Chapter 2
Quantization

U. Zölzer

Basic operations for analog‐to‐digital (AD) conversion of a continuous‐time signal x left-parenthesis t right-parenthesis are the sampling and quantization of x left-parenthesis n right-parenthesis yielding the quantized sequence x Subscript upper Q Baseline left-parenthesis n right-parenthesis (see Fig. 2.1). Before discussing AD/digital‐to‐analog (DA) conversion techniques and the choice of the sampling frequency f Subscript upper S Baseline equals StartFraction 1 Over upper T Subscript upper S Baseline EndFraction in Chapter 3, we will introduce the quantization of the samples x left-parenthesis n right-parenthesis with a finite number of bits. The digitization of a sampled signal with continuous amplitude is called quantization. The effects of quantization, starting with the classical quantization model, are discussed in Section 2.1. In Section 2.2, dither techniques are presented which, for low‐level signals, linearize the process of quantization. In Section 2.3, spectral shaping of quantization errors is described. Section 2.4 deals with number representation for digital audio signals and their effects on algorithms.

2.1 Signal Quantization

2.1.1 Classical Quantization Model

Quantization is described by Widrow's quantization theorem [Wid61]. It says that a quantizer can be modeled (see Fig. 2.2) as the addition of a uniformly distributed random signal e left-parenthesis n right-parenthesis to the original signal x left-parenthesis n right-parenthesis (see Fig. 2.2, [Wid61]). This additive model given by

(2.1)x Subscript upper Q Baseline left-parenthesis n right-parenthesis equals x left-parenthesis n right-parenthesis plus e left-parenthesis n right-parenthesis

is based on the difference between quantized output and input according to the error signal

(2.2)e left-parenthesis n right-parenthesis equals x Subscript upper Q Baseline left-parenthesis n right-parenthesis minus x left-parenthesis n right-parenthesis period
Schematic illustration of AD conversion and quantization.

Figure 2.1 AD conversion and quantization.

Schematic illustration of quantization.

Figure 2.2 Quantization.

This linear model of the output x Subscript upper Q Baseline left-parenthesis n right-parenthesis is only then valid when the input amplitude has a wide dynamic range and the quantization error e left-parenthesis n right-parenthesis is not correlated with the signal x left-parenthesis n right-parenthesis. Owing to the statistical independence of consecutive quantization errors, the autocorrelation of the error signal is given by r Subscript upper E upper E Baseline left-parenthesis m right-parenthesis equals sigma Subscript upper E Superscript 2 Baseline dot delta left-parenthesis m right-parenthesis, which yields a power density spectrum upper S Subscript upper E upper E Baseline left-parenthesis e Superscript j normal upper Omega Baseline right-parenthesis equals sigma Subscript upper E Superscript 2.

The nonlinear process of quantization is described by a nonlinear characteristic curve, as shown in Fig. 2.3a, where upper Q denotes the quantization step. The difference between output and input of the quantizer provides the quantization error e left-parenthesis n right-parenthesis equals x Subscript upper Q Baseline left-parenthesis n right-parenthesis minus x left-parenthesis n right-parenthesis, which is shown in Fig. 2.3b. The uniform probability density function (PDF) of the quantization error is given (see Fig. 2.3b) by

Schematic illustration of (a) Nonlinear characteristic curve of a quantizer. (b) Quantization error e and its probability density function (PDF) pE(e).

Figure 2.3 (a) Nonlinear characteristic curve of a quantizer. (b) Quantization error e and its probability density function (PDF) p Subscript upper E Baseline left-parenthesis e right-parenthesis.

The mth moment of a random variable upper E with a PDF p Subscript upper E Baseline left-parenthesis e right-parenthesis is defined as the expected value of upper E Superscript m:

(2.4)upper E left-brace upper E Superscript m Baseline right-brace equals integral Subscript negative infinity Superscript infinity Baseline e Superscript m Baseline p Subscript upper E Baseline left-parenthesis e right-parenthesis d e period

For a uniformly distributed random process, as in Eq. (2.3), the first two moments are given by

(2.5)m Subscript upper E Baseline equals upper E left-brace upper E right-brace equals 0 mean value comma
(2.6)sigma Subscript upper E Superscript 2 Baseline equals upper E left-brace upper E squared right-brace equals StartFraction upper Q squared Over 12 EndFraction variance period

The signal‐to‐noise ratio (SNR)

(2.7)SNR equals 10 log Subscript 10 Baseline left-parenthesis StartFraction sigma Subscript upper X Superscript 2 Baseline Over sigma Subscript upper E Superscript 2 Baseline EndFraction right-parenthesis dB

is defined as the ratio of signal power sigma Subscript upper X Superscript 2 to error power sigma Subscript upper E Superscript 2.

For a quantizer with input range plus-or-minus x Subscript m a x and word length w, the quantization step size can be expressed as

(2.8)upper Q equals 2 x Subscript m a x Baseline slash 2 Superscript w Baseline period

By defining a peak factor

(2.9)upper P Subscript upper F Baseline equals StartFraction x Subscript m a x Baseline Over sigma Subscript upper X Baseline EndFraction equals StartFraction 2 Superscript w minus 1 Baseline upper Q Over sigma Subscript upper X Baseline EndFraction comma

the variances of the input and the quantization error can be written as

(2.10)StartLayout 1st Row 1st Column sigma Subscript upper X Superscript 2 2nd Column equals StartFraction x Subscript m a x Superscript 2 Baseline Over upper P Subscript upper F Superscript 2 Baseline EndFraction and EndLayout
(2.11)StartLayout 1st Row 1st Column sigma Subscript upper E Superscript 2 2nd Column equals StartFraction upper Q squared Over 12 EndFraction equals one twelfth StartFraction x Subscript m a x Superscript 2 Baseline Over 2 Superscript 2 w Baseline EndFraction 2 squared equals one third x Subscript m a x Superscript 2 Baseline 2 Superscript minus 2 w Baseline period EndLayout

The SNR is then given by

(2.12)StartLayout 1st Row 1st Column SNR 2nd Column equals 3rd Column 10 log Subscript 10 Baseline left-parenthesis StartFraction x Subscript m a x Superscript 2 Baseline slash upper P Subscript upper F Superscript 2 Baseline Over one third x Subscript m a x Superscript 2 Baseline 2 Superscript minus 2 w Baseline EndFraction right-parenthesis equals 10 log Subscript 10 Baseline left-parenthesis 2 Superscript 2 w Baseline StartFraction 3 Over upper P Subscript upper F Superscript 2 Baseline EndFraction right-parenthesis 2nd Row 1st Column Blank 2nd Column equals 3rd Column 6.02 w minus 10 log Subscript 10 Baseline left-parenthesis upper P Subscript upper F Superscript 2 Baseline slash 3 right-parenthesis dB period EndLayout

A sinusoidal signal (PDF as in Fig. 2.4) with upper P Subscript upper F Baseline equals StartRoot 2 EndRoot gives

(2.13)SNR equals 6.02 w plus 1.76 dB period

For a signal with uniform PDF (see Fig. 2.4) and upper P Subscript upper F Baseline equals StartRoot 3 EndRoot, we can write

and for a Gaussian distributed signal (probability of overload less-than 1 0 Superscript negative 5 leads to upper P Subscript upper F Baseline equals 4.61, see Fig. 2.5), it follows that

(2.15)SNR equals 6.02 w minus 8.5 dB period
Schematic illustration of probability density function.

Figure 2.4 Probability density function (sinusoidal signal and signal with uniform PDF).

Schematic illustration of probability density function.

Figure 2.5 Probability density function (signal with Gaussian PDF).

It is obvious that the SNR depends on the PDF of the input. For digital audio signals that exhibit nearly Gaussian distribution, the maximum SNR for a given word length w is 8.5 dB lower than the rule of thumb formula (2.14) for the SNR.

2.1.2 Quantization Theorem

The statement of the quantization theorem for amplitude sampling (digitizing the amplitude) of signals has been given by Widrow [Wid61]. The analogy for digitizing the time axis is the sampling theorem given by Shannon [Sha48]. Figure 2.6 shows the amplitude quantization and the time quantization. First of all, the PDF of the output signal of a quantizer is determined in terms of the PDF of the input signal. Both PDFs are shown in Fig. 2.7. The respective characteristic functions (Fourier transform of a PDF) of the input and output signals form the basis for Widrow's quantization theorem.

Schematic illustration of amplitude and time quantization.

Figure 2.6 Amplitude and time quantization.

Schematic illustration of probability density function of signal x(n) and quantized signal xQ(n).

Figure 2.7 Probability density function of signal x left-parenthesis n right-parenthesis and quantized signal x Subscript upper Q Baseline left-parenthesis n right-parenthesis.

First‐order Statistics of the Quantizer Output

Quantization of a continuous‐amplitude signal x with PDF p Subscript upper X Baseline left-parenthesis x right-parenthesis leads to a discrete‐amplitude signal y with PDF p Subscript upper Y Baseline left-parenthesis y right-parenthesis (see Fig. 2.8). The continuous PDF of the input is sampled by integrating over all quantization intervals (zone sampling). This leads to a discrete PDF of the output.

In the quantization intervals, the discrete PDF of the output is determined by the probability

(2.16)upper W left-bracket k upper Q right-bracket equals upper W left-bracket minus StartFraction upper Q Over 2 EndFraction plus k upper Q less-than-or-equal-to x less-than StartFraction upper Q Over 2 EndFraction plus k upper Q right-bracket equals integral Subscript minus StartFraction upper Q Over 2 EndFraction plus k upper Q Superscript StartFraction upper Q Over 2 EndFraction plus k upper Q Baseline p Subscript upper X Baseline left-parenthesis x right-parenthesis d x period
Schematic illustration of zone sampling of the PDF.

Figure 2.8 Zone sampling of the PDF.

For the intervals k equals 0 comma 1 comma 2, it follows that

StartLayout 1st Row 1st Column p Subscript upper Y Baseline left-parenthesis y right-parenthesis 2nd Column equals 3rd Column delta left-parenthesis 0 right-parenthesis integral Subscript minus StartFraction upper Q Over 2 EndFraction Superscript StartFraction upper Q Over 2 EndFraction Baseline p Subscript upper X Baseline left-parenthesis x right-parenthesis d x 4th Column minus StartFraction upper Q Over 2 EndFraction less-than-or-equal-to y less-than StartFraction upper Q Over 2 EndFraction comma 2nd Row 1st Column Blank 2nd Column equals 3rd Column delta left-parenthesis y minus upper Q right-parenthesis integral Subscript minus StartFraction upper Q Over 2 EndFraction plus upper Q Superscript StartFraction upper Q Over 2 EndFraction plus upper Q Baseline p Subscript upper X Baseline left-parenthesis x right-parenthesis d x 4th Column minus StartFraction upper Q Over 2 EndFraction plus upper Q less-than-or-equal-to y less-than StartFraction upper Q Over 2 EndFraction plus upper Q comma 3rd Row 1st Column Blank 2nd Column equals 3rd Column delta left-parenthesis y minus 2 upper Q right-parenthesis integral Subscript minus StartFraction upper Q Over 2 EndFraction plus 2 upper Q Superscript StartFraction upper Q Over 2 EndFraction plus 2 upper Q Baseline p Subscript upper X Baseline left-parenthesis x right-parenthesis d x 4th Column minus StartFraction upper Q Over 2 EndFraction plus 2 upper Q less-than-or-equal-to y less-than StartFraction upper Q Over 2 EndFraction plus 2 upper Q period EndLayout

The summation over all intervals gives the PDF of the output

(2.17)StartLayout 1st Row 1st Column p Subscript upper Y Baseline left-parenthesis y right-parenthesis 2nd Column equals sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts delta left-parenthesis y minus k upper Q right-parenthesis upper W left-parenthesis k upper Q right-parenthesis EndLayout
(2.18)StartLayout 1st Row 1st Column Blank 2nd Column equals sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts delta left-parenthesis y minus k upper Q right-parenthesis upper W left-parenthesis y right-parenthesis comma EndLayout

where

(2.19)StartLayout 1st Row 1st Column upper W left-parenthesis k upper Q right-parenthesis 2nd Column equals integral Subscript minus StartFraction upper Q Over 2 EndFraction plus k upper Q Superscript StartFraction upper Q Over 2 EndFraction plus k upper Q Baseline p Subscript upper X Baseline left-parenthesis x right-parenthesis d x comma EndLayout
(2.20)StartLayout 1st Row 1st Column upper W left-parenthesis y right-parenthesis 2nd Column equals integral Subscript negative infinity Superscript infinity Baseline rect left-parenthesis StartFraction y minus x Over upper Q EndFraction right-parenthesis p Subscript upper X Baseline left-parenthesis x right-parenthesis d x EndLayout
(2.21)StartLayout 1st Row 1st Column Blank 2nd Column equals rect left-parenthesis StartFraction y Over upper Q EndFraction right-parenthesis asterisk p Subscript upper X Baseline left-parenthesis y right-parenthesis period EndLayout

Using

(2.22)delta Subscript upper Q Baseline left-parenthesis y right-parenthesis equals sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts delta left-parenthesis y minus k upper Q right-parenthesis comma

the PDF of the output is given by

Hence, the PDF of the output can be determined by convolution of a rect function [Lip92] with the PDF of the input. This is followed by an amplitude sampling with resolution upper Q as described in Eq. (2.23) (see Fig. 2.9).

Schematic illustration of determining the PDF of the output.

Figure 2.9 Determining the PDF of the output.

Using upper F upper T left-brace f 1 left-parenthesis t right-parenthesis dot f 2 left-parenthesis t right-parenthesis right-brace equals StartFraction 1 Over 2 pi EndFraction upper F 1 left-parenthesis j omega right-parenthesis asterisk upper F 2 left-parenthesis j omega right-parenthesis, the characteristic function (Fourier transform of p Subscript upper Y Baseline left-parenthesis y right-parenthesis) can be written as

(2.24)upper P Subscript upper Y Baseline left-parenthesis j u right-parenthesis equals StartFraction 1 Over 2 pi EndFraction u Subscript o Baseline sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts delta left-parenthesis u minus k u Subscript o Baseline right-parenthesis asterisk left-bracket upper Q StartStartFraction sine left-parenthesis u StartFraction upper Q Over 2 EndFraction right-parenthesis OverOver u StartFraction upper Q Over 2 EndFraction EndEndFraction dot upper P Subscript upper X Baseline left-parenthesis j u right-parenthesis right-bracket comma
(2.25)StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column with u Subscript o Baseline equals StartFraction 2 pi Over upper Q EndFraction comma 2nd Row 1st Column Blank 2nd Column equals 3rd Column sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts delta left-parenthesis u minus k u Subscript o Baseline right-parenthesis asterisk left-bracket StartStartFraction sine left-parenthesis u StartFraction upper Q Over 2 EndFraction right-parenthesis OverOver u StartFraction upper Q Over 2 EndFraction EndEndFraction dot upper P Subscript upper X Baseline left-parenthesis j u right-parenthesis right-bracket period EndLayout

Equation (2.26) describes the sampling of the continuous PDF of the input. If the quantization frequency u Subscript o Baseline equals 2 pi slash upper Q is twice the highest frequency of the characteristic function upper P Subscript upper X Baseline left-parenthesis j u right-parenthesis, then periodically recurring spectra do not overlap. Hence, a reconstruction of the PDF of the input p Subscript upper X Baseline left-parenthesis x right-parenthesis from the quantized PDF of the output p Subscript upper Y Baseline left-parenthesis y right-parenthesis is possible (see Fig. 2.10). This is known as the quantization theorem of Widrow. In contrast to the first sampling theorem (Shannon's sampling theorem, ideal amplitude sampling in the time domain) upper F Superscript upper A Baseline left-parenthesis j omega right-parenthesis equals StartFraction 1 Over upper T EndFraction sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts upper F left-parenthesis j omega minus j k omega Subscript o Baseline right-parenthesis, it can be observed that there is an additional multiplication of the periodically characteristic function with StartStartFraction sine left-bracket left-parenthesis u minus k u Subscript o Baseline right-parenthesis StartFraction upper Q Over 2 EndFraction right-bracket OverOver left-parenthesis u minus k u Subscript o Baseline right-parenthesis StartFraction upper Q Over 2 EndFraction EndEndFraction (see Eq. (2.26)).

Schematic illustration of spectral representation.

Figure 2.10 Spectral representation.

If the baseband of the characteristic function (k equals 0)

(2.27)upper P Subscript upper Y Baseline left-parenthesis j u right-parenthesis equals upper P Subscript upper X Baseline left-parenthesis j u right-parenthesis ModifyingBelow StartStartFraction sine left-parenthesis u StartFraction upper Q Over 2 EndFraction right-parenthesis OverOver u StartFraction upper Q Over 2 EndFraction EndEndFraction With presentation form for vertical right-brace Underscript upper P Subscript upper E Baseline left-parenthesis j u right-parenthesis Endscripts

is considered, it is observed that it is a product of two characteristic functions. The multiplication of characteristic functions leads to the convolution of PDFs, from which the addition of two statistically independent signals can be concluded. Hence, the characteristic function of the quantization error is

(2.28)upper P Subscript upper E Baseline left-parenthesis j u right-parenthesis equals StartStartFraction sine left-parenthesis u StartFraction upper Q Over 2 EndFraction right-parenthesis OverOver u StartFraction upper Q Over 2 EndFraction EndEndFraction

and the PDF

(2.29)p Subscript upper E Baseline left-parenthesis e right-parenthesis equals StartFraction 1 Over upper Q EndFraction rect left-parenthesis StartFraction e Over upper Q EndFraction right-parenthesis

(see Fig. 2.11).

Schematic illustration of PDF and characteristic function of quantization error.

Figure 2.11 PDF and characteristic function of quantization error.

The modeling of the quantization process as an addition of a statistically independent noise signal to the input signal leads to a continuous PDF of the output (see Fig. 2.12, convolution of PDFs and sampling in the interval upper Q gives the discrete PDF of the output). The PDF of the discrete‐valued output comprises Dirac pulses at distance upper Q with values equal to the continuous PDF (see Eq. (2.23)). Only if the quantization theorem is valid, the continuous PDF can be reconstructed from the discrete PDF.

Schematic illustration of PDF of the model.

Figure 2.12 PDF of the model.

In many cases, it is not necessary to reconstruct the PDF of the input. It is sufficient to calculate the moments of the input from the output. The mth moment can be expressed in terms of the PDF or the characteristic function:

(2.30)StartLayout 1st Row 1st Column upper E left-brace upper Y Superscript m Baseline right-brace 2nd Column equals integral Subscript negative infinity Superscript infinity Baseline y Superscript m Baseline p Subscript upper Y Baseline left-parenthesis y right-parenthesis d y EndLayout
(2.31)StartLayout 1st Row 1st Column Blank 2nd Column equals period vertical-bar times times left-parenthesis right-parenthesis minus minus jm times times dm of PPY left-parenthesis right-parenthesis times times ju times times dum Subscript u equals 0 Baseline period EndLayout

If the quantization theorem is satisfied, then the periodic terms in Eq. (2.26) do not overlap and the mth derivative of upper P Subscript upper Y Baseline left-parenthesis j u right-parenthesis is solely determined by the baseband1 so that with Eq. (2.26), it can be written

With Eq. (2.32), the first two moments can be determined as

(2.33)m Subscript upper Y Baseline equals upper E left-brace upper Y right-brace equals upper E left-brace upper X right-brace comma

Second‐order Statistics of Quantizer Output

To describe the properties of the output in the frequency domain, two output values upper Y 1 (at time n 1) and upper Y 2 (at time n 2) are considered [Lip92]. For the joint density function,

(2.35)p Subscript upper Y 1 upper Y 2 Baseline left-parenthesis y 1 comma y 2 right-parenthesis equals delta Subscript upper Q upper Q Baseline left-parenthesis y 1 comma y 2 right-parenthesis left-bracket rect left-parenthesis StartFraction y 1 Over upper Q EndFraction comma StartFraction y 2 Over upper Q EndFraction right-parenthesis asterisk p Subscript upper X 1 upper X 2 Baseline left-parenthesis y 1 comma y 2 right-parenthesis right-bracket

with

(2.36)delta Subscript upper Q upper Q Baseline left-parenthesis y 1 comma y 2 right-parenthesis equals delta Subscript upper Q Baseline left-parenthesis y 1 right-parenthesis dot delta Subscript upper Q Baseline left-parenthesis y 2 right-parenthesis

and

(2.37)rect left-parenthesis StartFraction y 1 Over upper Q EndFraction comma StartFraction y 2 Over upper Q EndFraction right-parenthesis equals rect left-parenthesis StartFraction y 1 Over upper Q EndFraction right-parenthesis dot rect left-parenthesis StartFraction y 2 Over upper Q EndFraction right-parenthesis period

For the two‐dimensional Fourier transform, it follows that

(2.38)StartLayout 1st Row 1st Column upper P Subscript upper Y 1 upper Y 2 Baseline left-parenthesis j u 1 comma j u 2 right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts sigma-summation Underscript l equals negative infinity Overscript infinity Endscripts delta left-parenthesis u 1 minus k u Subscript o Baseline right-parenthesis delta left-parenthesis u 2 minus l u Subscript o Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column Blank 3rd Column asterisk left-bracket StartStartFraction sine left-parenthesis u 1 StartFraction upper Q Over 2 EndFraction right-parenthesis OverOver u 1 StartFraction upper Q Over 2 EndFraction EndEndFraction dot StartStartFraction sine left-parenthesis u 2 StartFraction upper Q Over 2 EndFraction right-parenthesis OverOver u 2 StartFraction upper Q Over 2 EndFraction EndEndFraction dot upper P Subscript upper X 1 upper X 2 Baseline left-parenthesis j u 1 comma j u 2 right-parenthesis right-bracket EndLayout
(2.39)StartLayout 1st Row 1st Column Blank 2nd Column equals 3rd Column sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts sigma-summation Underscript l equals negative infinity Overscript infinity Endscripts upper P Subscript upper X 1 upper X 2 Baseline left-parenthesis j u 1 minus j k u Subscript o Baseline comma j u 2 minus j l u Subscript o Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column Blank 3rd Column StartStartFraction sine left-bracket left-parenthesis u 1 minus k u Subscript o Baseline right-parenthesis StartFraction upper Q Over 2 EndFraction right-bracket OverOver left-parenthesis u 1 minus k u Subscript o Baseline right-parenthesis StartFraction upper Q Over 2 EndFraction EndEndFraction dot StartStartFraction sine left-bracket left-parenthesis u 2 minus l u Subscript o Baseline right-parenthesis StartFraction upper Q Over 2 EndFraction right-bracket OverOver left-parenthesis u 2 minus l u Subscript o Baseline right-parenthesis StartFraction upper Q Over 2 EndFraction EndEndFraction period EndLayout

Similar to the one‐dimensional quantization theorem, a two‐dimensional theorem [Wid61] can be formulated: the joint density function of the input can be reconstructed from the joint density function of the output, if upper P Subscript upper X 1 upper X 2 Baseline left-parenthesis j u 1 comma j u 2 right-parenthesis equals 0 for u 1 greater-than-or-equal-to u Subscript o Baseline slash 2 and u 2 greater-than-or-equal-to u Subscript o Baseline slash 2. Here again, the moments of the joint density function can be calculated as follows:

(2.40)upper E left-brace upper Y 1 Superscript m Baseline upper Y 2 Superscript n Baseline right-brace equals period vertical-bar times times times times times left-parenthesis right-parenthesis minus minus j plus plus mn partial-differential plus plus mn times times of partial-differential u 1 m of partial-differential u 2 n of PP times times upper X 1 upper X 2 left-parenthesis right-parenthesis comma times times ju 1 comma times times ju 2 of sinsin left-parenthesis right-parenthesis times times u 1 upper Q 2 times times u 1 upper Q 2 of sinsin left-parenthesis right-parenthesis times times u 2 upper Q 2 times times u 2 upper Q 2 Subscript u 1 equals 0 comma u 2 equals 0 Baseline period

From this, the autocorrelation function with m equals n 2 minus n 1 can be written as

(2.41)r Subscript upper Y upper Y Baseline left-parenthesis m right-parenthesis equals upper E left-brace upper Y 1 upper Y 2 right-brace left-parenthesis m right-parenthesis equals Start 2 By 2 Matrix 1st Row 1st Column upper E left-brace upper X squared right-brace plus StartFraction upper Q squared Over 12 EndFraction 2nd Column f o r m equals 0 comma 2nd Row 1st Column upper E left-brace upper X 1 upper X 2 right-brace left-parenthesis m right-parenthesis 2nd Column elsewhere comma EndMatrix

(for m equals 0, we obtain Eq. (2.34)).

2.1.3 Statistics of Quantization Error

First‐order Statistics of Quantization Error

The PDF of the quantization error depends on the PDF of the input and is dealt with in the following. The quantization error e equals x Subscript upper Q Baseline minus x is restricted to the interval left-bracket minus StartFraction upper Q Over 2 EndFraction comma StartFraction upper Q Over 2 EndFraction right-bracket. It depends linearly on the input (see Fig. 2.13). If the input value lies in the interval left-bracket minus StartFraction upper Q Over 2 EndFraction comma StartFraction upper Q Over 2 EndFraction right-bracket, then the error is e equals 0 minus x. For the PDF, we obtain p Subscript upper E Baseline left-parenthesis e right-parenthesis equals p Subscript upper X Baseline left-parenthesis e right-parenthesis. If the input value lies in the interval left-bracket minus StartFraction upper Q Over 2 EndFraction plus upper Q comma StartFraction upper Q Over 2 EndFraction plus upper Q right-bracket, then the quantization error is e equals upper Q left floor upper Q Superscript negative 1 Baseline x plus 0.5 right floor minus x and is again restricted to left-bracket minus StartFraction upper Q Over 2 EndFraction comma StartFraction upper Q Over 2 EndFraction right-bracket. The PDF of the quantization error is consequently p Subscript upper E Baseline left-parenthesis e right-parenthesis equals p Subscript upper X Baseline left-parenthesis e plus upper Q right-parenthesis and is added to the first term. For the sum over all intervals, we can write

Schematic illustration of probability density function and quantization error.

Figure 2.13 Probability density function and quantization error.

(2.42)p Subscript upper E Baseline left-parenthesis e right-parenthesis equals Start 2 By 2 Matrix 1st Row 1st Column sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts p Subscript upper X Baseline left-parenthesis e minus k upper Q right-parenthesis 2nd Column f o r minus StartFraction upper Q Over 2 EndFraction less-than-or-equal-to e less-than StartFraction upper Q Over 2 EndFraction comma 2nd Row 1st Column 0 2nd Column elsewhere period EndMatrix

Because of the restricted values of the variable of the PDF, we can write

(2.43)StartLayout 1st Row 1st Column p Subscript upper E Baseline left-parenthesis e right-parenthesis 2nd Column equals rect left-parenthesis StartFraction e Over upper Q EndFraction right-parenthesis sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts p Subscript upper X Baseline left-parenthesis e minus k upper Q right-parenthesis EndLayout

The PDF of the quantization error is determined by the PDF of the input and can be computed by shifting and windowing a zone. All individual zones are summed up for calculating the PDF of the quantization error [Lip92]. A simple graphical interpretation of this overlapping is shown in Fig. 2.14. The overlapping leads to a uniform distribution of the quantization error if the input PDF p Subscript upper X Baseline left-parenthesis x right-parenthesis is spread over a sufficient number of quantization intervals.

For the Fourier transform of the PDF from Eq. (2.44) follows

(2.46)StartLayout 1st Row 1st Column Blank 2nd Column equals StartStartFraction sine left-parenthesis u StartFraction upper Q Over 2 EndFraction right-parenthesis OverOver u StartFraction upper Q Over 2 EndFraction EndEndFraction asterisk left-bracket sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts upper P Subscript upper X Baseline left-parenthesis j k u Subscript o Baseline right-parenthesis delta left-parenthesis u minus k u Subscript o Baseline right-parenthesis right-bracket EndLayout
(2.47)StartLayout 1st Row 1st Column Blank 2nd Column equals sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts upper P Subscript upper X Baseline left-parenthesis j k u Subscript o Baseline right-parenthesis left-bracket StartStartFraction sine left-parenthesis u StartFraction upper Q Over 2 EndFraction right-parenthesis OverOver u StartFraction upper Q Over 2 EndFraction EndEndFraction asterisk delta left-parenthesis u minus k u Subscript o Baseline right-parenthesis right-bracket comma EndLayout
Schematic illustration of probability density function of the quantization error.

Figure 2.14 Probability density function of the quantization error.

If the quantization theorem is satisfied, i.e. if upper P Subscript upper X Baseline left-parenthesis j u right-parenthesis equals 0 for u greater-than u Subscript o Baseline slash 2, then there is only one non‐zero term (k equals 0 in Eq. (2.48)). The characteristic function of the quantization error is reduced, with upper P Subscript upper X Baseline left-parenthesis 0 right-parenthesis equals 1, to

Hence, the PDF of the quantization error is

(2.50)p Subscript upper E Baseline left-parenthesis e right-parenthesis equals StartFraction 1 Over upper Q EndFraction rect left-parenthesis StartFraction e Over upper Q EndFraction right-parenthesis period

Sripad and Snyder [Sri77] have modified the sufficient condition of Widrow (band‐limited characteristic function of input) for a quantization error of uniform PDF by the weaker condition

(2.51)StartLayout 1st Row upper P Subscript upper X Baseline left-parenthesis j k u Subscript o Baseline right-parenthesis equals upper P Subscript upper X Baseline left-parenthesis j StartFraction 2 pi k Over upper Q EndFraction right-parenthesis equals 0 for all k not-equals 0 period EndLayout

The uniform distribution of the input PDF

(2.52)p Subscript upper X Baseline left-parenthesis x right-parenthesis equals StartFraction 1 Over upper Q EndFraction rect left-parenthesis StartFraction x Over upper Q EndFraction right-parenthesis

with characteristic function

(2.53)upper P Subscript upper X Baseline left-parenthesis j u right-parenthesis equals StartStartFraction sine left-parenthesis u StartFraction upper Q Over 2 EndFraction right-parenthesis OverOver u StartFraction upper Q Over 2 EndFraction EndEndFraction

does not satisfy Widrow's condition for a band‐limited characteristic function, but instead the weaker condition

(2.54)upper P Subscript upper X Baseline left-parenthesis j StartFraction 2 pi k Over upper Q EndFraction right-parenthesis equals StartFraction sine left-parenthesis pi k right-parenthesis Over pi k EndFraction equals 0 for all k not-equals 0

is fulfilled. From this follows the uniform PDF in Eq. (2.49) of the quantization error. The weaker condition from Sripad and Snyder extends the class of input signals for which a uniform PDF of the quantization error can be assumed.

To show the deviation from the uniform PDF of the quantization error as a function of the PDF of the input, Eq. (2.48) can be written as

(2.55)StartLayout 1st Row 1st Column upper P Subscript upper E Baseline left-parenthesis j u right-parenthesis 2nd Column equals 3rd Column upper P Subscript upper X Baseline left-parenthesis 0 right-parenthesis StartStartFraction sine left-bracket u StartFraction upper Q Over 2 EndFraction right-bracket OverOver u StartFraction upper Q Over 2 EndFraction EndEndFraction plus sigma-summation Underscript k equals negative infinity comma k not-equals 0 Overscript infinity Endscripts upper P Subscript upper X Baseline left-parenthesis j StartFraction 2 pi k Over upper Q EndFraction right-parenthesis StartStartFraction sine left-bracket left-parenthesis u minus k u Subscript o Baseline right-parenthesis StartFraction upper Q Over 2 EndFraction right-bracket OverOver left-parenthesis u minus k u Subscript o Baseline right-parenthesis StartFraction upper Q Over 2 EndFraction EndEndFraction 2nd Row 1st Column Blank 2nd Column equals 3rd Column StartStartFraction sine left-bracket u StartFraction upper Q Over 2 EndFraction right-bracket OverOver u StartFraction upper Q Over 2 EndFraction EndEndFraction plus sigma-summation Underscript k equals negative infinity comma k not-equals 0 Overscript infinity Endscripts upper P Subscript upper X Baseline left-parenthesis j StartFraction 2 pi k Over upper Q EndFraction right-parenthesis StartStartFraction sine left-bracket u StartFraction upper Q Over 2 EndFraction right-bracket OverOver u StartFraction upper Q Over 2 EndFraction EndEndFraction asterisk delta left-parenthesis u minus k u 0 right-parenthesis period EndLayout

The inverse Fourier transform yields

Equation (2.56) shows the effect of the input PDF on the deviation from a uniform PDF.

Second‐order Statistics of Quantization Error

For describing the spectral properties of the error signal, two values upper E 1 (at time n 1) and upper E 2 (at time n 2) are considered [Lip92]. The joint PDF is given by

(2.58)p Subscript upper E 1 upper E 2 Baseline left-parenthesis e 1 comma e 2 right-parenthesis equals rect left-parenthesis StartFraction e 1 Over upper Q EndFraction comma StartFraction e 2 Over upper Q EndFraction right-parenthesis left-bracket p Subscript upper X 1 upper X 2 Baseline left-parenthesis e 1 comma e 2 right-parenthesis asterisk delta Subscript upper Q upper Q Baseline left-parenthesis e 1 comma e 2 right-parenthesis right-bracket period

Here delta Subscript upper Q upper Q Baseline left-parenthesis e 1 comma e 2 right-parenthesis equals delta Subscript upper Q Baseline left-parenthesis e 1 right-parenthesis dot delta Subscript upper Q Baseline left-parenthesis e 2 right-parenthesis and rect left-parenthesis StartFraction e 1 Over upper Q EndFraction comma StartFraction e 2 Over upper Q EndFraction right-parenthesis equals rect left-parenthesis StartFraction e 1 Over upper Q EndFraction right-parenthesis dot rect left-parenthesis StartFraction e 2 Over upper Q EndFraction right-parenthesis. For the Fourier transform of the joint PDF, a similar procedure to that shown by (Eqs. 2.45)–(2.48) leads to

(2.59)StartLayout 1st Row 1st Column upper P Subscript upper E 1 upper E 2 Baseline left-parenthesis j u 1 comma j u 2 right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript k 1 equals negative infinity Overscript infinity Endscripts sigma-summation Underscript k 2 equals negative infinity Overscript infinity Endscripts upper P Subscript upper X 1 upper X 2 Baseline left-parenthesis j k 1 u Subscript o Baseline comma j k 2 u Subscript o Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column Blank 3rd Column StartStartFraction sine left-bracket left-parenthesis u 1 minus k 1 u Subscript o Baseline right-parenthesis StartFraction upper Q Over 2 EndFraction right-bracket OverOver left-parenthesis u 1 minus k 1 u Subscript o Baseline right-parenthesis StartFraction upper Q Over 2 EndFraction EndEndFraction StartStartFraction sine left-bracket left-parenthesis u 2 minus k 2 u Subscript o Baseline right-parenthesis StartFraction upper Q Over 2 EndFraction right-bracket OverOver left-parenthesis u 2 minus k 2 u Subscript o Baseline right-parenthesis StartFraction upper Q Over 2 EndFraction EndEndFraction period EndLayout

If the quantization theorem and/or the Sripad–Snyder condition

(2.60)StartLayout 1st Row upper P Subscript upper X 1 upper X 2 Baseline left-parenthesis j k 1 u Subscript o Baseline comma j k 2 u Subscript o Baseline right-parenthesis equals 0 for all k 1 comma k 2 not-equals 0 EndLayout

are satisfied, then

(2.61)upper P Subscript upper E 1 upper E 2 Baseline left-parenthesis j u 1 comma j u 2 right-parenthesis equals StartStartFraction sine left-bracket u 1 StartFraction upper Q Over 2 EndFraction right-bracket OverOver u 1 StartFraction upper Q Over 2 EndFraction EndEndFraction StartStartFraction sine left-bracket u 2 StartFraction upper Q Over 2 EndFraction right-bracket OverOver u 2 StartFraction upper Q Over 2 EndFraction EndEndFraction period

For the joint PDF of the quantization error, it then holds that

(2.62)StartLayout 1st Row 1st Column p Subscript upper E 1 upper E 2 Baseline left-parenthesis e 1 comma e 2 right-parenthesis 2nd Column equals StartFraction 1 Over upper Q EndFraction rect left-parenthesis StartFraction e 1 Over upper Q EndFraction right-parenthesis dot StartFraction 1 Over upper Q EndFraction rect left-parenthesis StartFraction e 2 Over upper Q EndFraction right-parenthesis minus StartFraction upper Q Over 2 EndFraction less-than-or-equal-to e 1 comma e 2 less-than StartFraction upper Q Over 2 EndFraction EndLayout

Owing to the statistical independence of quantization errors (Eq. (2.63)),

(2.64)upper E left-brace upper E 1 Superscript m Baseline upper E 2 Superscript n Baseline right-brace equals upper E left-brace upper E 1 Superscript m Baseline right-brace dot upper E left-brace upper E 2 Superscript n Baseline right-brace period

For the moments of the joint PDF,

(2.65)upper E left-brace upper E 1 Superscript m Baseline upper E 2 Superscript n Baseline right-brace equals period vertical-bar times times times left-parenthesis right-parenthesis minus minus j plus plus mn partial-differential plus plus mn times times of partial-differential u 1 m of partial-differential u 2 n of PP times times upper E 1 upper E 2 left-parenthesis right-parenthesis comma u 1 comma u 2 Subscript u 1 equals 0 comma u 2 equals 0 Baseline period

From this, it follows for the autocorrelation function with m equals n 2 minus n 1

(2.66)StartLayout 1st Row 1st Column r Subscript upper E upper E Baseline left-parenthesis m right-parenthesis equals normal upper E left-brace upper E 1 upper E 2 right-brace 2nd Column equals Start 2 By 2 Matrix 1st Row 1st Column normal upper E left-brace upper E squared right-brace 2nd Column f o r m equals 0 comma 2nd Row 1st Column normal upper E left-brace upper E 1 upper E 2 right-brace 2nd Column elsewhere comma EndMatrix EndLayout
(2.67)StartLayout 1st Row 1st Column Blank 2nd Column equals Start 2 By 2 Matrix 1st Row 1st Column StartFraction upper Q squared Over 12 EndFraction 2nd Column f o r m equals 0 comma 2nd Row 1st Column 0 2nd Column elsewhere comma EndMatrix EndLayout
(2.68)StartLayout 1st Row 1st Column Blank 2nd Column equals ModifyingBelow StartFraction upper Q squared Over 12 EndFraction With presentation form for vertical right-brace Underscript sigma Subscript upper E Superscript 2 Baseline Endscripts delta left-parenthesis m right-parenthesis period EndLayout

The power density spectrum of the quantization error is then given by

(2.69)upper S Subscript upper E upper E Baseline left-parenthesis e Superscript j normal upper Omega Baseline right-parenthesis equals sigma-summation Underscript m equals negative infinity Overscript plus infinity Endscripts r Subscript upper E upper E Baseline left-parenthesis m right-parenthesis e Superscript minus j normal upper Omega m Baseline equals StartFraction upper Q squared Over 12 EndFraction comma

which is equal to the variance sigma Subscript upper E Superscript 2 Baseline equals StartFraction upper Q squared Over 12 EndFraction of the quantization error (see Fig. 2.15).

Schematic illustration of autocorrelation rEE(m) and power density spectrum SEE(ejΩ) of quantization error e(n).

Figure 2.15 Autocorrelation r Subscript upper E upper E Baseline left-parenthesis m right-parenthesis and power density spectrum upper S Subscript upper E upper E Baseline left-parenthesis e Superscript j normal upper Omega Baseline right-parenthesis of quantization error e left-parenthesis n right-parenthesis.

Correlation of Signal and Quantization Error

For describing the correlation of the signal and the quantization error [Sri77], the second moment of the output with Eq. (2.26) is derived as follows:

(2.70)StartLayout 1st Row 1st Column upper E left-brace upper Y squared right-brace 2nd Column equals 3rd Column period vertical-bar times times left-parenthesis right-parenthesis minus minus j 2 times times d 2 of PPY left-parenthesis right-parenthesis times times ju times times du 2 Subscript u equals 0 EndLayout
(2.71)StartLayout 1st Row 1st Column Blank 2nd Column equals 3rd Column left-parenthesis negative j right-parenthesis squared sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts left-bracket ModifyingAbove upper P With two-dots Subscript upper X Baseline left-parenthesis minus StartFraction 2 pi k Over upper Q EndFraction right-parenthesis StartFraction sine left-parenthesis pi k right-parenthesis Over pi k EndFraction period 2nd Row 1st Column Blank 2nd Column Blank 3rd Column plus upper Q ModifyingAbove upper P With dot Subscript upper X Baseline left-parenthesis minus StartFraction 2 pi k Over upper Q EndFraction right-parenthesis StartFraction sine left-parenthesis pi k right-parenthesis minus pi k cosine left-parenthesis pi k right-parenthesis Over pi squared k squared EndFraction 3rd Row 1st Column Blank 2nd Column Blank 3rd Column period right-bracket plus plus times times times upper Q 24 of PPX left-parenthesis right-parenthesis minus minus times times times 2 pi kQ minus minus times times left-parenthesis right-parenthesis minus minus 2 times times pi 2 k 2 of sinsin left-parenthesis right-parenthesis times times pi k times times times times 2 pi k of coscos left-parenthesis right-parenthesis times times pi k times times pi 3 k 3 EndLayout

With the quantization error e left-parenthesis n right-parenthesis equals y left-parenthesis n right-parenthesis minus x left-parenthesis n right-parenthesis,

(2.73)upper E left-brace upper Y squared right-brace equals upper E left-brace upper X squared right-brace plus 2 upper E left-brace upper X dot upper E right-brace plus upper E left-brace upper E squared right-brace comma

where the term upper E left-brace upper X dot upper E right-brace, with Eq. (2.72), is written as

With the assumption of a Gaussian PDF of the input, we obtain

with the characteristic function

Using Eq. (2.57), the PDF of the quantization error is then given by

Figure 2.16a shows the PDF in Eq. (2.77) of the quantization error for different variances of the input.

For the mean value and the variance of a quantization error, it follows from Eq. (2.77) that upper E left-brace upper E right-brace equals 0 and

Schematic illustration of (a) Probability density function of quantization error for different standard deviations of a Gaussian PDF input. (b) Variance of quantization error for different standard deviations of a Gaussian PDF input.

Figure 2.16 (a) Probability density function of quantization error for different standard deviations of a Gaussian PDF input. (b) Variance of quantization error for different standard deviations of a Gaussian PDF input.

Figure 2.16b shows the variance of the quantization error in Eq. (2.78) for different variances of the input.

For a Gaussian PDF input, as given by (Eqs. 2.75) and (2.76), the correlation (see Eq. (2.74)) between input and quantization error is expressed as

(2.79)upper E left-brace upper X dot upper E right-brace equals 2 sigma squared sigma-summation Underscript k equals 1 Overscript infinity Endscripts left-parenthesis negative 1 right-parenthesis Superscript k Baseline exp left-parenthesis minus StartFraction 2 pi squared k squared sigma squared Over upper Q squared EndFraction right-parenthesis period

The correlation is negligible for large values of StartFraction sigma Over upper Q EndFraction.

2.2 Dither

2.2.1 Basics

The requantization (renewed quantization of already quantized signals) to limited word lengths occurs repeatedly during storage, format conversion, and signal processing algorithms. Here, small signal levels lead to error signals which depend on the input. Owing to quantization, nonlinear distortion occurs for low‐level signals. The conditions for the classical quantization model are not satisfied anymore. To reduce these effects for signals of small amplitude, a linearization of the nonlinear characteristic curve of the quantizer is performed. This is done by adding a random sequence d left-parenthesis n right-parenthesis to the quantized signal x left-parenthesis n right-parenthesis (see Fig. 2.17) before the actual quantization process. The specification of the word length is shown in Fig. 2.18. This random signal is called dither. The statistical independence of the error signal from the input is not achieved, but the conditional moments of the error signal can be affected [Lip92, Ger89, Wan92, Wan00].

Schematic illustration of addition of a random sequence before a quantizer.

Figure 2.17 Addition of a random sequence before a quantizer.

Schematic illustration of specification of the word length.

Figure 2.18 Specification of the word length.

The sequence d left-parenthesis n right-parenthesis, with amplitude range (minus StartFraction upper Q Over 2 EndFraction less-than-or-equal-to d left-parenthesis n right-parenthesis less-than-or-equal-to StartFraction upper Q Over 2 EndFraction), is generated with the help of a random number generator and is added to the input. For a dither value with upper Q equals 2 Superscript minus left-parenthesis w minus 1 right-parenthesis:

(2.80)d Subscript k Baseline equals k 2 Superscript negative r Baseline upper Q minus 2 Superscript s minus 1 Baseline less-than-or-equal-to k less-than-or-equal-to 2 Superscript s minus 1 Baseline minus 1 period

The index k of the random number d Subscript k characterizes the value from the set of upper N equals 2 Superscript s possible numbers with the probability

(2.81)upper P left-parenthesis d Subscript k Baseline right-parenthesis equals Start 2 By 2 Matrix 1st Row 1st Column 2 Superscript negative s Baseline 2nd Column f o r minus 2 Superscript s minus 1 Baseline less-than-or-equal-to k less-than-or-equal-to 2 Superscript s minus 1 Baseline minus 1 comma 2nd Row 1st Column 0 2nd Column elsewhere period EndMatrix

With the mean value d overbar equals sigma-summation Underscript k Endscripts d Subscript k Baseline upper P left-parenthesis d Subscript k Baseline right-parenthesis, the variance sigma Subscript upper D Superscript 2 Baseline equals sigma-summation Underscript k Endscripts left-bracket d Subscript k Baseline minus d overbar right-bracket squared upper P left-parenthesis d Subscript k Baseline right-parenthesis, and the quadratic mean d squared overbar equals sigma-summation Underscript k Endscripts d Subscript k Superscript 2 Baseline upper P left-parenthesis d Subscript k Baseline right-parenthesis, we can rewrite the variance as sigma Subscript d Superscript 2 Baseline equals d squared overbar minus d overbar squared.

For a static input amplitude upper V and the dither value d Subscript k, the rounding operation [Lip86] is expressed as

(2.82)g left-parenthesis upper V plus d Subscript k Baseline right-parenthesis equals upper Q lfloorrfloor plus plus plus plus VdkQ 0.5 period

For the mean of the output ModifyingAbove g With bar left-parenthesis upper V right-parenthesis as a function of the input upper V, we can write

The quadratic mean of the output ModifyingAbove g squared With bar left-parenthesis upper V right-parenthesis for input upper V is given by

For the variance d Subscript upper R Superscript 2 Baseline left-parenthesis upper V right-parenthesis for input upper V,

The above‐mentioned equations have the input upper V as a parameter. Figures 2.19 and 2.20 illustrate the mean output ModifyingAbove g With bar left-parenthesis upper V right-parenthesis and the standard deviation d Subscript upper R Baseline left-parenthesis upper V right-parenthesis within a quantization step size, which are given by (Eqs. 2.83), (2.84), and (2.85). The examples of rounding and truncation demonstrate the linearization of the characteristic curve of the quantizer. The coarse step size is replaced by a finer one. The quadratic deviation from the mean output d Subscript upper R Superscript 2 Baseline left-parenthesis upper V right-parenthesis is termed noise modulation. For a uniform PDF dither, this noise modulation depends on the amplitude (see Figs. 2.19 and 2.20). It is maximum in the middle of the quantization step size and approaches zero towards the end. The linearization and the suppression of the noise modulation can be achieved by a triangular PDF dither with bipolar characteristic [Van89] and rounding operation (see Fig. 2.20). Triangular PDF dither is obtained by adding two statistically independent dither signals with uniform PDF (convolution of PDFs). A dither signal with a higher‐order PDF is not necessary for audio signals [Lip92, Wan00].

Schematic illustration of truncation - linearizing and suppression of noise modulation (s=4, m=0).

Figure 2.19 Truncation – linearizing and suppression of noise modulation (s equals 4, m equals 0).

Schematic illustration of rounding - linearizing and suppression of noise modulation (s=4, m=1).

Figure 2.20 Rounding – linearizing and suppression of noise modulation (s equals 4, m equals 1).

The total noise power for this quantization technique consists of the dither power and the power of the quantization error [Lip86]. The following noise powers are obtained by integration with respect to upper V as follows.

  1. Mean dither power d squared:
    (2.86)StartLayout 1st Row 1st Column d squared 2nd Column equals StartFraction 1 Over upper Q EndFraction integral Subscript 0 Superscript upper Q Baseline d Subscript upper R Superscript 2 Baseline left-parenthesis upper V right-parenthesis d upper V EndLayout
    (2.87)StartLayout 1st Row 1st Column Blank 2nd Column equals StartFraction 1 Over upper Q EndFraction integral Subscript 0 Superscript upper Q Baseline sigma-summation Underscript k Endscripts left-brace g left-parenthesis upper V plus d Subscript k Baseline right-parenthesis minus ModifyingAbove g With bar left-parenthesis upper V right-parenthesis right-brace squared upper P left-parenthesis d Subscript k Baseline right-parenthesis d upper V period EndLayout

    (This is equal to the deviation from mean output in accordance with Eq. (2.83).)

  2. Mean of total noise power d Subscript t o t Superscript 2:

    (This is equal to the deviation from an ideal straight line.)

To derive a relationship between d Subscript t o t Superscript 2 and d squared, the quantization error given by

(2.89)upper Q left-parenthesis upper V plus d Subscript k Baseline right-parenthesis equals g left-parenthesis upper V plus d Subscript k Baseline right-parenthesis minus left-parenthesis upper V plus d Subscript k Baseline right-parenthesis

is used to rewrite Eq. (2.88) as

(2.90)StartLayout 1st Row 1st Column d Subscript t o t Superscript 2 2nd Column equals 3rd Column sigma-summation Underscript k Endscripts upper P left-parenthesis d Subscript k Baseline right-parenthesis StartFraction 1 Over upper Q EndFraction integral Subscript 0 Superscript upper Q Baseline left-parenthesis upper Q squared left-parenthesis upper V plus d Subscript k Baseline right-parenthesis plus 2 d Subscript k Baseline upper Q left-parenthesis upper V plus d Subscript k Baseline right-parenthesis plus d Subscript k Superscript 2 Baseline right-parenthesis d upper V EndLayout

The integrals in Eq. (2.91) are independent of d Subscript k. Moreover, sigma-summation Underscript k Endscripts upper P left-parenthesis d Subscript k Baseline right-parenthesis equals 1. With the mean value of the quantization error

(2.92)e overbar equals StartFraction 1 Over upper Q EndFraction integral Subscript 0 Superscript upper Q Baseline upper Q left-parenthesis upper V right-parenthesis d upper V

and the quadratic mean error

(2.93)e squared overbar equals StartFraction 1 Over upper Q EndFraction integral Subscript 0 Superscript upper Q Baseline upper Q squared left-parenthesis upper V right-parenthesis d upper V comma

it is possible to rewrite Eq. (2.91) as

With sigma Subscript upper E Superscript 2 Baseline equals e squared overbar minus e overbar squared and sigma Subscript upper D Superscript 2 Baseline equals d squared overbar minus d overbar squared, Eq. (2.94) can be written as

Equations (2.94) and (2.95) describe the total noise power as a function of the quantization (e overbar comma e squared overbar comma sigma Subscript upper E Superscript 2) and the dither addition (d overbar comma d squared overbar comma sigma Subscript upper D Superscript 2). It can be seen that for zero‐mean quantization, the middle term in Eq. (2.95) results in d overbar plus e overbar equals 0. The acoustically perceptible part of the total error power is represented by sigma Subscript upper E Superscript 2 and sigma Subscript upper D Superscript 2.

2.2.2 Implementation

The random sequence d left-parenthesis n right-parenthesis is generated with the help of a random number generator with uniform PDF. For generating a triangular PDF random sequence, two independent uniform PDF random sequences d 1 left-parenthesis n right-parenthesis and d 2 left-parenthesis n right-parenthesis can be added. To generate a triangular highpass dither, the dither value d 1 left-parenthesis n right-parenthesis is added to minus d 1 left-parenthesis n minus 1 right-parenthesis. Thus, only one random number generator is required. In conclusion, the following dither sequences can be implemented:

(2.96)StartLayout 1st Row 1st Column d Subscript RECT Baseline left-parenthesis n right-parenthesis 2nd Column equals d 1 left-parenthesis n right-parenthesis semicolon EndLayout
(2.97)StartLayout 1st Row 1st Column d Subscript TRI Baseline left-parenthesis n right-parenthesis 2nd Column equals d 1 left-parenthesis n right-parenthesis plus d 2 left-parenthesis n right-parenthesis semicolon EndLayout
(2.98)StartLayout 1st Row 1st Column d Subscript HP Baseline left-parenthesis n right-parenthesis 2nd Column equals d 1 left-parenthesis n right-parenthesis minus d 1 left-parenthesis n minus 1 right-parenthesis period EndLayout

The power density spectra of triangular PDF dither and triangular PDF HP dither are shown in Fig. 2.21. Figure 2.22 shows histograms of a uniform PDF dither and a triangular PDF highpass dither together with their respective power density spectra. The amplitude range of a uniform PDF dither lies between plus-or-minus upper Q slash 2, whereas it lies between plus-or-minus upper Q for triangular PDF dither. The total noise power for triangular PDF dither is doubled.

Schematic illustration of normalized power density spectrum for triangular PDF dither (TRI) with d1(n)+d2(n) and triangular PDF highpass dither (HP) with d1(n)-d1(n-1).

Figure 2.21 Normalized power density spectrum for triangular PDF dither (TRI) with d 1 left-parenthesis n right-parenthesis plus d 2 left-parenthesis n right-parenthesis and triangular PDF highpass dither (HP) with d 1 left-parenthesis n right-parenthesis minus d 1 left-parenthesis n minus 1 right-parenthesis.

2.2.3 Examples

The effect of the input amplitude of the quantizer is shown in Fig. 2.23 for a 16‐bit quantizer (upper Q equals 2 Superscript negative 15). A quantized sinusoidal signal with amplitude 2 Superscript negative 15 (one‐bit amplitude) and frequency f slash f Subscript upper S Baseline equals 64 slash 1024 is shown in Fig. 2.23a,b for rounding and truncation. Figure 2.23c,d shows their corresponding spectra. For truncation, Fig. 2.23c shows the spectral line of the signal and the spectral distribution of the quantization error with the harmonics of the input signal. For rounding, Fig. 2.23d shows that, with special signal frequency f slash f Subscript upper S Baseline equals 64 slash 1024, the quantization error is concentrated in uneven harmonics.

Schematic illustration of (a,d) Histogram and (c,d) power density spectrum of uniform PDF dither (RECT) with d1(n) and triangular PDF highpass dither (HP) with d1(n)-d1(n-1).

Figure 2.22 (a,d) Histogram and (c,d) power density spectrum of uniform PDF dither (RECT) with d 1 left-parenthesis n right-parenthesis and triangular PDF highpass dither (HP) with d 1 left-parenthesis n right-parenthesis minus d 1 left-parenthesis n minus 1 right-parenthesis.

In the following, only the rounding operation is used. By adding a uniform PDF random signal to the actual signal before quantization, the quantized signal shown in Fig. 2.24a results. The corresponding power density spectrum is illustrated in Fig. 2.24c. In the time domain, it is observed that the one‐bit amplitudes approach zero so that the regular pattern of the quantized signal is affected. The resulting power density spectrum in Fig. 2.24c shows that the harmonics do not occur anymore and the noise power is uniformly distributed over the frequencies. For triangular PDF dither, the quantized signal is shown in Fig. 2.24b. Owing to triangular PDF, amplitudes of plus-or-minus 2 upper Q occur in addition to the signal values of plus-or-minus upper Q and zero. Figure 2.24d shows the increase of the total noise power.

To illustrate the noise modulation for uniform PDF dither, the amplitude of the input is reduced to upper A equals 2 Superscript negative 18 and the frequency is chosen as f slash f Subscript upper S Baseline equals 14 slash 1024. This means that the input amplitude to the quantizer is 0.25 bit. For a quantizer without additive dither, the quantized output signal is zero. For RECT dither, the quantized signal is shown in Fig. 2.25a. The input signal with amplitude 0.25 upper Q is also shown. The power density spectrum of the quantized signal is shown in Fig. 2.25c. The spectral line of the signal and the uniform distribution of the quantization error can be seen. However, in the time domain, a correlation between positive and negative amplitudes of the input and the quantized positive and negative values of the output can be observed. In hearing tests, this noise modulation occurs if the amplitude of the input is decreased continuously and falls below the amplitude of the quantization step. This process occurs for all fade‐out processes that occur in speech and music signals. For positive low‐amplitude signals, two output states zero and Q occur, and for negative low‐amplitude signals, the output states zero and ‐Q occur. This is observed as a disturbing rattle which is overlapped on the actual signal. If the input level is further reduced, the quantized output approaches zero.

Schematic illustration of one-bit amplitude - quantizer with truncation (a,c) and rounding (b,d).

Figure 2.23 One‐bit amplitude – quantizer with truncation (a,c) and rounding (b,d).

To reduce this noise modulation at low levels, a triangular PDF dither is used. Figure 2.25b shows the quantized signal and Fig. 2.25d shows the power density spectrum. It can be observed that the quantized signal has an irregular pattern. Hence, a direct association of positive half‐waves with the positive output values, as well as vice versa, is not possible. The power density spectrum shows the spectral line of the signal along with an increase in noise power owing to triangular PDF dither. In acoustic hearing tests, the use of triangular PDF dither results in a constant noise floor even if the input level is reduced to zero.

2.3 Spectrum Shaping of Quantization – Noise Shaping

Using the linear model of a quantizer in Fig. 2.26 and the relations

(2.99)StartLayout 1st Row 1st Column e left-parenthesis n right-parenthesis 2nd Column equals y left-parenthesis n right-parenthesis minus x left-parenthesis n right-parenthesis comma EndLayout
(2.100)StartLayout 1st Row 1st Column y left-parenthesis n right-parenthesis 2nd Column equals left-bracket x left-parenthesis n right-parenthesis right-bracket Subscript upper Q EndLayout
(2.101)StartLayout 1st Row 1st Column Blank 2nd Column equals x left-parenthesis n right-parenthesis plus e left-parenthesis n right-parenthesis comma EndLayout
Schematic illustration of one-bit amplitude - rounding with RECT dither (a,c) and TRI dither (b,d).

Figure 2.24 One‐bit amplitude – rounding with RECT dither (a,c) and TRI dither (b,d).

the quantization error e left-parenthesis n right-parenthesis may be isolated and fed back through a transfer function upper H left-parenthesis z right-parenthesis, as shown in Fig. 2.27. This leads to the spectral shaping of the quantization error as given by

(2.102)StartLayout 1st Row 1st Column y left-parenthesis n right-parenthesis 2nd Column equals left-bracket x left-parenthesis n right-parenthesis minus e left-parenthesis n right-parenthesis asterisk h left-parenthesis n right-parenthesis right-bracket Subscript upper Q EndLayout
(2.103)StartLayout 1st Row 1st Column Blank 2nd Column equals x left-parenthesis n right-parenthesis plus e left-parenthesis n right-parenthesis minus e left-parenthesis n right-parenthesis asterisk h left-parenthesis n right-parenthesis comma EndLayout
(2.104)StartLayout 1st Row 1st Column e 1 left-parenthesis n right-parenthesis 2nd Column equals y left-parenthesis n right-parenthesis minus x left-parenthesis n right-parenthesis EndLayout
(2.105)StartLayout 1st Row 1st Column Blank 2nd Column equals e left-parenthesis n right-parenthesis asterisk left-parenthesis delta left-parenthesis n right-parenthesis minus h left-parenthesis n right-parenthesis right-parenthesis comma EndLayout

and the corresponding Z‐transforms

(2.106)upper Y left-parenthesis z right-parenthesis equals upper X left-parenthesis z right-parenthesis plus upper E left-parenthesis z right-parenthesis left-parenthesis 1 minus upper H left-parenthesis z right-parenthesis right-parenthesis comma
(2.107)upper E 1 left-parenthesis z right-parenthesis equals upper E left-parenthesis z right-parenthesis left-parenthesis 1 minus upper H left-parenthesis z right-parenthesis right-parenthesis period

A simple spectrum shaping of the quantization error e left-parenthesis n right-parenthesis is achieved by feeding back with upper H left-parenthesis z right-parenthesis equals z Superscript negative 1, as shown in Fig. 2.28, and leads to

(2.108)y left-parenthesis n right-parenthesis equals left-bracket x left-parenthesis n right-parenthesis minus e left-parenthesis n minus 1 right-parenthesis right-bracket Subscript upper Q
(2.109)equals x left-parenthesis n right-parenthesis minus e left-parenthesis n minus 1 right-parenthesis plus e left-parenthesis n right-parenthesis comma
Schematic illustration of noise modulation at 0.25-bit amplitude - rounding with RECT dither (a,c) and TRI dither (b,d).

Figure 2.25 Noise modulation at 0.25‐bit amplitude – rounding with RECT dither (a,c) and TRI dither (b,d).

Schematic illustration of linear model of a quantizer.

Figure 2.26 Linear model of a quantizer.

Schematic illustration of spectrum shaping of quantization error.

Figure 2.27 Spectrum shaping of quantization error.

Schematic illustration of highpass spectrum shaping of quantization error.

Figure 2.28 Highpass spectrum shaping of quantization error.

(2.110)e 1 left-parenthesis n right-parenthesis equals y left-parenthesis n right-parenthesis minus x left-parenthesis n right-parenthesis
(2.111)equals e left-parenthesis n right-parenthesis minus e left-parenthesis n minus 1 right-parenthesis comma

and the Z‐transforms

(2.112)upper Y left-parenthesis z right-parenthesis equals upper X left-parenthesis z right-parenthesis plus upper E left-parenthesis z right-parenthesis left-parenthesis 1 minus z Superscript negative 1 Baseline right-parenthesis comma

Equation (2.113) shows a highpass weighting of the original error signal e left-parenthesis n right-parenthesis. By choosing upper H left-parenthesis z right-parenthesis equals z Superscript negative 1 Baseline left-parenthesis negative 2 plus z Superscript negative 1 Baseline right-parenthesis, second‐order highpass weighting given by

(2.114)upper E 2 left-parenthesis z right-parenthesis equals upper E left-parenthesis z right-parenthesis left-parenthesis 1 minus 2 z Superscript negative 1 Baseline plus z Superscript negative 2 Baseline right-parenthesis

can be achieved. The power density spectrum of the error signal for the two cases is given by

(2.115)StartLayout 1st Row 1st Column upper S Subscript upper E 1 upper E 1 Baseline left-parenthesis e Superscript j normal upper Omega Baseline right-parenthesis 2nd Column equals StartAbsoluteValue 1 minus e Superscript minus j normal upper Omega Baseline EndAbsoluteValue squared upper S Subscript upper E upper E Baseline left-parenthesis e Superscript j normal upper Omega Baseline right-parenthesis comma EndLayout
(2.116)StartLayout 1st Row 1st Column upper S Subscript upper E 2 upper E 2 Baseline left-parenthesis e Superscript j normal upper Omega Baseline right-parenthesis 2nd Column equals StartAbsoluteValue 1 minus 2 e Superscript minus j normal upper Omega Baseline plus e Superscript minus j Baseline 2 normal upper Omega Baseline EndAbsoluteValue squared upper S Subscript upper E upper E Baseline left-parenthesis e Superscript j normal upper Omega Baseline right-parenthesis period EndLayout

Figure 2.29 shows the weighting of the power density spectrum by this noise shaping technique.

Schematic illustration of spectrum shaping.

Figure 2.29 Spectrum shaping (upper S Subscript upper E upper E Baseline left-parenthesis e Superscript j normal upper Omega Baseline right-parenthesis, midline-horizontal-ellipsis; upper S Subscript upper E 1 upper E 1 Baseline left-parenthesis e Superscript j normal upper Omega Baseline right-parenthesis, ; upper S Subscript upper E 2 upper E 2 Baseline left-parenthesis e Superscript j normal upper Omega Baseline right-parenthesis, ‐ ‐ ‐).

Schematic illustration of dither and spectrum shaping.

Figure 2.30 Dither and spectrum shaping.

By adding a dither signal d left-parenthesis n right-parenthesis (see Fig. 2.30), the output and the error are given by

(2.117)StartLayout 1st Row 1st Column y left-parenthesis n right-parenthesis 2nd Column equals left-bracket x left-parenthesis n right-parenthesis plus d left-parenthesis n right-parenthesis minus e left-parenthesis n minus 1 right-parenthesis right-bracket Subscript upper Q EndLayout
(2.118)StartLayout 1st Row 1st Column Blank 2nd Column equals x left-parenthesis n right-parenthesis plus d left-parenthesis n right-parenthesis minus e left-parenthesis n minus 1 right-parenthesis plus e left-parenthesis n right-parenthesis EndLayout

and

(2.119)StartLayout 1st Row 1st Column e 1 left-parenthesis n right-parenthesis 2nd Column equals y left-parenthesis n right-parenthesis minus x left-parenthesis n right-parenthesis EndLayout
(2.120)StartLayout 1st Row 1st Column Blank 2nd Column equals d left-parenthesis n right-parenthesis plus e left-parenthesis n right-parenthesis minus e left-parenthesis n minus 1 right-parenthesis period EndLayout

For the Z‐transforms, we write

(2.121)StartLayout 1st Row 1st Column upper Y left-parenthesis z right-parenthesis 2nd Column equals upper X left-parenthesis z right-parenthesis plus upper E left-parenthesis z right-parenthesis left-parenthesis 1 minus z Superscript negative 1 Baseline right-parenthesis plus upper D left-parenthesis z right-parenthesis comma EndLayout
(2.122)StartLayout 1st Row 1st Column upper E 1 left-parenthesis z right-parenthesis 2nd Column equals upper E left-parenthesis z right-parenthesis left-parenthesis 1 minus z Superscript negative 1 Baseline right-parenthesis plus upper D left-parenthesis z right-parenthesis period EndLayout

The modified error signal e 1 left-parenthesis n right-parenthesis consists of the dither and the highpass shaped quantization error.

By moving the addition (Fig. 2.31) of the dither directly before the quantizer, a highpass spectrum shaping is obtained for both the error signal and the dither. Here, the following relationships hold:

(2.123)StartLayout 1st Row 1st Column y left-parenthesis n right-parenthesis 2nd Column equals left-bracket x left-parenthesis n right-parenthesis plus d left-parenthesis n right-parenthesis minus e 0 left-parenthesis n minus 1 right-parenthesis right-bracket Subscript upper Q EndLayout
(2.124)StartLayout 1st Row 1st Column Blank 2nd Column equals x left-parenthesis n right-parenthesis plus d left-parenthesis n right-parenthesis minus e 0 left-parenthesis n minus 1 right-parenthesis plus e left-parenthesis n right-parenthesis semicolon EndLayout
(2.125)StartLayout 1st Row 1st Column e 0 left-parenthesis n right-parenthesis 2nd Column equals y left-parenthesis n right-parenthesis minus left-parenthesis x left-parenthesis n right-parenthesis minus e 0 left-parenthesis n minus 1 right-parenthesis right-parenthesis EndLayout
(2.126)StartLayout 1st Row 1st Column Blank 2nd Column equals d left-parenthesis n right-parenthesis plus e left-parenthesis n right-parenthesis semicolon EndLayout
(2.127)StartLayout 1st Row 1st Column y left-parenthesis n right-parenthesis 2nd Column equals x left-parenthesis n right-parenthesis plus d left-parenthesis n right-parenthesis minus d left-parenthesis n minus 1 right-parenthesis plus e left-parenthesis n right-parenthesis minus e left-parenthesis n minus 1 right-parenthesis semicolon EndLayout
(2.128)StartLayout 1st Row 1st Column e 1 left-parenthesis n right-parenthesis 2nd Column equals d left-parenthesis n right-parenthesis minus d left-parenthesis n minus 1 right-parenthesis plus e left-parenthesis n right-parenthesis minus e left-parenthesis n minus 1 right-parenthesis comma EndLayout
Schematic illustration of modified dither and spectrum shaping.

Figure 2.31 Modified dither and spectrum shaping.

with the Z‐transforms given by

(2.129)StartLayout 1st Row 1st Column upper Y left-parenthesis z right-parenthesis 2nd Column equals upper X left-parenthesis z right-parenthesis plus upper E left-parenthesis z right-parenthesis left-parenthesis 1 minus z Superscript negative 1 Baseline right-parenthesis plus upper D left-parenthesis z right-parenthesis left-parenthesis 1 minus z Superscript negative 1 Baseline right-parenthesis comma EndLayout
(2.130)StartLayout 1st Row 1st Column upper E 1 left-parenthesis z right-parenthesis 2nd Column equals upper E left-parenthesis z right-parenthesis left-parenthesis 1 minus z Superscript negative 1 Baseline right-parenthesis plus upper D left-parenthesis z right-parenthesis left-parenthesis 1 minus z Superscript negative 1 Baseline right-parenthesis period EndLayout

Apart from the discussed feedback structures which are easy to implement on a digital signal processor and which lead to highpass noise shaping, there are psychoacoustic‐based noise‐shaping methods that have been proposed in the literature [Ger89, Wan92, Hel07]. These methods use special approximations of the hearing threshold (threshold in quiet, absolute threshold) for the feedback structure 1 minus upper H left-parenthesis z right-parenthesis. Figure 2.32a shows several hearing threshold models as a function of frequency [ISO389, Ter79, Wan92]. It can be seen that the sensitivity of human hearing is high for frequencies between 2 and 6 kHz and sharply decreases for high and low frequencies. Figure 2.32b also shows the inverse ISO 389‐7 threshold curve, which represents an approximation of the filtering operation in our perception. The feedback filter of the noise shaper should affect the quantization error with the inverse ISO389 weighting curve. Hence, the noise power in the frequency range with high sensitivity should be reduced and shifted toward lower and higher frequencies. Figure 2.33a shows the unweighted power density spectra of the quantization error for three special filters upper H left-parenthesis z right-parenthesis [Wan92, Hel07]. Figure 2.33b depicts the same three power density spectra, weighted by the inverse ISO 389 threshold of Fig. 2.32b. These weighted power density spectra (PDS) show that the perceived noise power is reduced by all three noise shapers versus the frequency axis. Figure 2.34 shows a sinusoid with amplitude upper Q equals 2 Superscript negative 15, which is quantized to w equals 16 bit with psychoacoustic noise shaping. The quantized signal x Subscript upper Q Baseline left-parenthesis n right-parenthesis consists of different amplitudes reflecting the low‐level signal. The power density spectrum of the quantized signal reflects the psychoacoustic weighting of the noise shaper with a fixed filter. A time‐variant psychoacoustic noise shaping is described in [DeK03, Hel07], where the instantaneous masking threshold is used for adaptation of a time‐variant filter.

2.4 Number Representation

The different applications in digital signal processing and transmission of audio signals lead to the question of the type of number representation for digital audio signals. In this section, basic properties of fixed‐point and floating‐point number representation in the context of digital audio signal processing are presented.

Schematic illustration of (a) Hearing thresholds in quiet. (b) Inverse ISO 389-7 threshold curve.

Figure 2.32 (a) Hearing thresholds in quiet. (b) Inverse ISO 389‐7 threshold curve.

2.4.1 Fixed‐point Number Representation

In general, an arbitrary real number x can be approximated by a finite summation

(2.131)x Subscript upper Q Baseline equals sigma-summation Underscript i equals 0 Overscript w minus 1 Endscripts b Subscript i Baseline 2 Superscript i Baseline comma

where the possible values for b Subscript i are 0 and 1.

The fixed‐point number representation with a finite number w of binary places leads to four different interpretations of the number range (see Table 2.1 and Fig. 2.35).

The signed fractional representation (2s complement) is the usual format for digital audio signals and for algorithms in fixed‐point arithmetic. For address and modulo operation, the unsigned integer is used. Owing to finite word length w, overflow occurs, as shown in Fig. 2.36. These curves have to be taken into consideration while carrying out operations, especially additions in 2s complement arithmetic.

Quantization is carried out with techniques, as shown in Table 2.2, for rounding and truncation. The quantization step size is characterized by upper Q equals 2 Superscript minus left-parenthesis w minus 1 right-parenthesis and the symbol left floor x right floor denotes the biggest integer smaller than or equal to x. Figure 2.37 shows the rounding and truncation curves for 2s complement number representation. The absolute error shown in Fig. 2.37 is given by e equals x Subscript upper Q Baseline minus x.

Schematic illustration of power density spectra of three filter approximations: (a) unweighted power spectral densities; (b) inverse ISO 389-7 weighted PSDs.

Figure 2.33 Power density spectra of three filter approximations (Wa3, third‐order filter; Wa9, ninth‐order filter; He8, eighth‐order filter [Wan92, Hel07]): (a) unweighted power spectral densities (PSDs); (b) inverse ISO 389‐7 weighted PSDs.

Table 2.1 Bit location and range of values.

TypeBit locationRange of values
Signed 2s c.x Subscript upper Q Baseline equals minus b 0 plus sigma-summation Underscript i equals 1 Overscript w minus 1 Endscripts b Subscript negative i Baseline 2 Superscript negative inegative 1less-than-or-equal-to x Subscript upper Q Baseline less-than-or-equal-to1 minus 2 Superscript minus left-parenthesis w minus 1 right-parenthesis
Unsigned 2s c.x Subscript upper Q Baseline equals sigma-summation Underscript i equals 1 Overscript w Endscripts b Subscript negative i Baseline 2 Superscript negative i0less-than-or-equal-to x Subscript upper Q Baseline less-than-or-equal-to1 minus 2 Superscript negative w
Signed int.x Subscript upper Q Baseline equals minus b Subscript w minus 1 Baseline 2 Superscript w minus 1 Baseline plus sigma-summation Underscript i equals 0 Overscript w minus 2 Endscripts b Subscript i Baseline 2 Superscript iminus 2 Superscript w minus 1less-than-or-equal-to x Subscript upper Q Baseline less-than-or-equal-to2 Superscript w minus 1 Baseline minus 1
Unsigned int.x Subscript upper Q Baseline equals sigma-summation Underscript i equals 0 Overscript w minus 1 Endscripts b Subscript i Baseline 2 Superscript i0less-than-or-equal-to x Subscript upper Q Baseline less-than-or-equal-to2 Superscript w Baseline minus 1

Digital audio signals are coded in the 2s complement number representation. For 2s complement representation, the range of values from minus upper X Subscript m a x to plus upper X Subscript m a x is normalized to the range −1 to +1 and is represented by the weighted finite sum x Subscript upper Q Baseline equals minus b 0 plus b 1 dot 0.5 plus b 2 dot 0.25 plus b 3 dot 0.125 plus midline-horizontal-ellipsis plus b Subscript w minus 1 Baseline dot 2 Superscript minus left-parenthesis w minus 1 right-parenthesis. The variables b 0 to b Subscript w minus 1 are called bits and can take the values 1 or 0. The bit b 0 is called MSB (most significant bit) and b Subscript w minus 1 is called LSB (least significant bit). For positive numbers, b 0 is equal to 0 and for negative numbers, b 0 equals 1. For a three‐bit quantization (see Fig. 2.38), a quantized value can be represented by x Subscript upper Q Baseline equals minus b 0 plus b 1 dot 0.5 plus b 2 dot 0.25. The smallest quantization step size is 0.25. For a positive number 0.75, it follows that 0.75 equals negative 0 plus 1 dot 0.5 plus 1 dot 0.25. The binary coding for 0.75 is 011.

Schematic illustration of psychoacoustic noise shaping: signal x(n); quantized signal xQ(n); and power density spectrum of quantized signal.

Figure 2.34 Psychoacoustic noise shaping: signal x left-parenthesis n right-parenthesis; quantized signal x Subscript upper Q Baseline left-parenthesis n right-parenthesis; and power density spectrum of quantized signal.

Schematic illustration of fixed-point formats.

Figure 2.35 Fixed‐point formats.

Dynamic Range. The dynamic range of a number representation is defined as the ratio of maximum to minimum number. For fixed‐point representation with

(2.132)StartLayout 1st Row 1st Column x Subscript upper Q m a x 2nd Column equals left-parenthesis 1 minus 2 Superscript minus left-parenthesis w minus 1 right-parenthesis Baseline right-parenthesis comma EndLayout
(2.133)StartLayout 1st Row 1st Column x Subscript upper Q m i n 2nd Column equals 2 Superscript minus left-parenthesis w minus 1 right-parenthesis Baseline comma EndLayout
Schematic illustration of number range.

Figure 2.36 Number range.

Schematic illustration of rounding and truncation curves.

Figure 2.37 Rounding and truncation curves.

Table 2.2 Rounding and truncation of 2s complement numbers.

TypeQuantizationError limits
2s c. (r)x Subscript upper Q Baseline equals upper Q left floor upper Q Superscript negative 1 Baseline x plus 0.5 right floornegative upper Q slash 2less-than-or-equal-to x Subscript upper Q Baseline minus x less-than-or-equal-toupper Q slash 2
2s c. (t)x Subscript upper Q Baseline equals upper Q left floor upper Q Superscript negative 1 Baseline x right floornegative upper Qless-than-or-equal-to x Subscript upper Q Baseline minus x less-than-or-equal-to0
Schematic illustration of rounding curve and error signal for w=3 bit.

Figure 2.38 Rounding curve and error signal for w equals 3 bit.

the dynamic range is given by

(2.134)StartLayout 1st Row 1st Column DR Subscript upper F 2nd Column equals 3rd Column 20 log Subscript 10 Baseline left-parenthesis StartFraction x Subscript upper Q m a x Baseline Over x Subscript upper Q m i n Baseline EndFraction right-parenthesis equals 20 log Subscript 10 Baseline left-parenthesis StartFraction 1 minus upper Q Over upper Q EndFraction right-parenthesis 2nd Row 1st Column Blank 2nd Column equals 3rd Column 20 log Subscript 10 Baseline left-parenthesis 2 Superscript w minus 1 Baseline minus 1 right-parenthesis in dB period EndLayout

Multiplication and Addition of Fixed‐point Numbers. For the multiplication of two fixed‐point numbers in the range from negative 1 to plus 1, the result is always less than 1. For the addition of two fixed‐point numbers, care must be taken for the result to remain in the range from negative 1 to plus 1. An addition of 0.6 plus 0.7 equals 1.3 must be carried out in the form 0.5 left-parenthesis 0.6 plus 0.7 right-parenthesis equals 0.65. This multiplication by the factor 0.5 or generally 2 Superscript negative s is called scaling. An integer in the range from one to, for instance, eight is chosen for the scaling coefficient s.

Error Model. The quantization process for fixed‐point numbers can be approximated as an addition of an error signal e left-parenthesis n right-parenthesis to the signal x left-parenthesis n right-parenthesis (see Fig. 2.39). The error signal is a random signal with white power density spectrum.

Schematic illustration of model of a fixed-point quantizer.

Figure 2.39 Model of a fixed‐point quantizer.

Signal‐to‐noise Ratio. The SNR for a fixed‐point quantizer is defined by

(2.135)SNR equals 10 log Subscript 10 Baseline left-parenthesis StartFraction sigma Subscript upper X Superscript 2 Baseline Over sigma Subscript upper E Superscript 2 Baseline EndFraction right-parenthesis comma

where sigma Subscript upper X Superscript 2 is the signal power and sigma Subscript upper E Superscript 2 is the noise power.

2.4.2 Floating‐point Number Representation

The representation of a floating‐point number is given by

(2.136)x Subscript upper Q Baseline equals upper M Subscript upper G Baseline 2 Superscript upper E Super Subscript upper G

with

(2.137)0.5 less-than-or-equal-to upper M Subscript upper G Baseline less-than 1 comma

where upper M Subscript upper G denotes the normalized mantissa and upper E Subscript upper G the exponent. The normalized standard format (IEEE) is shown in Fig. 2.40 and special cases are given in Table 2.3. The mantissa upper M is implemented with a word length of w Subscript upper M bits and is in fixed‐point number representation. The exponent upper E is implemented with a word length of w Subscript upper E bits and is an integer in the range from minus 2 Superscript w Super Subscript upper E Superscript minus 1 plus 2 to 2 Superscript w Super Subscript upper E Superscript minus 1 Baseline minus 1. For an exponent word length of w Subscript upper E Baseline equals 8 bits, its range of values is between negative 126 and +127. The range of values of the mantissa is between 0.5 and 1. This is denoted as the normalized mantissa and is responsible for a unique representation of a number. For a fixed‐point number in the range between 0.5 and 1, it follows that the exponent of the floating‐point number representation is upper E equals 0. For representing a fixed‐point number in the range between 0.25 and 0.5 in floating‐point representation, the range of values of the normalized mantissa upper M lies between 0.5 and 1, and for the exponent it follows upper E equals negative 1. As an example, for a fixed‐point number 0.75, the floating‐point number 0.75 dot 2 Superscript 0 results. The fixed‐point number 0.375 is not represented as the floating‐point number 0.375 dot 2 Superscript 0. With the normalized mantissa, the floating‐point number is expressed as 0.75 dot 2 Superscript negative 1. Owing to normalization, ambiguity of the floating‐point number representation is avoided. Numbers greater-than 1 can be represented. For example, 1.5 becomes 0.75 dot 2 Superscript 1 in floating‐point number representation.

Schematic illustration of floating-point number representation.

Figure 2.40 Floating‐point number representation.

Table 2.3 Special cases of floating‐point number representation.

TypeExponentMantissaValue
NAN255not-equals 0undefined
Infinity2550left-parenthesis negative 1 right-parenthesis Superscript s infinity
Normal1 less-than-or-equal-to e less-than-or-equal-to 254anyleft-parenthesis negative 1 right-parenthesis Superscript s Baseline left-parenthesis 0 period m right-parenthesis 2 Superscript e minus 127
Zero00left-parenthesis negative 1 right-parenthesis Superscript s Baseline dot 0

Figure 2.41 shows the rounding and truncation curves for floating‐point representation and the absolute error e equals x Subscript upper Q Baseline minus x. The curves for floating‐point quantization show that for small amplitudes, small quantization steps sizes occur. In contrast to fixed‐point representation, the absolute error is dependent on the input signal.

Schematic illustration of rounding and truncation curves for floating-point representation.

Figure 2.41 Rounding and truncation curves for floating‐point representation.

In the interval

(2.138)2 Superscript upper E Super Subscript upper G Superscript Baseline less-than-or-equal-to x less-than 2 Superscript upper E Super Subscript upper G Superscript plus 1 Baseline comma

the quantization step is given by

(2.139)upper Q Subscript upper G Baseline equals 2 Superscript minus left-parenthesis w Super Subscript upper M Superscript minus 1 right-parenthesis Baseline 2 Superscript upper E Super Subscript upper G Superscript Baseline period

For the relative error

(2.140)e Subscript r Baseline equals StartFraction x Subscript upper Q Baseline minus x Over x EndFraction

of the floating‐point representation, a constant upper limit can be stated as

(2.141)StartAbsoluteValue e Subscript r Baseline EndAbsoluteValue less-than-or-equal-to 2 Superscript minus left-parenthesis w Super Subscript upper M Superscript minus 1 right-parenthesis Baseline period

Dynamic Range. With the maximum and minimum numbers given by

(2.142)StartLayout 1st Row 1st Column x Subscript upper Q m a x 2nd Column equals left-parenthesis 1 minus 2 Superscript minus left-parenthesis w Super Subscript upper M Superscript minus 1 right-parenthesis Baseline right-parenthesis 2 Superscript upper E Super Subscript upper G m a x Superscript Baseline comma EndLayout
(2.143)StartLayout 1st Row 1st Column x Subscript upper Q m i n 2nd Column equals 0.5 2 Superscript upper E Super Subscript upper G m i n Superscript Baseline comma EndLayout

and

(2.144)StartLayout 1st Row 1st Column upper E Subscript upper G m a x 2nd Column equals 2 Superscript w Super Subscript upper E Superscript minus 1 Baseline minus 1 comma EndLayout
(2.145)StartLayout 1st Row 1st Column upper E Subscript upper G m i n 2nd Column equals minus 2 Superscript w Super Subscript upper E Superscript minus 1 Baseline plus 2 comma EndLayout

the dynamic range for floating‐point representation is given by

(2.146)StartLayout 1st Row 1st Column DR Subscript upper G 2nd Column equals 3rd Column 20 log Subscript 10 Baseline left-parenthesis StartFraction left-parenthesis 1 minus 2 Superscript minus left-parenthesis w Super Subscript upper M Superscript minus 1 right-parenthesis Baseline right-parenthesis 2 Superscript upper E Super Subscript upper G m a x Superscript Baseline Over 0.5 2 Superscript upper E Super Subscript upper G m i n Superscript Baseline EndFraction right-parenthesis 2nd Row 1st Column Blank 2nd Column equals 3rd Column 20 log Subscript 10 Baseline left-parenthesis 1 minus 2 Superscript minus left-parenthesis w Super Subscript upper M Superscript minus 1 right-parenthesis Baseline right-parenthesis 2 Superscript upper E Super Subscript upper G m a x Superscript minus upper E Super Subscript upper G m i n plus 1 3rd Row 1st Column Blank 2nd Column equals 3rd Column 20 log Subscript 10 Baseline left-parenthesis 1 minus 2 Superscript minus left-parenthesis w Super Subscript upper M Superscript minus 1 right-parenthesis Baseline right-parenthesis 2 Superscript 2 Super Superscript w Super Super Subscript upper E Super Superscript Superscript minus 2 Baseline dB period EndLayout

Multiplication and Addition of Floating‐point Numbers. For multiplications with floating‐point numbers, the exponents of both numbers x Subscript upper Q Baseline 1 Baseline equals upper M 1 2 Superscript upper E 1 and x Subscript upper Q Baseline 2 Baseline equals upper M 2 2 Superscript upper E 2 are added and the mantissas are multiplied. The resulting exponent upper E Subscript upper G Baseline equals upper E 1 plus upper E 2 is adjusted so that upper M Subscript upper G Baseline equals upper M 1 upper M 2 lies in the interval 0.5 less-than-or-equal-to upper M Subscript upper G Baseline less-than 1. For additions, the smaller number is denormalized to get the same exponent. Then both mantissa are added and the result is normalized.

Error Model. With the definition of the relative error e Subscript r Baseline left-parenthesis n right-parenthesis equals StartFraction x Subscript upper Q Baseline left-parenthesis n right-parenthesis minus x left-parenthesis n right-parenthesis Over x left-parenthesis n right-parenthesis EndFraction, the quantized signal can be written as

(2.147)x Subscript upper Q Baseline left-parenthesis n right-parenthesis equals x left-parenthesis n right-parenthesis dot left-parenthesis 1 plus e Subscript r Baseline left-parenthesis n right-parenthesis right-parenthesis equals x left-parenthesis n right-parenthesis plus x left-parenthesis n right-parenthesis dot e Subscript r Baseline left-parenthesis n right-parenthesis period

Floating‐point quantization can be modeled as an additive error signal e left-parenthesis n right-parenthesis equals x left-parenthesis n right-parenthesis dot e Subscript r Baseline left-parenthesis n right-parenthesis to the signal x left-parenthesis n right-parenthesis (see Fig. 2.42).

Signal‐to‐noise Ratio. Under the assumption that the relative error is independent of the input x, the noise power of the floating‐point quantizer can be written as

Schematic illustration of model of a floating-point quantizer.

Figure 2.42 Model of a floating‐point quantizer.

(2.148)sigma Subscript upper E Superscript 2 Baseline equals sigma Subscript upper X Superscript 2 Baseline dot sigma Subscript upper E Sub Subscript r Subscript Superscript 2 Baseline period

For the SNR, we can derive

Equation (2.149) shows that the SNR is independent of the level of the input. It is only dependent on the noise power sigma Subscript upper E Sub Subscript r Superscript 2 which, in turn, is only dependent on the word length w Subscript upper M of the mantissa of the floating‐point representation.

2.4.3 Effects on Format Conversion and Algorithms

First, a comparison of the SNR is made for the fixed‐point and floating‐point number representations. Figure 2.43 shows the SNR as a function of input level for both number representations. The fixed‐point word length is w equals 16 bits. The word length of the mantissa in floating‐point representation is also w Subscript upper M Baseline equals 16 bits whereas that of the exponent is w Subscript upper E Baseline equals 4 bits The SNR for the floating‐point representation shows that it is independent of input level and varies as a saw‐tooth curve in a 6‐dB grid. If the input level is so low that a normalization of the mantissa arising from finite number representation is not possible, then the SNR is comparable to the fixed‐point representation. While using the full range, both fixed‐point and floating‐point result in the same SNR. It can be noticed that the SNR for the fixed‐point representation depends on the input level. This SNR in the digital domain is an exact image of the level‐dependent SNR of an analog signal in the analog domain. A floating‐point representation cannot improve this SNR. Rather, the floating‐point curve is vertically shifted downwards to the value of the SNR of an analog signal.

AD/DA Conversion. Before processing, storing, and transmission of audio signals, the analog audio signal is converted into a digital signal. The precision of this conversion depends on the word length w of the AD converter. The resulting SNR is 6 w dB for uniform PDF inputs. The SNR in the analog domain depends on the level. This linear dependence of the SNR on the level is preserved after AD conversion with subsequent fixed‐point representation.

Schematic illustration of signal-to-noise ratio for an input level.

Figure 2.43 Signal‐to‐noise ratio for an input level.

Equalizers. While implementing equalizers with recursive digital filters, the SNR depends on the choice of the recursive filter structure. By a suitable choice of a filter structure and methods to spectrally shape the quantization errors, optimal SNRs are obtained for a given word length. The SNR for a fixed‐point representation depends on the word length, and for a floating‐point representation on the word length of the mantissa. For filter implementations with fixed‐point arithmetic, boost filters have to be implemented with a scaling within the filter algorithm. The properties of a floating‐point representation take care of automatic scaling in boost filters. If an insert inpit/output (I/O) in fixed‐point representation follows a boost filter in floating‐point representation, then the same scaling as in fixed‐point arithmetics has to be done.

Dynamic Range Control. Dynamic range control is performed by a simple multiplicative weighting of the input signal with a control factor. The latter follows from calculating the peak and root‐mean‐square (RMS) value of the input signal. The number representation of the signal has no influence on the properties of the algorithm. Owing to the normalized mantissa in the floating‐point representation, some simplifications are produced while determining the control factor.

Mixing/Summation. While mixing signals to a stereo image, only multiplications and additions occur. Under the assumption of incoherent signals, an overload reserve can be estimated. This implies a reserve of 20/30 dB for 48/96 sources. For fixed‐point representation, the overload reserve is provided by a number of overflow bits in the accumulator of a digital signal processor (DSP). The properties of automatic scaling in floating‐point arithmetic provide for overload reserves. For both number representations, the summation signal must be matched with the number representation of the output. While dealing with AES/EBU outputs or MADI outputs, both number representations are adjusted to a fixed‐point format. Similarly, within heterogeneous system solutions, it is logical to make heterogeneous use of both number representations though corresponding number representations have to be converted.

Because the SNR in fixed‐point representation depends on the input level, a conversion from fixed‐point to floating‐point representation does not lead to a change of the SNR, i.e. the conversion does not improve the SNR. Further signal processing with floating‐point or fixed‐point arithmetic does not alter the SNR as long as the algorithms are chosen and programmed accordingly. Reconversion from floating‐point to fixed‐point representation again leads to a level‐dependent SNR.

As a consequence, for two‐channel DSP systems which operate with AES/EBU or with analog inputs and outputs, and which are used for equalization, dynamic range control, room simulation etc., the above‐mentioned holds. These conclusions are also valid for digital mixing consoles for which digital inputs from AD converters or from multitrack machines are represented in fixed‐point format (AES/EBU or MADI). The number representation for inserts and auxiliaries is specific to a system. Digital AES/EBU (or MADI) inputs and outputs are realized in fixed‐point number representation.

2.5 JS Applet – Quantization, Dither, and Noise Shaping

This applet shown in Fig. 2.44 demonstrates audio effects resulting from quantization. It is designed as a first insight into the perceptual effects of quantizing an audio signal.

The following functions can be selected on the lower right of the graphical user interface:

  • Quantizer
    1. – word length w leads to a quantization step size upper Q equals 2 Superscript minus left-parenthesis w minus 1 right-parenthesis;
  • Dither
    1. – rect dither – uniform probability density function,
    2. – tri dither – triangular probability density function,
    3. – highpass dither – triangular probability density function and highpass power spectral density;
  • Noise shaping
    1. – first‐order upper H left-parenthesis z right-parenthesis equals z Superscript negative 1,
    2. – second‐order upper H left-parenthesis z right-parenthesis equals minus 2 z Superscript negative 1 Baseline plus z Superscript negative 2,
    3. – psychoacoustic noise shaping.

You can choose between two predefined audio files from our web server (audio1.wav or audio2.wav) or your own local WAV file to be processed [Gui05].

Schematic illustration of JS applet - quantization, dither, and noise shaping.

Figure 2.44 JS applet – quantization, dither, and noise shaping.

2.6 Exercises

1. Quantization

  1. Consider a 100‐Hz sine wave x left-parenthesis n right-parenthesis sampled with f Subscript upper S Baseline equals 44.1 kHz, upper N equals 1024 number of samples, and w equals 3 bit (word length). What is the number of quantization levels? What is the quantization step upper Q when the signal is normalized to negative 1 less-than-or-equal-to x left-parenthesis n right-parenthesis less-than 1. Show graphically how quantization is performed. What is the maximum error for this 3‐bit quantizer? Write a Matlab code for quantization with rounding and truncation.
  2. Derive the mean value, the variance, and the peak factor upper P Subscript upper F of sequence e left-parenthesis n right-parenthesis if the signal has a uniform probability density function (PDF) in the range minus StartFraction upper Q Over 2 EndFraction less-than e left-parenthesis n right-parenthesis less-than minus StartFraction upper Q Over 2 EndFraction. Derive the signal‐to‐noise ratio (SNR) for this case. What will happen if we increase our word length by one bit?
  3. As the input signal level decreases from maximum amplitude to very low amplitudes, the error signal becomes more audible. Describe the error calculated above when w decreases to 1 bit? Is the classical quantization model still valid? What can be done to avoid this distortion?
  4. Write a Matlab code for a quantizer with w equals 16 bit with rounding and truncation.
    • Plot the nonlinear transfer characteristic and the error signal when the input signal covers the range 3 upper Q less-than x left-parenthesis n right-parenthesis less-than 3 upper Q.
    • Consider the sine wave x left-parenthesis n right-parenthesis equals upper A sine left-parenthesis 2 pi StartFraction f Over f Subscript upper S Baseline EndFraction n right-parenthesis comma n equals 0 comma ellipsis comma upper N minus 1 with upper A equals upper Q comma StartFraction f Over f Subscript upper S Baseline EndFraction equals 64 slash upper N and upper N equals 1024. Plot the output signal (n equals 0 comma ellipsis comma 99) of a quantizer with rounding and truncation in the time domain and the frequency domain.
    • Compute for both quantization types the quantization error and the SNR.

2. Dither

  1. What is dither and when do we have to use it?
  2. How do we perform dither and what kinds of dither do we have?
  3. How do we obtain a triangular highpass dither and why do we prefer it to other dithers?
  4. Matlab: Generate corresponding dither signals for rectangular, triangular, and triangular highpass.
  5. Plot the amplitude distribution and the spectrum of the output x Subscript upper Q Baseline left-parenthesis n right-parenthesis of a quantizer for every dither type.

3. Noise Shaping

  1. What is noise shaping and when do we do it?
  2. Why is it necessary to dither during noise shaping and how do we do this?
  3. Matlab: The first noise shaper used is without dither and assumes that the transfer function in the feedback structure can be first‐order upper H left-parenthesis z right-parenthesis equals z Superscript negative 1 or second‐order upper H left-parenthesis z right-parenthesis equals minus 2 z Superscript negative 1 Baseline plus z Superscript negative 2. Plot the output x Subscript upper Q Baseline left-parenthesis n right-parenthesis and the error signal e left-parenthesis n right-parenthesis and its spectrum. Show with a plot how the error signal will be shaped.
  4. The same noise shaper is now used with a dither signal. Is it really necessary to dither with noise shaping? Where would you add your dither in the flow graph to achieve better results?
  5. In the feedback structure, we now use a psychoacoustic‐based noise shaper which uses the Wannamaker filter coefficients:
    StartLayout 1st Row 1st Column h 3 2nd Column equals 3rd Column left-bracket 1.623 comma negative 0.982 comma 0.109 right-bracket semicolon 2nd Row 1st Column h 5 2nd Column equals 3rd Column left-bracket 2.033 comma negative 2.165 comma 1.959 comma negative 1.590 comma 0.6149 right-bracket semicolon 3rd Row 1st Column h 9 2nd Column equals 3rd Column left-bracket 2.412 comma negative 3.370 comma 3.937 comma negative 4.174 comma 3.353 comma negative 2.205 comma 1.281 comma negative 0.569 comma 0.0847 right-bracket period EndLayout

    Show with a Matlab plot how the error is shaped by this filter.

References

  1. [DeK03] D. De Koning, W. Verhelst: On Psychoacoustic Noise Shaping for Audio Requantization, Proc. ICASSP‐03, Vol. 5, pp. 453–456, April 2003.
  2. [Ger89] M.A. Gerzon, P.G. Craven: Optimal Noise Shaping and Dither of Digital Signals, Proc. 87th AES Convention, New York, Preprint No. 2822, October 1989.
  3. [Gui05] M. Guillemard, C. Ruwwe, U. Zölzer: J‐DAFx ‐ Digital Audio Effects in Java, Proc. 8th Int. Conference on Digital Audio Effects (DAFx‐05), Madrid, Spain, pp.161–166, 2005.
  4. [Hel07] C.R. Helmrich, M. Holters, and U. Zölzer, Improved Psychoacoustic Noise Shaping for Requantization of High‐Resolution Digital Audio, AES 31st International Conference, London, UK, June 2007.
  5. [ISO389]ISO 389‐7:2005, Acoustics – Reference zero for the calibration of audiometric equipment – Part 7: Reference threshold of hearing under free‐field and diffuse‐field listening conditions, Geneva, Switzerland, 2005.
  6. [Lip86] S.P. Lipshitz, J. Vanderkoy: Digital Dither, Proc. 81st AES Convention, Los Angeles, Preprint No. 2412, November 1986.
  7. [Lip92] S.P. Lipshitz, R.A. Wannamaker, J. Vanderkoy: Quantization and Dither: A Theoretical Survey, J. Audio Eng. Soc., Vol. 40, No. 5, pp. 355–375, May 1992.
  8. [Sha48] C.E. Shannon: A Mathematical Theory of Communication, Bell Systems, Techn. J., pp. 379–423, pp. 623–656, 1948.
  9. [Sri77] A.B. Sripad, D.L. Snyder: A Necessary and Sufficient Condition for Quantization Errors to be Uniform and White, IEEE Trans. ASSP, Vol. 25, pp. 442–448, Oct. 1977.
  10. [Ter79] E. Terhardt, Calculating Virtual Pitch, Hearing Res., Vol. 1, pp. 155–182, 1979.
  11. [Van89] J. Vanderkooy, S.P. Lipshitz: Digital Dither: Signal Processing with Resolution Far below the Least Significant Bit, Proc. AES Int. Conf. on Audio in Digital Times, pp. 87–96, May 1989.
  12. [Wan92] R.A. Wannamaker: Psychoacoustically Optimal Noise Shaping, J. Audio Eng. Soc., Vol. 40, No. 7/8, pp. 611–620, July/August 1992.
  13. [Wan00] R.A. Wannamaker, S.P. Lipshitz, J. Vanderkooy, J.N. Wright: A Theory of Nonsubtractive Dither, IEEE Trans. Signal Processing, Vol. 48, No. 2, pp. 499–516, 2000.
  14. [Wid61] B. Widrow: Statistical Analysis of Amplitude‐Quantized Sampled‐Data Systems, Trans. AIEE, Pt. II, Vol. 79, pp. 555–568, Jan. 1961.

Note

  1. 1 This is also valid owing to the weaker condition of Sripad and Snyder [Sri77] discussed in the next section.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset