and R.C. Qiu (2009) Wideband waveform optimization for energy detector receiver with practical considerations, in IEEE ICUWB (Vancouver, Canada).

402. M.C. Wicks (2009) History of Waveform Diversity and Future Benefits to Military Systems. A Lecture Series onWaveform Diversity for Advanced Radar Systems.

403. Y. Song, Z. Hu, N. Guo, and R.C. Qiu (2010) Real-time MISO UWB radio testbed and waveform design, in IEEE SoutheastCon, pp. 204–9.

404. F. Barbaresco (2009) New Agile Waveforms Based on Mathematics and Resources management of Waveform Diversity. A Lecture Series on Waveform Diversity for Advanced Radar Systems.

405. A.D. Maio and A. Farina (2009) New Trends in Coded Waveform Design for Radar Applications. A Lecture Series on Waveform Diversity for Advanced Radar Systems.

406. S. Haykin (2006) Cognitive radar: A way of the future. IEEE Signal Processing Magazine 23(1): 30–40.

407. N.A. Goodman, P.R. Venkata, and M.A. Neifeld (2007) Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors, IEEE Journal of Selected Topics in Signal Processing 1(1): 105–13.

408. A. Ben-Tal and A. Nemirovski (2000) Robust solutions of linear programming problems contaminated with uncertain data, Mathematical Programming 88(3): 411–24.

409. A. Ben-Tal and A. Nemirovski (2002) Robust optimization–methodology and applications, Mathematical Programming 92(3): 453–80.

410. L. El Ghaoui and H. Lebret (1997) Robust solutions to least-squares problems with uncertain data, SIAM Journal on Matrix Analysis and Applications 18: 1035–64.

411. Y.C. Eldar (2008) Rethinking biased estimation: Improving maximum likelihood and the Cramér–Rao bound, Foundations and Trends in Signal Processing 1(4): 305–449.

412. Y.C. Eldar and N. Merhav (2004) A competitive minimax approach to robust estimation of random parameters, IEEE Transactions on Signal Processing 52(7): 1931–46.

413. Y.C. Eldar, A. Ben-Tal, and A. Nemirovski (2004) Linear minimax regret estimation of deterministic parameters with bounded data uncertainties, IEEE Transactions on Signal Processing 52(8): 2177–88.

414. Y.C. Eldar (2006) Minimax estimation of deterministic parameters in linear models with a random model matrix, IEEE Transactions on Signal Processing 54(2): 601–12.

415. Y.C. Eldar (2006) Minimax MSE estimation of deterministic parameters with noise covariance uncertainties, IEEE Transactions on Signal Processing 54(1): 138–45.

416. A. Beck, A. Ben-Tal, and Y.C. Eldar (2006) Robust mean-squared error estimation of multiple signals in linear systems affected by model and noise uncertainties, Mathematical Programming 107(1): 155–87.

417. A. Beck, Y.C. Eldar, and A. Ben-Tal (2008) Mean-squared error estimation for linear systems with block circulant uncertainty, SIAM Journal on Matrix Analysis and Applications 29(3): 712–30.

418. L. El Ghaoui, F. Oustry, and H. Lebret (1998) Robust solutions to uncertain semidefinite programs, SIAM Journal of Optimization 9: 33–52.

419. D. Bertsimas, D. Pachamanova, and M. Sim (2004) Robust linear optimization under general norms, Operations Research Letters 32(6): 510–16.

420. K.M. Teo (2007) Nonconvex Robust Optimization. PhD thesis, Massachusetts Institute of Technology.

421. E.A. Gharavol, Y.C. Liang, and K. Mouthaan (2010) Robust downlink beamforming in multiuser MISO cognitive radio networks with imperfect channel-state information, IEEE Transactions on Vehicular Technology 59: 2852–60.

422. L. Zhang, Y.C. Liang, Y. Xin, and H.V. Poor (2009) Robust cognitive beamforming with partial channel state information, IEEE Transactions on Wireless Communications 8: 4143–53.

423. Y. Yang and R.S. Blum (2007) Minimax robust MIMO radar waveform design, IEEE Journal of Selected Topics in Signal Processing 1(1): 147–55.

424. T. Naghibi, M. Namvar, and F. Behnia (2010) Optimal and robust waveform design for MIMO radars in the presence of clutter, Signal Processing 90: 1103–17.

425. S.A. Vorobyov, A.B. Gershman, and Z. Luo (2003) Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem, IEEE Transactions on Signal Processing 51(2): 313–24.

426. S.J. Kim, A. Magnani, A. Mutapcic, S.P. Boyd, and Z. Luo (2008) Robust beamforming via worst-case SINR maximization, IEEE Transactions on Signal Processing 56(4): 1539–47.

427. S.A. Vorobyov, H. Chen, and A.B. Gershman (2008) On the relationship between robust minimum variance beamformers with probabilistic and worst-case distortionless response constraints, IEEE Transactions on Signal Processing 56(11): 5719–24.

428. K. Slavakis and I. Yamada (2007) Robust wideband beamforming by the hybrid steepest descent method, IEEE Transactions on Signal Processing 55(9): 4511–22.

429. J. Lampinen (2000) Multiobjective nonlinear pareto-optimization, Tech. Rep., Lappeenranta University of Technology, Laboratory of Information Processing, Lapperanta, Finland.

430. R.T. Marler and J.S. Arora (2004) Survey of multi-objective optimization methods for engineering, Structural and Multidisciplinary Optimization 26(6): 369–95.

431. N. Srinivas and K. Deb (1994) Multiobjective optimization using nondominated sorting in genetic algorithms, Evolutionary Computation 2(3): 221–48.

432. E. Zitzler, M. Laumanns, and S. Bleuler (2004) A tutorial on evolutionary multiobjective optimization, Metaheuristics for Multiobjective Optimisation 535: 3–37.

433. K.C. Tan, T.H. Lee, and E.F. Khor (2002) Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons, Artificial Intelligence Review 17(4): 251–90.

434. S.F. Adra and P.J. Fleming (2011) Diversity management in evolutionary many-objective optimization, IEEE Transactions on Evolutionary Computation 15: 183–95.

435. T. Aittokoski and K. Miettinen (2008) Efficient evolutionary method to approximate the Pareto optimal set in multiobjective optimization, in International Conference on Engineering Optimization (Rio de Janeiro, Brazil).

436. V.J. Amuso and J. Enslin (2007) The Strength Pareto Evolutionary Algorithm 2 (SPEA2) applied to simultaneous multimission waveform design, in Waveform Diversity and Design Conference (Pisa, Italy), IEEE, pp. 407–17.

437. S. Sen, G. Tang, and A. Nehorai (2011) Multiobjective optimization of OFDM radar waveform for target detection, IEEE Transactions on Signal Processing 59(2): 639–52.

438. R. Shonkwiler (1993) Parallel genetic algorithms, in Proceedings of the 5th International Conference on Genetic Algorithms, Citeseer, pp. 199–205.

439. B.A. Fette (ed.) (2006) Cognitive Radio Technology. New York: Elsevier Inc.

440. S. Chen and A.M. Wyglinski (2008) Distributed optimization of cognitive radios employed in dynamic spectrum access networks, in 5th IEEE Annual Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks Workshops, IEEE, pp. 1–4.

441. S. Chen and A.M. Wyglinski (2009) Cognitive radio-enabled distributed cross-layer optimization via genetic algorithms, in 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, IEEE, pp. 1–6.

442. X. Zhang, Y. Huang, H. Jiang, and Y. Liu (2009) Design of cognitive radio node engine based on genetic algorithm, in WASE International Conference on Information Engineering, IEEE, pp. 22–5.

443. J. Ma, H. Jiang, Y. Hu, and Y. Bao (2009) Optimal design of cognitive radio wireless parameters based on non-dominated neighbor distribution Genetic algorithm, in 8th IEEE/ACIS International Conference on Computer and Information Science, IEEE, pp. 97–101.

444. Y. Bao, H. Jiang, Y. Huang, and R. Hu (2009) Multi-objective optimization of power control and resource allocation for cognitive wireless networks, in 8th IEEE/ACIS International Conference on Computer and Information Science, IEEE, pp. 70–4.

445. A.A. El-Saleh, M. Ismail, M.A.M. Ali, and J. Ng (2009) Development of a cognitive radio decision engine using multiobjective hybrid genetic algorithm, in 9th Malaysia International Conference on Communications (MICC), IEEE, pp. 343–7.

446. D.Q. Zhou (2009) Immune genetic algorithm-based parameters optimization of cognitive radios, in International Conference on Microwave Technology and Computational Electromagnetics (ICMTCE), IET, pp. 468–70.

447. H. Wang and L. Guo (2010) Multi-objective optimization of cognitive radio in clonal selection quantum genetic algorithm, in International Conference on Measuring Technology and Mechatronics Automation, IEEE, pp. 740–3.

448. A.A. El-Saleh, M. Ismail, and M.A.M. Ali (2010) Pragmatic trellis coded modulation for adaptive multi-objective genetic algorithm-based cognitive radio systems, in 16th Asia-Pacific Conference on Communications (APCC), Auckland, pp. 429–34.

449. C.K. Huynh and W.C. Lee (2011) Multicarrier cognitive radio system configuration based on interference analysis by two dimensional genetic algorithm, in International Conference on Advanced Technologies for Communications (ATC), IEEE, pp. 85–8.

450. B. Zhang, K. Hu, and Y. Zhu (2010) Spectrum allocation in cognitive radio networks using swarm intelligence, in 2nd International Conference on Communication Software and Networks (ICCSN'10), IEEE, pp. 8–12.

451. K.S. Huang, C.H. Lin, and P.A. Hsiung (2010) A space-efficient and multi-objective case-based reasoning in cognitive radio, in IET International Conference on Frontier Computing. Theory, Technologies and Applications, pp. 25–30.

452. J. Zander (1997) Radio resource management in future wireless networks: Requirements and limitations, IEEE Communications Magazine 35(8): 30–6.

453. J. Zander and O. Queseth (2001) Radio Resource Management for Wireless Networks. Artech House, Inc.

454. A. Hills and B. Friday (2004) Radio resource management in wireless LANs, IEEE Communications Magazine, 42(12): S9–14.

455. J. Pérez-Romero, O. Sallent, R. Agusti, and M. Diaz-Guerra (2005) Radio Resource Management Strategies in UMTS. New York: Wiley Online Library.

456. D. Niyato and E. Hossain (2008) A noncooperative game-theoretic framework for radio resource management in 4G heterogeneous wireless access networks, IEEE Transactions on Mobile Computing 7(3): 332–45.

457. Wikipedia, Radio resource management–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Radio resource management.

458. Z.Q. Luo and W. Yu (2006) An introduction to convex optimization for communications and signal processing, IEEE Journal on Selected Areas in Communications 24(8): 1426–38.

459. J.O.D. Neel (2006) Analysis and Design of Cognitive Radio Networks and Distributed Radio Resource Management Algorithms. PhD thesis, Virginia Polytechnic Institute and State University.

460. I.F. Akyildiz, W.Y. Lee, M.C. Vuran, and S. Mohanty (2008) A survey on spectrum management in cognitive radio networks, Communications Magazine, IEEE 46(4): 40–8.

461. F. Wang, M. Krunz, and S. Cui (2008) Price-based spectrum management in cognitive radio networks, IEEE Journal of Selected Topics in Signal Processing 2(1): 74–87.

462. J. Zander (1992) Performance of optimum transmitter power control in cellular radio systems, IEEE Transactions on Vehicular Technology 41(1): 57–62.

463. G.J. Foschini and Z. Miljanic (1993) A simple distributed autonomous power control algorithm and its convergence, IEEE Transactions on Vehicular Technology 42(4): 641–6.

464. R. Knopp and P.A. Humblet (1995) Information capacity and power control in single-cell multiuser communications, in IEEE International Conference on Communications (ICC'95 Seattle, ‘Gateway to Globalization’), vol. 1, pp. 331–5.

465. R.D. Yates (1995) A framework for uplink power control in cellular radio systems, IEEE Journal on Selected Areas in Communications 13(7): 1341–7.

466. G. Caire, G. Taricco, and E. Biglieri (1999) Optimum power control over fading channels, IEEE Transactions on Information Theory 45(5): 1468–89.

467. S.W. Kim and A.J. Goldsmith (2000) Truncated power control in code-division multiple-access communications, IEEE Transactions on Vehicular Technology 49(3): 965–72.

468. Q. Liu, S. Zhou, and G.B. Giannakis (2004) Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links, IEEE Transactions on Wireless Communications 3(5): 1746–55.

469. Q. Liu, S. Zhou, and G.B. Giannakis (2005) Queuing with adaptive modulation and coding over wireless links: Cross-layer analysis and design, IEEE Transactions on Wireless Communications 4(3): 1142–53.

470. K.B. Song, A. Ekbal, S. Chung, and J.M. Cioffi (2006) Adaptive modulation and coding (AMC) for bit-interleaved coded OFDM (BIC-OFDM), IEEE Transactions on Wireless Communications 5(7): 1685–94.

471. X. Lin and N.B. Shroff (2004) Joint rate control and scheduling in multihop wireless networks, in 43rd IEEE Conference on Decision and Control, CDC., vol. 2, pp. 1484–9.

472. R.W. Heath Jr, S. Sandhu, and A. Paulraj (2001) Antenna selection for spatial multiplexing systems with linear receivers, Communications Letters, IEEE 5(4): 142–4.

473. D.A. Gore and A.J. Paulraj (2002) MIMO antenna subset selection with space-time coding, IEEE Transactions on Signal Processing 50(10): 2580–8.

474. S. Sanayei and A. Nosratinia (2004) Antenna selection in MIMO systems, Communications Magazine, IEEE 42(10): 68–73.

475. A.F. Molisch and M.Z. Win (2004) MIMO systems with antenna selection, Microwave Magazine, IEEE 5(1): 46–56.

476. S. Lu, V. Bharghavan, and R. Srikant (1999) Fair scheduling in wireless packet networks, IEEE/ACM Transactions on Networking (TON) 7(4): 473–89.

477. X. Liu, E.K.P. Chong, and N.B. Shroff (2001) Opportunistic transmission scheduling with resource-sharing constraints in wireless networks, IEEE Journal on Selected Areas in Communications 19(10): 2053–64.

478. H. Fattah and C. Leung (2002) An overview of scheduling algorithms in wireless multimedia networks, Wireless Communications, IEEE 9(5): 76–83.

479. N. Vaidya, A. Dugar, S. Gupta, and P. Bahl (2005) Distributed fair scheduling in a wireless LAN, IEEE Transactions on Mobile Computing 4(6): 616–29.

480. S. Tekinay and B. Jabbari (1991) Handover and channel assignment in mobile cellular networks, Communications Magazine, IEEE 29(11): 42–6.

481. E. Del Re, R. Fantacci, and G. Giambene (1995) Handover and dynamic channel allocation techniques in mobile cellular networks, IEEE Transactions on Vehicular Technology 44(2): 229–37.

482. G.P. Pollini (1996) Trends in handover design, Communications Magazine, IEEE 34(3): 82–90.

483. M. Naghshineh and M. Schwartz (1996) Distributed call admission control in mobile/wireless networks, IEEE Journal on Selected Areas in Communications 14(4): 711–17.

484. T.K. Liu and J.A. Silvester (1998) Joint admission/congestion control for wireless CDMA systems supporting integrated services, IEEE Journal on Selected Areas in Communications 16(6): 845–57.

485. B.M. Epstein and M. Schwartz (2000) Predictive QoS-based admission control for multiclass traffic in cellular wireless networks, IEEE Journal on Selected Areas in Communications 18(3): 523–34.

486. Y. Xiao, P. Chen, and Y. Wang (2001) Optimal admission control for multi-class of wireless adaptive multimedia services, IEICE Transactions on Communications 84(4): 795–804.

487. Y. Fang and Y. Zhang (2002) Call admission control schemes and performance analysis in wireless mobile networks, IEEE Transactions on Vehicular Technology 51(2): 371–82.

488. D. Gao, J. Cai, and K.N. Ngan (2005) Admission control in IEEE 802.11e wireless LANs, Network, IEEE 19(4): 6–13.

489. D. Niyato and E. Hossain (2005) Call admission control for QoS provisioning in 4G wireless networks: Issues and approaches, Network, IEEE 19(5): 5–11.

490. S. Kunniyur and R. Srikant (2003) End-to-end congestion control schemes: Utility functions, random losses and ECN marks, IEEE/ACM Transactions on Networking (TON) 11(5): 702.

491. M. Chiang (2005) Balancing transport and physical layers in wireless multihop networks: Jointly optimal congestion control and power control, IEEE Journal on Selected Areas in Communications 23(1).

492. A. Eryilmaz and R. Srikant (2006) Joint congestion control, routing, and MAC for stability and fairness in wireless networks, IEEE Journal on Selected Areas in Communications 24(8): 1514–24.

493. X. Lin and N.B. Shroff (2006) The impact of imperfect scheduling on cross-layer congestion control in wireless networks, IEEE/ACM Transactions on Networking 14(2): 302–15.

494. Y. Yi and S. Shakkottai (2007) Hop-by-hop congestion control over a wireless multi-hop network, IEEE/ACM Transactions on Networking 15(1): 133–44.

495. Y. Bejerano, S.J. Han, and L. Li (2007) Fairness and load balancing in wireless LANs using association control, IEEE/ACM Transactions on Networking 15(3): 560–73.

496. B. Karp and H.T. Kung (2000) GPSR: Greedy perimeter stateless routing for wireless networks, in Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, ACM, pp. 243–54.

497. J.H. Chang and L. Tassiulas (2000) Energy conserving routing in wireless ad-hoc networks, in 19th Annual Joint Conference of the IEEE Computer and Communications Societies, Infocom'00), vol. 1, pp. 22–31.

498. D.S.J.D. Couto, D. Aguayo, J. Bicket, and R. Morris (2005) A high-throughput path metric for multi-hop wireless routing, Wireless Networks 11(4): 419–34.

499. M.S. Alouini and A.J. Goldsmith (1999) Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques, IEEE Transactions on Vehicular Technology 48(4): 1165–81.

500. L. Li and A. Goldsmith (2000) Capacity and optimal resource allocation for fading broadcast channels: Part II: outage capacity, IEEE Transactions on Information Theory 47(3): 120–45.

501. A.J. Goldsmith and M. Effros (2001) The capacity region of broadcast channels with intersymbol interference and colored Gaussian noise, IEEE Transactions on Information Theory 47(1): 219–40.

502. C. Zeng, L.M.C. Hoo, and J.M. Cioffi (2001) Optimal water-filling algorithms for a Gaussian multiaccess channel with intersymbol interference, in IEEE International Conference on Communications (ICC 2001), vol. 8, pp. 2421–7.

503. L. Li and A.J. Goldsmith (2001) Capacity and optimal resource allocation for fading broadcast channels. I. Ergodic capacity, IEEE Transactions on Information Theory 47(3): 1083–1102.

504. S. Toumpis and A.J. Goldsmith (2003) Capacity regions for wireless ad hoc networks, IEEE Transactions on Wireless Communications 2(4): 736–48.

505. R.K. Mallik, M.Z. Win, J.W. Shao, M.S. Alouini, and A.J. Goldsmith (2004) Channel capacity of adaptive transmission with maximal ratio combining in correlated Rayleigh fading, IEEE Transactions on Wireless Communications 3(4): 1124–33.

506. W. Yu and R. Lui (2006) Dual methods for nonconvex spectrum optimization of multicarrier systems, IEEE Transactions on Communications 54(7): 1310–22.

507. W. Yu and T. Lan (2007) Transmitter optimization for the multi-antenna downlink with per-antenna power constraints, IEEE Transactions on Signal Processing 55(6): 2646–60.

508. A. Paulraj, R. Nabar, and D. Gore (2003) Introduction to Space-Time Wireless Communications. Cambridge: Cambridge University Press.

509. Z. Hu, D. Singh, and R.C. Qiu (2008) MIMO capacity for UWB channel in rectangular metal cavity, in IEEE Southeastcon, pp. 129–35.

510. W. Yu and J.M. Cioffi (2006) Constant-power waterfilling: Performance bound and low-complexity implementation, IEEE Transactions on Communications 54(1): 23–8.

511. D. Singh, Z. Hu, and R.C. Qiu (2008) UWB channel sounding and channel characteristics in rectangular metal cavity, in IEEE Southeastcon (Huntsville, USA).

512. R.C. Qiu, C. Zhou, J.Q. Zhang, and N. Guo (2007) Channel reciprocity and time-reversed propagation for ultra-wideband communications, in IEEE AP-S International Symposium on Antennas and Propagation, vol. 1, pp. 29–32.

513. M.C. Grant (2010) CVX: Matlab software for disciplined convex programming. http://cvxr.com/. Date accessed: Dec. 2010.

514. A. d'Aspremont (2007) Semidefinite optimization with applications in sparse multivariate statistics. BIRS Workshop on Mathematical Programming in Data Mining and Machine Learning.

515. Z. Hu, N. Guo, and R.C. Qiu (2010) Wideband waveform optimization for multiple input signle output cognitive radio with practical considerations, in Proceedings of IEEE Military Communications Conference, (San Jose, CA).

516. T.I. Laakso, V. Valimaki, M. Karjalainen, and U.K. Laine (1996) Splitting the unit delay [FIR/all pass filters design], IEEE Signal Processing Magazine 13(1): 30–60.

517. J. Li, Y. Xie, P. Stoica, X. Zheng, and J. Ward (2007) Beampattern synthesis via a matrix approach for signal power estimation, IEEE Transactions on Signal Processing 55(12): 5643–7.

518. F. Wang, V. Balakrishnan, P. Zhou, et al. (2003) Optimal array pattern synthesis using semidefinite programming, IEEE Transactions on Signal Processing 51(5): 1172–83.

519. M. Bengtsson and B. Ottersten (1999) Optimal downlink beamforming using semidefinite optimization, in Proceedings of the Annual Allerton Conference on Communication Control and Computing, vol. 37, Citeseer, pp. 987–96.

520. G. San Antonio and D. Fuhrmann (2005) Beampattern synthesis for wideband MIMO radar systems, in 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp. 105–8.

521. S.F. Yan and Y.L. Ma (2005) Design of FIR beamformer with frequency invariant patterns via jointly optimizing spatial and frequency responses, in IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 789–92.

522. J. Sturm (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software 11(1): 625–53.

523. Z. Hu, N. Guo, R.C. Qiu, et al. (2010) Design of look-up table based architecture for wideband beamforming, in International Waveform Diversity and Design Conference (Niagara Falls, Canada).

524. Y. Zhao, W. Liu, and R. Langley (2009) A least squares approach to the design of frequency invariant beamformers, in 17th European Signal Processing Conference, (Glasgow, Scotland).

525. P. Lassila and A. Penttinen (2010) Survey on performance analysis of cognitive radio networks. http://www.netlab.tkk.fi/tutkimus/abi/publ/cogsurvey2.pdf, 2008. Date accessed: Dec. 2010.

526. Wikipedia, OSI model–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/OSI model.

527. W. Su and T. Lim (2006) Cross-layer design and optimization for wireless sensor networks, in Proceedings of the 7th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, pp. 278–84.

528. M. Chiang, S. Low, A. Calderbank, and J. Doyle (2007) Layering as optimization decomposition: A mathematical theory of network architectures, Proceedings of the IEEE 95(1): 255–312.

529. L. Chen, S. Low, M. Chiang, and J. Doyle (2006) Cross-layer congestion control, routing and scheduling design in ad hoc wireless networks, in Proceedings of the IEEE Infocom'06, Citeseer, vol. 6.

530. A. Tang, J. Wang, S. Low, and M. Chiang (2007) Equilibrium of heterogeneous congestion control: Existence and uniqueness, IEEE/ACM Transactions on Networking (TON) 15(4): 824–37.

531. S. Low (20043) A duality model of TCP and queue management algorithms, IEEE/ACM Transactions on Networking (TON) 11(4): 525–36.

532. J. Lee, A. Tang, J. Huang, M. Chiang, and A. Calderbank (2007) Reverse-engineering MAC: A non-cooperative game model, IEEE Journal on Selected Areas in Communications 25(6): 1135–47.

533. D. Palomar and M. Chiang (2007) Alternative distributed algorithms for network utility maximization: Framework and applications, IEEE Transactions on Automatic Control 52(12): 2254–69.

534. Y. Vardi (1996) Network tomography: Estimating source-destination traffic intensities from link data, Journal of the American Statistical Association 91(433): 365–77.

535. R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu (2004) Network tomography: Recent developments, Statistical Science 19(3): 499–517.

536. C. Fortuna and M. Mohorcic (2009) Trends in the development of communication networks: Cognitive networks, Computer Networks 53(9): 1354–76.

537. L. Ding, T. Melodia, S. Batalama, J. Matyjas, and M. Medley (2010) Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc networks, IEEE Transactions on Vehicular Technology 59, 1969–79.

538. W. Lou, W. Liu, and Y. Zhang (2006) Performance optimization using multipath routing in mobile ad hoc and wireless sensor networks, Combinatorial Optimization in Communication Networks. New York: Springer, pp. 117–46.

539. R. Rajbanshi, A.M. Wyglinski, and G.J. Minden (2006) An efficient implementation of NC-OFDM transceivers for cognitive radios, in 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications, (Mykonos Island), pp. 1–5.

540. A. Dutta, D. Saha, D. Grunwald, and D. Sicker (2010) Practical implementation of blind synchronization in NC-OFDM based cognitive radio networks, in CORONET 2010 (Illinois, Chicago).

541. V.R. Cadambe and S.A. Jafar (2008) Interference alignment and spatial degrees of freedom for the k user interference channel, in IEEE International Conference on Communications, ICC'08, (Beijing, China), pp. 971–75.

542. R. Choudhury and N. Vaidya (2007) Mac-layer capture: A problem in wireless mesh networks using beamforming antennas, in 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON'07, pp. 401–10.

543. Z. Quan, S. Cui, and A.H. Sayed (2008) Optimal linear cooperation for spectrum sensing in cognitive radio networks, IEEE Journal of Selected Topics in Signal Processing 2(1): 28–40.

544. E.C.Y. Peh, Y.C. Liang, Y.L. Guan, and Y. Zeng (2009) Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view, IEEE Transactions on Vehicular Technology 58(9): 5294–9.

545. Q. Peng, P.C. Cosman, and L.B. Milstein (2010) Optimal sensing disruption for a cognitive radio adversary, IEEE Transactions on Vehicular Technology 59(4): 1801–10.

546. N.J. Nilsson (1982) Principles of Artificial Intelligence. Berlin: Springer Verlag.

547. R.S. Michalski, J.G. Carbonell, and T.M. Mitchell (1985) Machine Learning: An Artificial Intelligence Approach, vol. 1. Morgan Kaufmann.

548. S.J. Russell, P. Norvig, J.F. Canny, J.M. Malik, and D.D. Edwards (1955) Artificial Intelligence: A Modern Approach, vol. 74. Englewood Cliffs, NJ: Prentice Hall.

549. D. Kortenkamp, R.P. Bonasso, and R. Murphy (1998) Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems. AAAI Press.

550. J. Ferber (1999) Multi-agent Systems: An Introduction to Distributed Artificial Intelligence, vol. 222. London: Addison-Wesley.

551. G.F. Luger (2005) Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Longman: Addison-Wesley.

552. H. Henderson (2007) Artificial Intelligence: Mirrors for the Mind. Chelsea House.

553. D.L. Poole and A.K. Mackworth (2010) Artificial Intelligence: Foundations of Computational Agents. Cambridge: Cambridge University Press.

554. Wikipedia, Artificial intelligence–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Artificial intelligence.

555. L.J. Guan and M. Duckham (2011) Decentralized reasoning about gradual changes of topological relationships between continuously evolving regions, in Conference on Spatial Information Theory (Belfast, Maine).

556. L.I. Perlovsky (2001) Neural Networks and Intellect: Using Model-based Concepts. Oxford University Press.

557. L.I. Perlovsky (2007) Neural networks, fuzzy models and dynamic logic, Aspects of Automatic Text Analysis, 363–86.

558. R.S. Michalski and G. Tecuci (1994) Machine Learning: A Multistrategy Approach, vol. 4. Morgan Kaufmann.

559. E. Alpaydin (2004) Introduction to Machine Learning. Cambridge, MA: The MIT Press.

560. T. Jebara (2004) Machine Learning: Discriminative and Generative, vol. 755. Springer Netherlands.

561. I.H. Witten and E. Frank (2005) Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann.

562. S. Marsland (2009) Machine Learning: An Algorithmic Perspective. Chapman & Hall/CRC.

563. Wikipedia, Machine learning–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Machine learning.

564. Wikipedia, Generative model–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Generative model.

565. Wikipedia, Discriminative model–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Discriminative model.

566. O. Yakhnenko (2009) Learning from text and images: Generative and discriminative models for partially labeled data. PhD thesis, Iowa State University.

567. J. Mitola III and G.Q. Maguire Jr (1999) Cognitive radio: making software radios more personal, Personal Communications, IEEE 6(4): 13–18.

568. S. Haykin (2005) Cognitive radio: Brain-empowered wireless communications, IEEE Journal on Selected Areas in Communications 23(2): 201–20.

569. C. Clancy, J. Hecker, E. Stuntebeck, and T. O'Shea (2007) Applications of machine learning to cognitive radio networks, IEEE Wireless Communications 14(4): 47–52.

570. K.E. Nolan, P. Sutton, and L.E. Doyle (2006) An encapsulation for reasoning, learning, knowledge representation, and reconfiguration cognitive radio elements, in 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications, IEEE, pp. 1–5.

571. Y. Su and M. van der Schaar (2008) Learning for cognitive wireless users, in 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2008.

572. C. Tekin, S. Hong, and W. Stark (2009) Enhancing cognitive radio dynamic spectrum sensing through adaptive learning, in Military Communications Conference, Milcom'09. IEEE.

573. Y. Gai, B. Krishnamachari, and R. Jain (2010) Learning multiuser channel allocations in cognitive radio networks: A combinatorial multi-armed bandit formulation, in IEEE Symposium on New Frontiers in Dynamic Spectrum, IEEE.

574. T.A. Tuan, L.C. Tong, and A.B. Premkumar (2010) An adaptive learning automata algorithm for channel selection in cognitive radio network, in International Conference on Communications and Mobile Computing (CMC), vol. 2, IEEE, pp. 159–63.

575. R. Zhang, F. Gao, and Y.C. Liang (2010) Cognitive beamforming made practical: Effective interference channel and learning-throughput tradeoff, IEEE Transactions on Communications 58(2): 706–18.

576. F. Gao, R. Zhang, Y.C. Liang, and X. Wang (2010) Design of learning-based MIMO cognitive radio systems, IEEE Transactions on Vehicular Technology 59(4): 1707–20.

577. N. Moayeri and H. Guo (2010) How often and how long should a cognitive radio sense the spectrum?, in Symposium on New Frontiers in Dynamic Spectrum, IEEE.

578. S. Yin, D. Chen, Q. Zhang, and S. Li (2011) Prediction-based throughput optimization for dynamic spectrum access, IEEE Transactions on Vehicular Technology 60(3): 1284–9.

579. S. Thrun, W. Burgard, and D. Fox (2005) Probabilistic Robotics-Intelligent Robotics and Autonomous Agents. Cambridge, MA: MIT Press.

580. S. Haykin (2006) Cognitive radar, IEEE Signal Processing Magazine 23(1): 30–40.

581. S. Miranda, C. Baker, K. Woodbridge, and H. Griffiths (2006) Knowledge-based resource management for multifunction radar: a look at scheduling and task prioritization, IEEE Signal Processing Magazine 23(1): 66–76.

582. V. Krishnamurthy and D.V. Djonin (2009) Optimal threshold policies for multivariate POMDPs in radar resource management, IEEE Transactions on Signal Processing 57(10): 3954–69.

583. T. Hanselmann, M. Morelande, B. Moran, and P. Sarunic (2008) Sensor scheduling for multiple target tracking and detection using passive measurements, in 11th International Conference on Information Fusion, IEEE, pp. 1–8.

584. C. Rudin, D. Waltz, R. Anderson, et al. (2012) Machine learning for the New York City power grid, IEEE Transactions on Pattern Analysis and Machine Intelligence 2: 328–45.

585. O. Wolfson (2007) Trends in computational transportation science, in Workshop: Advanced Geographic Information Systems in Transportation.

586. S. Winter, M. Sester, O. Wolfson, and G. Geers (2011) Towards a computational transportation science, ACM SIGMOD Record 39(3): 27–32.

587. B. Ran and D.E. Boyce (1996) Modeling Dynamic Transportation Networks: An Intelligent Transportation System Oriented Approach. Berlin: Springer Verlag.

588. Y. Zhao and A. House (1997) Vehicle Location and Navigation Systems: Intelligent Transportation Systems, Artech House, pp. 221–4.

589. W. Barfield and T.A. Dingus (1998) Human Factors in Intelligent Transportation Systems. Lawrence Erlbaum.

590. Y. Zhao (2000) Mobile phone location determination and its impact on intelligent transportation systems, IEEE Transactions on Intelligent Transportation Systems 1(1): 55–64.

591. L. Figueiredo, I. Jesus, J.A.T. Machado, J.R. Ferreira, and J.L. Martins de Carvalho (2001) Towards the development of intelligent transportation systems, in Proceedings on Intelligent Transportation Systems, IEEE, pp. 1206–11.

592. H.X. Ge, S.Q. Dai, L.Y. Dong, and Y. Xue (2004) Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application, Physical Review E 70(6).

593. L.J. Guan (2007) Trip quality in peer-to-peer shared ride systems, Master's thesis, Department of Geomatics, the University of Melbourne.

594. D.J. Hand, H. Mannila, and P. Smyth (2001) Principles of Data Mining. Cambridge, MA: The MIT Press.

595. T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin (2005) The elements of statistical learning: Data mining, inference and prediction, The Mathematical Intelligencer 27(2): 83–5.

596. P.N. Tan, M. Steinbach, V. Kumar, et al. (2006) Introduction to Data Mining. Boston: Pearson Addison Wesley.

597. J. Han, M. Kamber, and J. Pei (2011) Data Mining: Concepts and Techniques. Morgan Kaufmann.

598. Wikipedia, Data mining–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Data mining.

599. Wikipedia, Computer vision–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Computer vision.

600. G. Bradski and A. Kaehler (2008) Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly Media,

601. Wikipedia, Robot–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Robot.

602. Wikipedia, Web search engine–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Web search engine.

603. Wikipedia, Human computer interaction–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Human Computer Interaction.

604. D. Jensen and J. Neville (2003) Data mining in social networks, in Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers, pp. 287–302.

605. S.P. Borgatti and R. Cross (2003) A relational view of information seeking and learning in social networks, Management Science 49(4): 432–45.

606. S. Hill, F. Provost, and C. Volinsky (2007) Learning and inference in massive social networks, in The 5th International Workshop on Mining and Learning with Graphs, CeDER-PP-2007-05.

607. J.M. Kleinberg (2007) Challenges in mining social network data: Processes, privacy, and paradoxes, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp. 4–5.

608. J.T. Pfingsten (2007) Machine Learning for Mass Production and Industrial Engineering. PhD thesis, Universitätsbibliothek Tübingen.

609. T. Yuan and W. Kuo (2007) A model-based clustering approach to the recognition of the spatial defect patterns produced during semiconductor fabrication, IIE Transactions 40(2): 93–101.

610. T. Yuan and W. Kuo (2008) Spatial defect pattern recognition on semiconductor wafers using model-based clustering and Bayesian inference, European Journal of Operational Research 190(1): 228–40.

611. T. Yuan, S.J. Bae, and J.I. Park (2010) Bayesian spatial defect pattern recognition in semiconductor fabrication using support vector clustering, The International Journal of Advanced Manufacturing Technology 51(5): 671–83.

612. T. Yuan, W. Kuo, and S.J. Bae (2011) Detection of spatial defect patterns generated in semiconductor fabrication processes, IEEE Transactions on Semiconductor Manufacturing 24(3): 392–403.

613. Wikipedia, Biological engineering–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Bioengineering.

614. H.B. Barlow (1989) Unsupervised learning, Neural Computation 1(3): 295–311.

615. M. Weber, M. Welling, and P. Perona (2000) Unsupervised learning of models for recognition, Computer Vision-ECCV, pp. 18–32.

616. Wikipedia, Unsupervised learning–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Unsupervised learning.

617. Wikipedia, Cluster analysis–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Data clustering.

618. J.A. Hartigan and M.A. Wong (1979) Algorithm AS 136: A k-means clustering algorithm, Journal of the Royal Statistical Society. Series C (Applied Statistics) 28(1): 100–8.

619. K. Alsabti, S. Ranka, and V. Singh (1998) An efficient k-means clustering algorithm, in 1st Workshop on High-Performance Data Mining, Citeseer.

620. K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl (2001) Constrained k-means clustering with background knowledge, in Proceedings of the Eighteenth International Conference on Machine Learning 577, Citeseer.

621. T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and A.Y. Wu (2002) A local search approximation algorithm for k-means clustering, in Proceedings of the Eighteenth Annual Symposium on Computational Geometry, ACM, pp. 10–18.

622. N. Roussopoulos, S. Kelley, and F. Vincent (1995) Nearest neighbor queries, in Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, ACM.

623. T. Seidl and H.P. Kriegel (1998) Optimal multi-step k-nearest neighbor search, in Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, ACM.

624. Wikipedia, Blind signal separation–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Blind signal separation.

625. S. Wold, K. Esbensen, and P. Geladi (1987) Principal component analysis, Chemometrics and Intelligent Laboratory Systems 2: 37–52.

626. I. Jolliffe (2002) Principal Component Analysis. Berlin: Springer Verlag.

627. G.H. Golub and C. Reinsch (1970) Singular value decomposition and least squares solutions, Numerische Mathematik 14(5): 403–20.

628. P. Comon (1994) Independent component analysis, a new concept?, Signal Processing 36(3): 287–314.

629. A. Hyvärinen and E. Oja (2000) Independent component analysis: Algorithms and applications, Neural Networks 13(4–5): 411–30.

630. A. Hyvärinen, J. Karhunen, and E. Oja (2001) Independent Component Analysis, vol. 26. Wiley-Interscience.

631. D.D. Lee and H.S. Seung (1999) Learning the parts of objects by non-negative matrix factorization, Nature 401(6755): 788–91.

632. D.D. Lee and H.S. Seung (2001) Algorithms for non-negative matrix factorization, Advances in Neural Information Processing Systems, 13: 556–62.

633. A. Cichocki, R. Zdunek, and A.H. Phan (2009) Nonnegative Matrix and Tensor Factorizations: Applications to exploratory Multi-way Data Analysis and Blind Source Separation. New York: John Wiley & Sons, Inc.

634. T.C. Clancy, A. Khawar, and T.R. Newman (2011) Robust signal classification using unsupervised learning, IEEE Transactions on Wireless Communications 10(4): 1289–99.

635. Wikipedia, k-means clustering–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/K-means clustering.

636. M.W. Aslam, Z. Zhu, and A.K. Nandi (2010) Automatic digital modulation classification using genetic programming with k-nearest neighbor, in Military Communications Conference, Milcom'10, IEEE, pp. 1731–6.

637. Wikipedia, Principal component analysis–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Principal component analysis.

638. P. Georgiev, F. Theis, A. Cichocki, and H. Bakardjian (2007) Sparse component analysis: A new tool for data mining, Data Mining in Biomedicine, 91–116.

639. E. Candes, X. Li, Y. Ma, and J. Wright (2009) Robust principal component analysis, preprint.

640. Z. Zhou, X. Li, J. Wright, E. Candes, and Y. Ma (2010) Stable principal component pursuit, in International Symposium on Information Theory (Austin, TX).

641. B. Recht, M. Fazel, and P.A. Parrilo (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Review 52: 471–501.

642. B. Recht, W. Xu, and B. Hassibi (2009) Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization, in 47th IEEE Conference on Decision and Control, CDC 2008 (Cancun, Mexico), pp. 3065–70.

643. E.J. Candes and T. Tao (2010) The power of convex relaxation: Near-optimal matrix completion, IEEE Transactions on Information Theory 56(5): 2053–80.

644. Wikipedia, Independent component analysis–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Independent component analysis.

645. J.L. Abell, J. Lee, Q. Zhao, H. Szu, and Y. Zhao (2012) Differentiating intrinsic SERS spectra from a mixture by sampling induced composition gradient and independent component analysis, Analyst.

646. Wikipedia, Non-negative matrix factorization–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Nonnegative matrix factorization.

647. P.O. Hoyer (2004) Non-negative matrix factorization with sparseness constraints, The Journal of Machine Learning Research 5: 1457–69.

648. A. Shashua and T. Hazan (2005) Non-negative tensor factorization with applications to statistics and computer vision, in Proceedings of the 22nd International Conference on Machine Learning, ACM, pp. 792–9.

649. A. Cichocki and R. Zdunek (2007) Regularized alternating least squares algorithms for non-negative matrix/tensor factorization, Advances in Neural Networks–ISNN 2007, pp. 793–802.

650. I. Dhillon and S. Sra (2006) Generalized nonnegative matrix approximations with bregman divergences, Advances in Neural Information Processing Systems 18: 283–90.

651. L. Zhang, Z. Chen, M. Zheng, and X. He (2011) Robust non-negative matrix factorization, Frontiers of Electrical and Electronic Engineering in China, pp. 1–9.

652. N. Halko, P.G. Martinsson, and J.A. Tropp (2011) Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Review 53(2): 217–88.

653. T. Kohonen (1990) The self-organizing map, Proceedings of the IEEE 78(9): 1464–80.

654. T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas (1996) Engineering applications of the self-organizing map, Proceedings of the IEEE 84(10): 1358–84.

655. J. Vesanto and E. Alhoniemi (2000) Clustering of the self-organizing map, IEEE Transactions on Neural Networks 11(3): 586–600.

656. S.C. Ahalt, A.K. Krishnamurthy, P. Chen, and D.E. Melton (1990) Competitive learning algorithms for vector quantization, Neural Networks 3(3): 277–90.

657. R. Gray (1984) Vector quantization, ASSP Magazine, IEEE 1(2): 4–29.

658. N. Farvardin (1990) A study of vector quantization for noisy channels, IEEE Transactions on Information Theory 36(4): 799–809.

659. A. Gersho and R.M. Gray (1992) Vector Quantization and Signal Compression, vol. 159. Springer Netherlands.

660. Wikipedia, Supervised learning–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Supervised learning.

661. D.C. Montgomery, E.A. Peck, G.G. Vining, and J. Vining (2001) Introduction to Linear Regression Analysis, vol. 3. New York: John Wiley & Sons, Inc.

662. R.A. Johnson and D.W. Wichern (2002) Applied Multivariate Statistical Analysis, vol. 4, Upper Saddle River, NJ: Prentice Hall.

663. M.H. Kutner, C. Nachtsheim, and J. Neter (2004) Applied Linear Regression Models. New York: McGraw-Hill.

664. S. Weisberg (2005) Applied Linear Regression, vol. 528. New York: John Wiley & Sons, Inc.

665. D.W. Hosmer and S. Lemeshow (2000) Applied Logistic Regression, vol. 354. Wiley-Interscience.

666. S.W. Menard (2002) Applied Logistic Regression Analysis, vol. 106. Sage Publications, Inc,

667. M.T. Hagan, H.B. Demuth, M.H. Beale, et al. (1996) Neural Network Design. Boston, MA: PWS.

668. R.J. Schalkoff (1997) Artificial Neural Networks. New York: McGraw-Hill.

669. T. Mitchell (1997) Decision tree learning, Machine Learning 414.

670. L. Breiman (2001) Random forests, Machine Learning 45(1): 5–32.

671. I. Rish (2001) An empirical study of the naive Bayes classifier, in IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, pp. 41–6.

672. M.A. Hearst, S.T. Dumais, E. Osman, J. Platt, and B. Scholkopf (1998) Support vector machines, Intelligent Systems and their Applications, IEEE, 13(4): 18–28.

673. T. Joachims (1998) Text categorization with support vector machines: Learning with many relevant features, Machine Learning: ECML-98, pp. 137–42.

674. I. Steinwart and A. Christmann (2008) Support Vector Machines. Berlin: Springer Verlag.

675. Wikipedia, Logistic regression–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Logistic regression.

676. W.L. Martinez and A.R. Martinez (2002) Computational Statistics Handbook with MATLAB. CRC Press,

677. Wikipedia, Artificial neural network–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Artificial neural network.

678. Wikipedia, Decision tree–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Decision tree.

679. Wikipedia, Decision tree learning–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Decision tree learning.

680. Wikipedia, Random forest–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Random forest.

681. Wikipedia, Naive Bayes classifier–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Naive Bayes classifier.

682. Wikipedia, Support vector machine–Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Support vector machine.

683. N. Cristianini and J. Shawe-Taylor (2000) An Introduction to Support Vector Machines: and Other Kernel-based Learning Methods. Cambridge: Cambridge University Press.

684. M. Hu, Y. Chen, and J.T.Y. Kwok, Building sparse multiple-kernel SVM classifiers, IEEE Transactions on Neural Networks 20(5): 827–39.

685. J. Weston and C. Watkins (1998) Multi-class support vector machines, Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London.

686. J. Weston and C. Watkins, Support vector machines for multi-class pattern recognition, in Proceedings of the 7th European Symposium on Artificial Neural Networks, pp. 219–24.

687. C.H.Q. Ding and I. Dubchak (2001) Multi-class protein fold recognition using support vector machines and neural networks, Bioinformatics 17(4): 349–58.

688. C.W. Hsu and C.J. Lin (2002) A comparison of methods for multiclass support vector machines, IEEE Transactions on Neural Networks 13(2): 415–25.

689. V. Franc and V. Hlavác (2002) Multi-class support vector machine, in IEEE, 16th International Conference on Pattern Recognition, vol. 2, pp. 236–9.

690. K. Crammer and Y. Singer (2002) On the algorithmic implementation of multiclass kernel-based vector machines, The Journal of Machine Learning Research 2: 265–92.

691. S. Cheong, S.H. Oh, and S.Y. Lee (2004) Support vector machines with binary tree architecture for multi-class classification, Neural Information Processing-Letters and Reviews 2(3): 47–51.

692. K.B. Duan and S. Keerthi (2005) Which is the best multiclass SVM method? An empirical study, Multiple Classifier Systems, pp. 732–60.

693. V. Vapnik, S.E. Golowich, and A. Smola (1996) Support vector method for function approximation, regression estimation, and signal processing, in Advances in Neural Information Processing Systems 9, Citeseer, 281–7.

694. H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, and V. Vapnik (1997) Support vector regression machines, Advances in Neural Information Processing Systems, 155–61.

695. R. Collobert and S. Bengio (2001) SVMTorch: Support vector machines for large-scale regression problems, The Journal of Machine Learning Research 1: 143–60.

696. C.C. Chuang, S.F. Su, J.T. Jeng, and C.C. Hsiao (2002) Robust support vector regression networks for function approximation with outliers, IEEE Transactions on Neural Networks 13(6): 1322–30.

697. A. Smola and B. Schlkopf (2004) A tutorial on support vector regression, Statistics and Computing 14(3): 199–222.

698. Y. Huang, H. Jiang, H. Hu, and Y. Yao (2009) Design of learning engine based on support vector machine in cognitive radio, in International Conference on Computational Intelligence and Software Engineering, IEEE.

699. Z. Yang, Y.D. Yao, S. Chen, H. He, and D. Zheng (2010) MAC protocol classification in a cognitive radio network, in 19th Annual Wireless and Optical Communications Conference (WOCC), IEEE, pp. 1–5.

700. T. Hastie and R. Tibshirani (1998) Classification by pairwise coupling, The Annals of Statistics 26(2): 451–71.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset