Index


    • a
    • α‐aminonitriles  640
    • ab‐initio molecular dynamics  8
    • ab‐initio wave function‐based electronic theory  8
    • acetylene hydrochlorination  304, 305, 666, 667
    • activated carbon (AC)  66
      • catalytic activity of  622
    • activation energy  7, 9, 168, 214, 288, 480, 602, 608, 615
    • active sites
      • localized chemical functionality  298, 300
      • nitrogen, sulfur‐and boron doping  301, 306
    • adsorption energy  269
      • of catalytic reaction  9
      • hydrogen  22, 24
      • of OER and ORR equations  16
      • overpotential  14
      • value of  29
    • advanced oxidation processes (AOP)  287, 523
    • aerobic alcohol oxidation  301, 302
    • Al‐air batteries  585, 586
    • alcohol oxidation reaction (AOR)  171, 306
    • aldol condensation  468, 631, 638–639
    • alkaline electrolyte  40, 41, 80, 83, 185, 269, 315, 335, 390, 395, 575
    • alkaline fuel cells (AFC)  36, 408, 531
    • alkyne hydration  293
    • 1‐amidoalkyl‐2‐naphthols  633, 634
    • amine functionalized holey graphene (AFHG)  391
    • 2‐aminobenzonitrile (ABN)  479
    • 2‐amino‐3‐cyanopyridines  633, 634
    • amino‐functionalized graphene (AG)  391
    • 5‐amino‐2‐mercapto‐1,3,4‐thiadiazole (AMT)  218
    • 2‐aminothiophene‐3‐carbonitrile (ATCN)  480
    • ammonia borane  3, 4
    • ammoxidation reaction  228
    • amphiphilic templating methods  151–155
    • anion‐exchange membrane electrolyzer  314
    • anion exchange membrane fuel cells (AEMFC)  408
    • annealed ultra‐dispersed nanodiamond (ADD)  617
    • 9,10‐anthaquinone  287
    • anthracene  611, 622, 625
    • anthraquinone process, for H2O2 synthesis  663
    • Ar plasma method, for graphene surface treatment  323
    • Arrhenius equation  7, 24
    • 1‐arylnaphth[1,2‐e][1,3]oxazin‐3‐ones  633, 634
    • b
    • ball‐milling method  87, 344, 534
    • barbituric acids  479, 633, 635
    • Barrett–Emmett–Teller (BET)  85, 110, 113, 114, 121, 125, 237, 360
    • B‐doped carbon (BDC)  38, 39, 125, 340, 689–691
    • B‐doped carbon supported metal catalysts
      • design and synthesis  689–691
      • metal nanoparticle electrocatalysts  691–692
    • B‐doped CNT (BCNT)  6, 318, 339, 340, 342, 347
    • B‐doped diamond (BBD) catalyst  49
    • B‐doped graphene  44, 692
    • B‐doped rGO  569
    • B doping  319, 343, 351, 569, 629, 689
    • benzaldehyde acetalization  293
    • benzyl alcohol (BzOH) oxidation  293, 302, 306, 606, 608, 619–621
    • biaryl synthesis  631, 635, 636, 640
    • Bimetallic zeolitic imidazolate frameworks (BMZIF)  680, 681
    • binding energy  51, 168, 229, 273, 689
    • biomass conversion  134, 137
    • block copolymers (BCPs)  145, 148–150
    • B,N‐co‐doped graphene  39, 392, 618, 667
    • Boltzmann constant  13
    • borocarbonitride (BCN)  44, 318, 319, 481, 482, 484, 545
    • boron‐doped carbon nanotubes (BCNT)  318, 340
    • boron‐doped CBMFC  38
    • boron doping  301–306, 339–341
    • bottlebrush polymers  151
    • Brunauer‐Emmett‐Teller (BET)  85, 90, 102, 107, 113, 337
    • bulk g‐C3N4 (BCN)  481
    • butane, catalytic dehydrogenation of  605
    • Butler–Volmer equation  30, 43, 168, 169
    • Butler–Volmer relation  9, 30
    • 1‐butyl‐3‐methlyimidazolium hexafluorophosphate  545
    • c
    • calcium carbide method  666
    • calix[4]pyrroles, GO‐catalyzed synthesis of  639
    • carbocatalysis
      • with carbon holes and edges  294, 297
      • nanocarbons for  292, 294
    • carbocatalyst‐mediated DDH process  603
    • carbocatalysts  598, 599, 630
      • geometrical defects  611–614
      • metal residues  644
      • N, B and NB co‐doping  615–619
      • O‐doping  614
      • π electrons of  606–611
      • P, S and P,S co‐doping  619–621
      • recyclability/reusability  643
      • for reduction reactions  621–630
    • carbon‐based catalysts  44
      • nitrogen modified  255
      • from non‐templated synthetic polymers  139, 141
    • carbon‐based metal‐free catalysts (C‐MFECs)  172
      • photocatalysis
        • CQD, synthesis of  465–470
        • graphene and graphene oxide  458–459
        • graphene based metal‐free catalysts  459–461
        • graphic carbon nitride  470–473
        • synthesis, pristine g‐C3N4, nanostructure design  474–478
        • synthesis, pristine g‐C3N4, nitrogen‐rich precursors  473–474
    • carbon‐based metal‐free cathodes
      • Al‐air batteries  585–587
      • Li‐O2 batteries  557–571
      • Na‐air batteries  571–575
      • Zn‐air batteries  575–585
    • carbon‐based, metal‐free electrocatalysts (C‐MFECs)
      • bifunctional HER/OER  48
      • for CDR  48, 49
      • for energy conversions  52
      • for HER  43–46
      • for OER  40, 41
      • for ORR  36
      • Tafel slope of  53
    • carbon blacks (CB)  692
      • Black Peral  413
      • Ketjen Black  413
      • oxidation of  413
      • powder  412
    • carbon‐carbon coupling reactions, GO carbocatalysts  631
      • aldol condensation  638–639
      • biaryls synthesis  635–636
      • Friedel–Crafts reactions  631–633
      • Michael addition  636–638
      • multicomponent reactions  633–635
    • carbon dioxide reduction (CDR)  35
      • C‐MFECs for  48, 49
      • dopants/defects of carbon materials for  49, 50
      • multiple products  273, 274
      • selectively  274, 275
      • two synergistic components for  50, 51
    • carbon dioxide reduction reaction (CO2RR)  167, 214–217, 251, 253, 271, 272, 675
    • carbon fibers  41, 48, 51, 114, 134, 136, 138, 141, 201, 207, 219, 328, 330, 331, 411, 463, 561, 562, 564, 575
    • carbon materials  597
      • electrochemical HER
        • atomic level, defective grapheme materials  442–443
        • atomic level, dual heteroatom‐doped carbon materials  439–442
        • atomic level, single heteroatom‐doped carbon materials  439
        • electrocatalytic HER  438
        • hybridized carbon materials  443–445
      • metal‐free catalyst
        • doping, heteroatoms  432
        • P‐doped mesoporous carbon  436
        • structural optimization  435
    • carbon nanocages (CNC)  68, 69, 185, 322, 347, 348, 351
    • carbon nanocoil  416
    • carbon nanofibers (CNF)  50, 96, 194, 215, 272, 330, 415, 420, 564–567, 583, 663
    • carbon nanoflakes  174
    • carbon nanomaterials  1–4, 7, 14, 16, 18, 21, 48, 51, 78, 170, 171, 252, 278, 328, 330, 335, 337, 343, 358, 415–427, 457, 564–570, 588, 597, 609, 623, 644, 645, 676, 678
    • carbon nanoparticles (CNP)  380, 384, 480, 547
    • carbon nanospheres  84, 86, 429, 430
    • carbon nanostructures (CNS)  6, 7, 96, 174, 255, 256, 267, 285, 347, 348, 371, 372, 389–392, 664, 677, 680
    • carbon nanostructures/biomass‐derived hydrothermal carbon composites  389–390
    • carbon nanotube‐graphene (CNT‐G)  69
    • carbon nanotubes (CNT)  1, 3, 35, 37, 59, 79, 144, 155, 156, 170, 176, 252, 262, 264, 286, 337, 415, 463, 502, 531, 547, 557–560, 567, 570, 599, 680
      • CoO nanoparticles  419
      • deactivation of  286
      • Fe/Co alloy, CNT/graphene hybrid  419
      • MWNT  416
      • nitric acid and acetic acid  418
      • SWNT  416
      • two‐step oxidation method  417
    • carbon nitride (C3N4)  27, 29, 174
    • carbon nitride nanorods (CNR)  144
    • carbon nitrogen coupling catalyzed  290–292
    • carbon paper  565
      • composite cathode  566
    • carbon/polymer hybrids  155
    • carbon quantum dots (CQD)  349, 395, 415, 458, 461–470
      • metal‐free catalysts
        • photoenhanced mechanism, hydrogen bond  469
        • size‐dependent photoluminescence  465
        • ultrasonic‐hydrothermal process  466
        • up‐conversion luminescence properties  466
      • synthesis of
        • bottom‐up approaches  465
        • top‐down approaches  463–464
    • carbon, stabilization methods  139
    • catalyst design principles  20–21, 29–31
    • catalyst leaching  644
    • catalytic active sites, in graphene  660
    • catalytic activity, different dopants  406
    • cathode catalyst  66, 546, 564, 579
    • cathodic ORR  59, 87, 335, 411
    • cathodic transfer coefficient  168, 169
    • charge transfer
      • carbon matrix and dopants  17
      • carbon nanostructures  6
      • doping and adsorption  4, 6
      • from graphene to TCNE  19
      • intermolecular  18
    • charge‐transfer excitons  519
    • chemical activation  141, 174, 253, 263
    • chemical productions
      • challenges  668–669
      • H2O2 synthesis  663
      • vinyl chloride monomer synthesis  666–668
    • chemical trapping agents  520, 522
    • chemical vapor deposition (CVD)  92, 134, 220, 255, 330, 331, 339, 370, 420, 423, 533, 537, 601, 677
    • chemisorbed oxygen atoms  62
    • chloroplatinic acid (H2PtCl6)  423
    • CMK‐3 hybrid  339
    • CNT‐based Li‐O2 batteries  557–560
    • CNT/Ni foam electrodes  558
    • CNx catalysts  275–279
    • CO2 adsorption  102, 110, 118, 258, 274
    • coal based VCM synthesis process  666, 667
    • cobalt ferrocyanide (Co2Fe(CN)6)  417
    • cobalt nanoparticles  94, 107
    • Co‐COF  123, 124
    • Co/N‐doped carbon  90, 94–96
    • Co/N‐doped carbon electrocatalysts  90, 94, 95
    • conduction band (CB)  26, 445, 457
    • conjugated microporous polymers (CMP)  101, 104–117
    • conjugated π C‐C bonds  133
    • controlled polymerizations (CRP)  134, 142, 143, 145, 151, 160
    • conventional carbon, carbon black and graphite
      • catalyst substrates  412
      • properties, carbon black  413
    • cornerstone reaction  438
    • CO2‐TPD  235
    • covalent organic frameworks (COF)  101, 123–127
    • covalent triazine frameworks (CTF)  101, 118–123
    • CQDs/g‐C3N4 metal‐free catalysts  491
    • crosslinked PMMA  145
    • cumene hydroperoxide (CHP)  608
    • cyclic voltammetry (CV)  103, 120, 434, 436, 437
    • cyclic voltammograms  538, 544
    • cyclohexane, oxidation of  662
    • 5,5‐dialkyldipyrromethanes, GO‐catalyzed synthesis of 639|
    • diaminomaleonitrile (DAMN)  479
    • 2,5‐diformylfuran (DFF)  295
    • 1,2‐dihydro‐1‐arylnaphth[1,2‐e][1,3]oxazin‐3‐ones  633
    • 1‐dimensional nanocarbons  415
    • 5,5‐dimethyl‐1‐pyrroline‐N‐oxide (DMPO)  295, 303, 520, 521, 591
    • e
    • edge defects  4, 19, 60, 67–70, 322, 349, 611–614
    • edge‐selectively functionalized graphene nanoplatelets (EFGnP)  39, 40
    • electrical double‐layer supercapacitors  125
    • electrocatalysis, defect density effect  70, 72
    • electrocatalytic activity‐enhancement strategies
      • creating defects  316
      • heteroatom doped carbon materials  316
      • metal compounds loading  317
      • metal‐free carbon materials combination  317
      • surface molecule functionalization  317
    • electrocatalytic conversion, of emitted carbon dioxide (CO2)  251
    • electrocatalytic reaction, functional group effect on  252
    • electrocatalytic water splitting  96, 255
    • electrochemical activation  253, 263
    • electrochemical conversion  35, 49, 214
    • electrochemical CO2 reduction  214, 215, 252, 272, 279
    • electrochemical impedance spectroscopy (EIS)  206, 264–266, 278, 481
    • electrochemical method  465, 468, 663, 664
    • electrochemical oxidation
      • nitrogen functional group induced active site  267
      • OER  262
      • oxygen functional group induced active site  262, 267
    • electrochemical reactions
      • active centers  16, 17
      • charge distribution  16, 17
      • of ORR and OER  12
    • electrochemical reduction, of N‐GQD  239
    • electrochemical reduction reaction, ORR and HER  254, 267
    • electrochemical synthesis, of hydrogen peroxides  665, 666
    • electrochemical testing  276, 320, 374, 375, 377, 379–382, 384
    • electrochemical water splitting  35, 313, 324
    • electrodeposition  160, 463
    • electronegativity of nitrogen  229
    • electron paramagnetic resonance (EPR)  289, 295, 302–304, 612
    • electron spectroscopy for chemical analysis (ESCA)  253
    • electron spin resonance spectroscopy (ESR)  295, 517, 520–522, 636
    • electron transfer
      • for CO2 conversion  217
      • graphene  5
      • for proton reduction  260
      • for P,S‐CNS catalysts  204
    • electrophilicity  242, 307
    • electrospun nanofibers  97, 272
    • Eley–Rideal mechanism  666
    • EMIM‐CO251
    • energy barriers  7, 49, 63, 77, 168, 192, 194, 286, 324, 438, 480
    • energy conversion  1, 10, 20, 52, 53, 77, 97, 101, 128, 167–220, 314, 361, 388, 403, 404, 406, 407, 457, 459, 492, 523, 529, 555, 557, 560, 575, 598, 675–694
    • energy storage  20, 21, 101, 103, 104, 113, 119, 120, 125, 128, 167, 171, 251, 267, 313, 314, 330, 331, 409, 445, 446, 583, 585
    • ethylbenzene oxidation  617
    • 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIM‐BF4)  50, 272
    • evaporation‐induced self‐assembling (EISA) process  429
    • exciton formation  520
    • ex‐situ post‐reaction  273
    • f
    • Faradaic efficiency  49, 51, 215, 216, 272, 274, 663
    • Faraday constant  24, 168
    • Fe/Co‐CMP  110–112
    • Fe‐filled CNTs, work function of  609
    • Fe/N‐doped carbon electrocatalysts  90
    • Fe‐N doped mesoporous carbon spheres (Fe‐NMCS)  689
    • Fenton‐like reaction  288
    • Fermi level  25, 27, 52, 230, 231, 318, 442, 445, 610, 617, 660, 666
    • fiber‐shaped Zn‐air batteries  575, 579
    • field emission scanning electron microscopy (FE‐SEM)  113, 115, 122, 123, 684
    • flexible exfoliated graphene (FEG)  96
    • fluorine doped graphene sheets  18
    • food based biomass, HTC catalysts from  373–377
    • Fourier transform infrared spectroscopy (FTIR)  102, 295, 629
    • free‐standing activated carbon nanofibers  564
    • Friedel–Crafts alkylation reaction  117
    • Friedel–Crafts products  294
    • Friedel–Crafts reactions  631–633, 635, 640, 641
    • frustrated Lewis acid‐base pairs (FLPs)  297, 623
    • fuel cell applications  66
    • fuel cells  1, 59, 77, 78, 88, 167, 171, 255
      • in alkaline electrolytes  314
      • oxygen reduction reaction in  314
      • platinum catalyst  369
    • g
    • gas activation  174
    • g‐C3N4/graphene composite catalyst  44, 45
    • g‐C3N4 nanosheets  568
    • Gibbs free energy  24, 25, 239
      • and overpotentials  6–7
    • glassy carbon (GC) electrode  531
    • GO‐catalyzed direct Friedel–Crafts alkylation, of arenes  631
    • G‐PPF  122
    • graphene  423
      • bottom‐up synthetic  133
      • charge density on  5
      • clusters  19
      • conductivity of  72
      • defective patterns  71
      • edge defects  611
      • G585 defect  62
      • with G585 defect (G585)  62
      • nanoribbons  19
      • organic synthesis of  135
      • point defects  611
      • properties  388
    • graphene‐based CMP sheets (GMP)  112
    • graphene based metal‐free catalysts
      • H2 generation  460
      • photocatalytic mechanism  460
      • rGO‐CNS hybrids  462
    • graphene‐based metal‐free cathode, for Li‐O2 batteries  560
    • graphene‐based microporous carbons (GMC)  113
    • graphene clusters
      • catalytic properties of  62
      • defective  63
    • graphene‐CNT  171, 348
    • graphene‐coated CF electrode, in VRFB system  330
    • graphene/g‐C3N4 metal‐free catalysts
      • metal‐free organic semiconductor  487
      • π‐π stacking  490
    • graphene/g‐C3N4 nanocomposites  645
    • graphene mesh (GM)  69
    • graphene nanoplatelets (GnP)  39, 40, 344, 345, 534, 541
    • graphene nanoribbons (GNR)  12–15, 17–20, 48, 135, 174, 185, 268, 320, 349, 539, 546, 581, 611
    • graphene nanosheet (GN) cathodes  572
    • graphene oxide (GO)  285, 423, 533, 641, 677
      • advantages  641
      • catalyzed alkylation  291
      • disadvantages  642
      • GO‐catalyzed C‐C coupling reactions  642
      • as solid acid  641
      • structural model  630
    • graphene quantum dots (GQD)  185, 229, 238, 243, 244, 273, 322, 349, 390, 463, 542, 663, 664
    • graphene quantum dots (GQD)‐graphene nanoribbons (GNR) hybrid  322
    • graphene sheets  4, 6, 18, 20, 22, 39, 43, 45, 70, 112, 113, 207, 242, 320, 330, 388, 391, 415, 417, 426, 461, 464, 502, 515, 548, 560, 606, 618, 619, 629, 690
    • graphite conjugated pyrazine (GCP)  242
    • graphite/graphene, zigzag edge of  230
    • graphitic carbon nitride (g‐C3N4)  37, 332, 470–473
    • graphitization  103, 110, 138, 141, 142, 228, 233, 372, 379, 415, 432, 681
    • h
    • hard templating, of polymer‐derived carbons  142–145
    • heat‐treated carbon black  572, 687
    • HER‐inert pristine carbon nanotubes  327
    • heteroatom‐doped carbon‐based catalyst  171, 531
    • heteroatom‐doped carbon electrocatalysts, for HER  44
    • heteroatom‐doped carbon materials
      • design principles for  2
      • for OER  41, 42
      • for ORR  36, 39
    • heteroatom‐doped carbon nanotubes (CNT)  4, 37, 40, 252, 259, 264, 531, 532, 539, 547, 558, 559, 566, 571, 606, 608, 627, 683
    • heteroatom‐doped carbons  11–3, 41–42, 44, 60, 62, 92, 121, 141, 170, 206, 252, 266, 279, 317–319, 661
    • heteroatom doped graphene
      • ball‐milling process  542
      • doping graphene  541
      • materials  598
      • nitrogen‐doped graphene
        • AFM  538
        • nanoribbons  539
        • nitrogen configuration, graphite  537
        • XPS  537
      • phosphorous doped graphene, nitrogen and oxygen  544
      • phosphorus doping  544
    • heteroatom doping configurations  26
    • heteroatoms or unsaturated bonds  133
    • hetero elements  72
    • heterogeneous electron transfer (HET)  70
    • heterogeneous photocatalysis  501, 503
    • hierarchical porous CNTs films  558, 559
    • high‐angle annular dark‐field (HAADF)  65, 316, 443, 444
    • highest occupied molecular orbital (HOMO)  299, 340, 636, 645, 667
    • highly oriented pyrolytic graphite (HOPG)  39, 173, 229, 231–233, 258, 318, 320, 321, 354, 357, 612
    • high‐resolution TEM  64, 67, 175, 208, 329, 359
    • high resolution transmission electron microscopy (HR‐TEM)  107, 681
    • high surface area AC (H‐AC)  66
    • high temperature reaction in gas phase  661
    • holey g‐C3N4 (HGCN) nanosheets  474
    • holey graphene, for Li‐O2 batteries  561
    • H2O2 synthesis  663
    • HTC catalysts
      • from food based biomass  373–377
      • from plant biomass and food waste  377–381
      • sustainable biomass precursors  381–385
    • Hummers method  467, 612, 614, 624
    • hydrofluoric acid (HF)  144, 427, 476, 517
    • hydrogen
      • adsorption and reaction mechanism  261
      • adsorption energy  22, 24
      • production  21, 22
      • reaction kinetics of  24, 25
      • vibrational entropy of  24
    • hydrogen evolution reaction (HER)  251, 254, 260, 262, 267, 313, 438, 675
      • carbon based 3D electrocatalysts for  206, 214
      • catalyst design principles  29, 31
      • C‐MFECs for  43–46
      • electrocatalysis  683–684
      • electrocatalysts for  324
      • g‐C3N4/graphene composite catalyst for  44, 45
      • heteroatom‐doped carbon‐based 3D catalysts for  210
      • heteroatom‐doped carbon electrocatalysts for  44
      • heteroatom‐doped nanocarbon  324–327
      • mechanisms  21, 22
      • metal‐free electrocatalyst alternatives  324
      • overpotentials associated with  314
      • porous carbon for  92
      • source of activity  158
    • hydrogen oxidation reaction (HOR)  171, 313, 369, 675
      • overpotentials associated with  314
    • hydrogen peroxide (H2O2) reduction  167, 218, 219
    • hydroperoxyflavin  240, 241
    • hydrothermal carbonization  370
      • amino‐functionalized graphene  391
      • of bamboo fungus  373
      • bifunctional fluorescent carbon nanodots  373
      • fluorescent N doped carbon nanoparticles  380
      • of glucosamine  371
      • of glucose  371, 382
      • graphene‐based carbon‐carbon nanocomposites  396
      • nanostructured N doped carbons  379
      • N‐doped carbon spheres  373
      • N doped graphene/CNT composite preparation  391
      • nitrogen and nitrogen/sulphur doped carbon nanoparticles  384
      • nitrogen and phosphorus co‐doped mesoporous hollow carbon spheres  375
      • nitrogen and sulphur‐co‐doped carbon aerogels  381
      • nitrogen doped carbon aerogels  374, 375, 382, 383
      • nitrogen doped carbon nanodot/nanosheet aggregates  377
      • nitrogen doped carbon with 3D interconnected framework structure  380
      • ovalbumin role, of glucose  381
      • of pure glucose  370
    • hydrothermally treated graphene oxide (HGO)  292
    • hydrothermal method  199, 412, 425, 463, 491, 533
    • hydrothermal process, for self‐assembly of carbon nanostructures  390
    • hydrothermal treatment  173, 263, 294, 390, 425, 426, 429, 477, 539, 683
    • hydroxide ions (OH)  36, 560
    • hydroxyl radical (OH)  485, 521
    • 5‐hydroxymethylfurfural (HMF)  293–295
    • hyper‐cross‐linked polymers (HCP)  101, 117–118
    • i
    • ideal catalyst (ideal)  62
    • indoles, GO‐catalyzed Friedel‐Crafts reaction  631–633
    • inductively coupled plasma mass spectrometry (ICP‐MS)  158, 624
    • in‐situ and in operando technologies  643
    • in situ FT‐IR spectroscopy  303
    • in situ nucleation  677, 691
    • in situ polymerization  142, 689
    • intrinsic descriptor
      • for dual‐element doped carbon  16
      • for single‐element doped carbon  13, 16
    • intrinsic photocatalytic activity, nanoporous carbons  508
    • ionic liquid  142, 272, 477, 560, 663
    • ionothermal conditions  119, 122
    • ionothermal method  119
    • k
    • Knoevenagel‐type condensations  635
    • Koutecky–Levich (K‐L) equation  104, 121, 170, 276
    • Koutecky–Levich plots  178, 179, 186, 199
    • l
    • Levich equation  169
    • Lewis acid  178, 231
    • Lewis acid‐base pairs  297, 623
    • LHNHPC  176
    • light scattering, catalyst  511
    • Li‐ion batteries (LIB)  313, 555
    • Li/Na‐air batteries, carbon material performance in  576–578
    • linear scan voltammogram  17, 81, 204
    • linear sweep voltammetry (LSV)  67, 104
    • liner sweep voltammogram  37
    • Li‐O2 batteries
      • B‐doped rGO  569
      • carbon nanotubes  557–560
      • doped carbon nanomaterials  566–570
      • for electric and hybrid electric vehicles  557
      • free‐standing carbon nanomaterials  564–566
      • graphene  560–561
      • nanoporous graphene cathodes in  569
      • porous carbon nanomaterials  561–564
      • structure‐property relationship of carbon cathodes  570–571
      • 3D porous N‐doped graphene aerogels  569
    • liquid Zn‐air battery  583
    • lithium‐ion batteries (LIBs)  122, 267, 546
    • low temperature reaction in liquid phase  661, 662
    • m
    • macroporous carbon architecture  40
    • macroscopic 3D catalyst engineering  644
    • Maillard reactions  371, 416, 426
    • membrane electrode assemblies (MEA)  89
    • meso/micro‐PoPD electrocatalyst  85, 103
    • mesoporous carbons, synthesis of  430
    • mesoporous phosphorylated g‐C3N4 (MPCN)  481
    • metal‐air batteries  35, 167, 171, 255, 267, 555, 556
      • chemical and architectural features  588
    • metal‐free carbon‐based catalysts, design strategy for  7, 9
    • metal‐free carbon‐based electrocatalysts  92, 94, 255
    • metal‐free carbon based nanomaterials, with catalytic activities  3
    • metal‐free carbon nanomaterials
      • catalytic activities of  2
      • heteroatom doping in carbon nanomaterials  3, 4
      • intrinsic defects and edge topological structures  2, 3
      • organic molecules, adsorption of  4
    • metal‐free catalysis  157, 158, 603, 612, 641
    • metal free‐catalyst  159
    • metal‐free mesoporous carbon electrocatalysts (meso‐PoPD)  85–87
    • metal‐free nanoporous carbons
      • heterogeneous photocatalysis  501
      • photocatalytic cycles  522–523
      • postulated mechanisms  519–522
      • semiconductor‐free nanoporous carbons
        • phenol, nanoporous carbon photocatalysts  506
        • photocatalytic degradation  503
        • self‐photocatalytic activity, UV‐visible irradiation  503
    • metal‐free N‐dopant‐based carbon  79–81
    • metal‐free ORR catalysts  123, 372, 531, 541
    • metal‐free ORR material synthesis  370
    • metalloporphyrin‐based CMP  104, 107, 110
    • metal‐nitrogen‐carbon (M‐N‐C)
      • Fe‐NMCS  689
      • metal‐nitrogen‐carbon‐based nanotubes  688
      • ORR electrocatalysts  685
    • metal‐nitrogen‐carbon‐based nanotubes  688
    • metal‐organic framework (MOF)  66, 195, 293, 680
    • metal‐oxide framework  89, 220
    • methanol oxidation reaction (MOR)  167, 675, 684, 692
    • Michael addition  442, 631, 636–638
    • micro‐electrochemical testing system  320
    • microwave synthesis  465
    • molecular orbital theory  299
    • molecule adsorption  18–20
    • molecule‐doped graphene, ORR catalytic activity of  320
    • molten carbonate fuel cells (MCFC)  408
    • monochromatic light  512
    • MoSx/NCNT forest hybrid catalyst  684
    • Mott–Schottky experiment  269
    • Mukaiyama–Michael addition  299, 300
    • multicomponent reactions (MCR)  631, 633–635
    • multiwall carbon nanotubes (MWCNT)  41, 199, 262, 416, 480
    • n
    • Na‐air batteries  571
      • graphene nanosheet cathodes  572
      • heat‐treated carbon black  572
      • N‐doped CNTs  572
      • ordered mesoporous carbon  572
    • Na‐air batteries porous carbon spheres  572, 574
    • Na–CO2/O2 batteries  574
    • N and P co‐doped mesoporous nanocarbon (NPMC)  47, 328, 329
    • nanoarchitecture  252, 262, 269, 335, 477
    • nanocarbons  285
      • active sites  286
      • for carbocatalysis  292, 294
      • chemical and physical properties  133
      • Lewis pairs in  297, 298
      • subnanometer pores of  307
    • nanocarbons, as HER catalysts  325
    • nanometer  307, 347, 412, 416, 421, 423, 474, 475, 477, 675
    • N atom  37, 38, 302, 305, 678
    • N binding configurations  38
    • Natural Bond Orbital (NBO)  27, 326
    • N‐CNF aerogels  177
    • N‐containing CNTs (VA‐NCNTs)  37
    • NC/rGO composites preparation  390
    • N doped carbon dots decorated on graphene (N‐CDs/G)  390
    • Newtonian dynamics  9
    • N‐functionalization  515
    • (N)G catalyst  288
    • NG hybrid  325, 326
    • N‐doped graphene nanoribbons‐A (N‐GNRs‐A)  175
    • N‐GNS powder catalysts  236, 237
    • N‐graphene hybrid systems  27–29
    • N‐HOPG model catalysts  234, 235, 237, 258
    • Nitric oxide NOx emission  484
    • nitroarenes  287, 625, 629, 630, 663
    • nitrobenzene hydrogenation  623
    • nitrobenzene reduction reaction pathways  625–630
    • nitrogen binding energy  258
    • nitrogen configuration, graphite  537
    • nitrogen‐doped carbon (N/C)  94
      • based nanomaterials  252, 259
      • graphene hybrids  389
      • hydrothermal carbonization  375, 382, 383
      • materials  237, 246
    • nitrogen‐doped carbon microtube (NCMT)  201
    • nitrogen‐doped carbon nanocages (NCNC)  349, 358
    • nitrogen‐doped carbon nanosheets (NDCN)  81, 84
    • nitrogen‐doped carbon nanotubes (NCNT)  59, 79, 215, 274, 317, 331, 338, 391, 463, 531, 532, 679
      • aerogel  581
      • arrays  338
      • charge density distribution  316
      • graphite felts  332
      • quartz substrate  532
    • nitrogen‐doped carbon spectrum
      • two‐step post‐loading method  677
      • XPS  676
    • nitrogen‐doped carbon supported metal catalysts
      • MOF  680
      • N‐CNT  679
      • N‐doped carbon spectrum, XPS  676
      • XPS  676
    • nitrogen‐doped carbon supported metal electrocatalysts
      • HER electrocatalysis  683–684
      • other electrocatalysis  684–685
      • oxygen electrocatalysis  681–683
    • nitrogen‐doped CNTs  51, 215, 216, 274, 275, 347, 356, 358, 360, 417, 531, 572, 608, 609, 662
    • nitrogen‐doped graphene (N‐G)  4, 12–14, 27, 29, 43–45, 49, 52, 60–62, 65, 69, 126, 195, 218, 238, 244, 256, 270, 318, 325, 339, 344, 356, 370, 538, 569, 581, 617, 619, 629, 643, 663, 678, 683, 689
    • nitrogen‐doped graphene (NG)  14, 23, 27, 256, 260, 325, 326, 439, 533, 537
    • nitrogen‐doped graphene catalysts  270
    • nitrogen‐doped graphene mesh (NGM)  69, 70
    • nitrogen‐doped graphene nanoribbon network (N‐GRW)  268, 270, 271, 539, 581
    • nitrogen‐doped graphene nanoribbons  12–14, 174, 268, 539, 546, 581
    • nitrogen‐doped graphene nano‐sheets (N‐GNS)  236, 237, 339, 353, 360
    • nitrogen‐doped graphene oxide‐quantum dots (NGO‐QDs)  467
    • nitrogen‐doped graphene quantum dots (NGQDs)  229, 238, 243, 244, 273, 663, 664
    • nitrogen‐doped graphene surface  219, 256
    • nitrogen‐doped holey graphene (N‐HGr)  568
    • nitrogen‐doped hollow mesoporous carbon cathode  575
    • nitrogen‐doped HOPG  229, 235, 237, 258
    • nitrogen‐doped hydrogen‐exfoliated graphene (N‐HEG)  681, 682
    • nitrogen‐doped ordered mesoporous graphitic arrays (NOMGAs)  79, 80
    • nitrogen‐doped porous carbon nanospheres (N‐MCNs)  82, 83, 199, 200
    • nitrogen doped porous graphene/carbon (NPGC) composites  389
    • nitrogen‐doped reduced graphite oxides (NRGOs)  274
    • nitrogen doped rGO  539, 540, 625
    • nitrogen‐doped vertically aligned coral like carbon nanofiber arrays  566–567
    • nitrogen isothermal adsorption/desorption  82
    • nitrogen‐modified annealed nanodiamond (N‐ADD)  617
    • nitrogen moieties  319, 515
    • nitrogen/oxygen‐functionalized carbon materials  254
    • nitro group reduction  625–630
    • nitrophenol reduction  629
    • 4‐nitrostyrene hydrogenation  298
    • N‐MCN/CNTs  199
    • N‐modified carbon materials  60
    • N modified carbon nanomaterials  252
    • N,N,‐dimethylformamide (DMF)  472
    • noble‐metal‐free carbon  78, 87, 90
      • nitrogen dopants in  78
    • noble‐metal‐free porous carbon catalysts  87–92
    • N,O co‐doped carbon felt (CF)  332
    • non‐bonding pz orbital  230
    • non‐negligible photoactivity  517
    • non‐noble metal‐based cathode (NNMC) catalysts  255
    • non‐noble metals  59, 104, 412, 417, 425
    • non‐precious metal/nitrogen doped porous carbon catalysts  93–96
    • non‐precious metals  44, 106, 170
    • nori algae, hydrothermally carbonized  374
    • Nørskov–Bligaard method  9
    • N,P co‐doped graphene (N,P‐G)  27, 44, 46, 268, 269, 326
    • N,P co‐doped mesoporous nanocarbon foam (NPMC)  46, 47, 328, 329, 376
    • N,S‐co‐doped carbon nanosheet cathode  583
    • N,S‐co‐doped graphene microwire cathode  583
    • nudged elastic band (NEB)  7
    • N‐X co‐doped graphene nanoribbons  17
    • Nyquist plots  119, 126, 211, 265
    • 1D single‐walled carbon nanotubes (1D SWNTs)  114
    • one‐pot N doped carbon dots decorated GO hybrid (N‐Cdots/GO)  389
    • open‐circuit voltage  115, 123, 201
    • organic electrolyte  404, 560
    • ORR‐OER electrocatalyst  268
    • oxidation
      • high temperature reaction in gas phase  661
      • low temperature reaction in liquid phase  661, 662
      • reactions  661
    • oxidative dehydrogenation (ODH)
      • catalyst reactivation  601
      • molecular mechanisms for  599
      • of n‐butane  602
      • of propane on GO surface  602
    • oxidized CNTs (O‐CNTs)  263, 266, 391, 601
    • oxidized MWCNTs (o‐MWCNTs)  263, 264, 328
    • oxygen activation, mechanism of  244
    • oxygen atoms
      • in carbon driving catalysis  286, 290
      • on N‐G and B,N‐G catalysts  305
    • oxygen evolution reaction (OER)  313, 675
      • carbon‐based composite catalysts for  42
      • carbon based 3D electrocatalysts for  191, 206
      • C‐MFECs for  40
      • design principles for  10
      • edge and defect effects  17, 18
      • electrocatalyst  267, 268
      • electrochemical processes  251
      • elementary reactions of  10, 12
      • heteroatom‐doped carbon‐based 3D catalysts  193, 196
      • heteroatom‐doped carbon materials for  41, 42
      • heteroatom‐doped nanocarbons  327–329
      • onset‐potential of  41
      • overpotentials and rate‐limiting steps  12, 13
      • overpotentials associated with  314
      • structural engineering for  43
    • oxygen reduction reactions (ORR)  255, 259, 267, 313, 335, 403, 529
      • in alkaline and acidic electrolytes  36
      • applications and catalysis
        • acidic electrolyte  407
        • lithium‐air batteries, electrolytes  410
        • low‐temperature fuel cell  408
        • molten carbonate fuel cells (MCFC)  408
        • solid-oxide fuel cells (SOFC)  408
      • bifunctional  267, 268
      • boron‐doped carbon nanotubes  318
      • carbon catalyst
        • conventional carbon  415
    • oxygen reduction reactions (ORR)  (contd.)
      • carbon materials  228
        • electrocatalysts  531–532
      • in carbon nanocages  69
      • carbon nanomaterials
        • carbon nanotubes  416
        • Pt/Ru alloy nanoparticles  416
        • three dimensions  415
      • catalytic activity  158
      • C‐MFECs for  36
      • co‐doped and tri‐doped carbon‐based 3D catalysts  187
      • co‐doped graphene structures
        • RRDE  545
        • synergistic coupling effects  545
      • conjugation size  238, 241
      • correlation between porous nanostructures  81, 87, 90
      • defect‐driven  60
      • defective carbon  320–324
      • defective catalytic mechanism for  61, 64
      • defect promoted  64, 69
      • defects contribution  358
      • defects/edges of carbon materials for  39, 40
      • design principles for  10
      • edge and defect effects  17, 18
      • edge defects and defects/dopants co‐promoted  69, 70
      • electrocatalysis of  315
      • electrocatalyst performance, in acidic medium  359–360
      • electrochemical process and catalytic mechanism
        • aqueous acidic electrolyte  404
        • electrode surface, aqueous electrolytes  406
        • oxygen molecule, reduction  404
      • electrochemical processes  251
      • electrochemical reduction reaction  254
      • elementary reactions of  10, 12
      • ex‐situ post‐ORR XPS measurements  235
      • four‐electron process  404
      • in fuel cells  314
      • graphene based composites, metal‐free catalysts  547
      • half‐cell measurement  235
      • heteroatom‐doped carbon‐based 3D catalysts  196, 213
      • heteroatom doped carbon materials  36, 317–319
      • heteroatom doping  336–344
      • highly oriented pyrolytic graphite  354
      • on HOPG  320
      • influence of metal centers on  87, 90
      • kinetics of  255
      • linear relationships  236
      • local structure  241, 242
      • mechanism  60, 61
      • metal‐free ORR material synthesis  370
      • metal‐free porous carbon  79
      • N‐doped graphene mesh (NGM)  70
      • N‐GNS powder catalysts  236
      • nitrogen‐doped carbon materials  237, 246
      • nitrogen/sulphur doped 3D carbon Catalysts  179
      • one‐electron process  404
      • ordered mesoporous carbons  354
      • overpotentials and rate‐limiting steps  12, 13
      • overpotentials associated with  314
      • porous carbon  78, 79
      • porous structure for  39
      • porus carbon
        • as catalyst  427–432
        • template synthesis  430
      • process description  315
      • pyridinic‐N creates active sites  231, 238
      • pyridinic‐N or graphitic‐N?  228, 229, 231
      • role of pyridinic‐N  238, 241
      • selectivity in acid and basic condition  242, 245
      • at single walled carbon nanotubes  354
      • sp2 carbon materials  336
      • surface molecule functionalization  319–320
      • sustainable HTC catalysts  372
      • 3D carbon catalysts for  171
      • transition metal residuals  358
      • two‐electron process  404
      • vertically aligned nitrogen‐doped carbon nanotubes (VA‐NCNTs)  317–319
    • p
    • PAN‐b‐PBA  150, 157
    • PANI‐FeCo‐C catalyst  685, 687
    • parallel CNTs (P‐CNTs)  69
    • Pauling model  259, 350
    • PCN‐MM  111
    • P‐doped carbon materials  619, 620
    • peak intensity  264, 270, 272, 290
    • p‐element doped carbon  25–27
    • peroxygraphene  243, 244
    • peroxymonosulfate (PMS)  289, 290, 302–305
    • phenanthrene  611
    • phenol photooxidation conversions  514
    • phosphoric acid fuel cells (PAFC)  408, 411
    • phosphorus precursor  435
    • photocatalytic bacteria disinfection  487
    • photocatalytic cycles  522–523
    • photocatalytic degradation, organic pollutants  485–486
    • photocatalytic hydrogen and oxygen production  467
    • photocatalytic hydrogen production  339, 466, 492
    • photocatalytic organic synthesis  486–487
    • photocatalytic reduction of CO2216, 460, 463, 480–484, 490
    • photocatalytic water splitting  467, 470, 480
    • photoelectrochemical water splitting  167, 457, 507, 508
    • photoluminescence (PL) spectra  486
    • physicochemical characteristics, nanoporous carbon  503
    • phytic acid  46, 80, 96, 159, 207, 306, 327–329, 342, 583
    • π‐π‐interactions  299
    • plane‐wave expansion DFT  8
    • plasma‐etched carbon cloth (P‐CC)  328
    • plasma‐treated graphene (P‐G)  67, 323
    • platinum counter electrode  159
    • platinum, with non‐noble metals  59
    • pollutant confinement, nanoporous carbons
      • functionalization, O‐, N‐and S‐containing groups  514–517
      • light scattering  511
      • mineral matter  517–519
      • photocatalytic activity, nanoporosity  510
      • pore size and wavelength dependence  512–514
      • semiconductor‐free nanoporous carbons  508
    • polyacrylonitrile (PAN)  97, 138, 143, 158, 272, 420, 683
      • grafting  143
      • nanofibers  420
      • oxidative stabilization of  140
    • polyaniline (PANI)  38, 46, 80, 82, 139, 141, 159, 328, 349, 486, 539, 677
    • polychromatic light  512, 515–517
    • poly(diallyldimethylammonium chloride) (PDDA)  18, 259, 346, 419, 420
    • polyelectrolyte adsorbed all‐carbon CNTs  319
    • polyethylene (PE)  138
    • polyethylenimine (PEI)  51, 216, 274
    • polyHIPEs  152, 154
    • polymer architecture  150–151
    • polymer electrolyte fuel cells  227
    • polymer‐electrolyte membrane (PEM)  171, 529, 530, 546
    • polymer electrolyte membrane fuel cells (PEMFC)  171, 395, 410
    • polymer grafting  142
    • polyoxymethylene dimethyl ethers (PODEn)  294
    • polypyrrole (PPy)  38, 141, 539, 677
    • polysaccharides  134, 138
    • polyvinyl chloride (PVC)  666, 667
    • polyvinylpyrrolidone (PVP)  421
    • porous aromatic frameworks (PAFs)  64, 101–104
    • porous carbons derived
      • from conjugated microporous polymers (CMPs)  104, 117
      • from covalent organic frameworks (COFs)  123, 126
      • from covalent triazine frameworks (CTFs)  118, 123
      • from hyper crosslinked polymers (HCPs)  117, 118
      • from porous aromatic frameworks (PAFs)  102, 104
    • post‐ORR XPS analysis  235, 258
    • potassium peroxymonosulfate (PMS)  289, 290, 302–305
    • Pourbaix diagram  238, 239
    • powder X‐ray diffraction (PXRD)  104
    • pre‐pyrolysis
      • crosslinking/non‐crosslinking  141
      • heteroatom  141
    • pristine CNTs (P‐CNTs)  266, 327, 344, 559, 601, 602, 608, 683
    • pristine g‐C3N4
      • copolymerization  479
      • elemental doping  479
      • exfoliation of  479
      • nanostructure design  477
      • nitrogen‐rich precursors  473–474
      • photocatalytic reduction, CO2480–484
      • photocatalytic removal, NO2484–485
      • photocatalytic water splitting  480
    • pristine graphene  20, 22, 49, 64, 65, 67, 68, 71, 72, 218, 323, 355, 459, 568, 597
    • projected density of states (PDOS)  28
    • propane, catalytic dehydrogenation of  605
    • proton exchange membrane fuel cells (PEMFC)  171, 313, 395, 408, 681, 692
    • P,S‐codoped carbon nitride sponge (P,S‐CNS)  46, 47, 201
    • pyridinic‐N
      • chemical roles of  258
      • creates active sites  231, 238
      • graphitic‐N  228, 229
      • HOPG model catalyst  232
      • role of  238, 241
    • pyridinic‐N doped graphene quantum dot (N‐GQD)  238
    • pyrolysis  174
    • pyrolysis, PAN mechanism of  141
    • pyrolytic carbons  133, 138
    • s
    • Sabatier principle  15, 20, 92, 206
    • scanning electrochemical microscopy (SECM)  70–72
    • scanning electron microscopy (SEM)  177, 375, 419, 474, 532, 680, 681, 684
    • scanning tunneling microscopy (STM)  173, 229–232, 235, 295, 318
    • scanning tunnelling microscopy/spectroscopy (STM/STS)  229, 235
    • Scholl reaction  135
    • screening effect  230, 231
    • S‐doped carbon materials  39, 620
    • S‐doped graphene  19, 20, 42, 44, 61, 92, 93, 544, 545, 569
    • seaweed formation process  478
    • self‐assembly, of carbon nanostructures  390–391
    • SI‐ATRP  143, 144, 156
    • single‐element doped carbon  13–16
    • single‐element doped graphene  16, 25–27, 439
    • single heteroatom‐doped carbon materials  439
    • single‐walled carbon nanotubes (SWCNTs)  66, 67, 114, 173, 207, 302, 354, 358, 360, 416, 606, 611, 623
    • soft templated carbons  145
      • amphiphilic templating methods  151, 152
      • blockcopolymers (BCPs)  145, 150
      • carbon/polymer hybrids  155
      • polymer architecture  150, 151
      • polymer‐derived carbons  155, 160
    • soft X‐ray absorption spectroscopy (XAS)  253, 254, 268–271, 279, 617
    • solar cells  35, 52, 170, 598
    • sol‐gel polymerization  152
    • solid oxide fuel cells (SOFC)  171, 408
    • solid‐state lithium‐air batteries, 3D porous MWCNT paper in  571
    • solvothermal processes  678
    • Sonogashira‐Hagihara reactions  107, 114
    • sp2 carbon materials, ORR  336
      • active sites in acid  353
      • activity descriptor  351
      • B/N co‐doped CNTs  342
      • boron doping  339–341
      • carbon π electron activation  351
      • dopant‐free edge‐rich graphene/CNTs and graphite  347
      • edge‐selective doping  344
      • graphene quantum dots (GQDs)  349
      • molecular doping strategy  344–347
      • N‐doped graphene nanosheets  339
      • nitrogen‐doped carbon nanotube arrays  338
      • nitrogen doping  337–339
      • O2 adsorption  350
      • P‐doped graphite  341
      • P/N co‐doped carbon  343
      • S/N co‐doped carbon tubes  343
      • spin redistribution  352
      • surface enriched doping  344
      • theoretical calculations  350–354
      • 3D architectured carbon nanostructures  348
      • vertically aligned N‐doped CNTs  337
    • stabilized PANs  138
    • standard hydrogen electrode (SHE)  22, 404, 414, 541
    • STM/STS measurements  229
    • Stone–Wales defects  2, 4, 18, 19, 70, 320
    • structural engineering
      • C‐MFECs for HER  45, 46
      • for OER  43
    • styrene oxide catalyzed  293
    • sulfur doping  207, 282, 301, 306, 353, 374, 474, 541
    • sulfur, phenol conversion  516
    • surface functionalization  252, 514, 515, 524, 534
    • surface initiated ATRP (SI‐ATRP)  143, 144
    • surface‐oxidized CNTs  41, 42
    • sustainability, defined  372
    • sustainable energy sources  167, 675
    • Suzuki–Miyaura coupling polymerization  135
    • Suzuki–Miyaura cross coupling reaction  290
    • Suzuki polycondensation reaction  110
    • synchronous transition‐guided quasi‐Newton (STQN)  7
    • synergistically coupling effect  26
    • synthetic polymer‐derived carbons
      • geochemical to biomass‐derived  134–139
    • 3D macroscopic aerogel  539
    • 3D porous multi‐walled carbon nanotube paper, in solid‐state lithium‐air batteries  571
    • TiO2 photoelectrode  457
    • transition‐metal dichalcogenides (TMDs)  115
    • transmission electron microscopy (TEM)  64, 107, 359, 391, 415, 469, 680, 681
    • 2‐(trimethylsiloxy)furan (TMSOF)  299, 300
    • triphenylphosphine (P(C6H5)3)  435, 544
    • triple doping  316, 546
    • 2‐dimensional graphene  415
    • 2‐dimensional nanocarbons  415
    • 2D reduced graphene oxide (2D RGO)  114
    • Typha orientalis  377, 378
    • u
    • Ullmann cross‐coupling reaction  105
    • ultra‐high vacuum (UHV)  229, 235, 252, 254, 270
    • ultrasonic‐hydrothermal process  466
    • v
    • valence band (VB)  26, 44, 457, 515
    • vanadium redox flow battery (VRFB)
      • atmospheric pressure plasma jets technology  331
      • features  330
      • graphene‐coated CF electrode  330
      • nitrogen‐doped carbon nanotubes  331, 332
      • performance  331
    • van der Waals interaction  51, 474, 637
    • vertically aligned nitrogen‐doped carbon nanotubes (VA‐NCNTs)  37, 317, 318, 337, 356
    • vinyl chloride monomer (VCM) synthesis  666
      • calcium carbide method  666
      • coal based process  666, 667
    • volcano plots  9, 14–16, 19, 20, 30, 194, 206, 268, 269, 405, 438, 445
    • Volmer–Heyrovsky mechanism  260, 325
    • Volmer–Heyrovsky pathway  21–23, 260, 261
    • Volmer–Heyrovsky reaction  23
    • Volmer–Tafel mechanism  260
    • Volmer–Tafel pathway  22, 23
    • Volmer–Tafel reaction  21, 22
    • x
    • XC‐72 carbon black  414
    • X‐doped graphene  15, 262
    • X‐doped graphene nanoribbons  15
    • X‐ray absorption near‐edge structure (XANES)  270
    • X‐ray absorption spectroscopy (XAS)  253, 268–271, 617
    • X‐ray photoelectron specstropy (XPS)  66, 80, 81, 104, 229, 253, 256, 276, 278, 288, 304, 306, 472, 537
      • nitrogen doping, in sp2 carbon matrix  338
    • X‐ray powder diffraction (XRD)  144, 175, 381, 470, 472
    • y
    • Yamamoto coupling reaction  108
    • Yamamoto polycondensation reaction  107
    • Yamamoto reaction  102, 104
    • Yamamoto‐type  105
    • Yeager model  259, 350
    • z
    • zeolite‐like heteroatom doped carbons  307
    • zeolitic imidazolate frameworks (ZIFs)  89, 480, 680
    • zero‐dimensional (0D) graphene quantum dots (GQDs)  349
    • 0‐dimensional nanocarbons  415
    • zero point energy  12, 24
    • ZIF‐8  89, 667, 680
    • Zn‐air batteries  1, 16, 46, 47, 114, 201
      • challenges  575
      • composition  575
      • flexible fiber‐shaped  575
      • liquid  583
      • N‐doped carbon nanofiber aerogel  581
      • N‐doped graphene nanoribbons  581
      • N‐doped hollow mesoporous carbon cathode  575
      • N,P‐codoped bifunctional catalysts  582
      • N,S‐codoped carbon nanosheets  583
      • N,S‐codoped C3N4/carbon nanocrystal cathode  583
      • N,S‐codoped graphene microwire cathode  583
      • ORR and OER  575
    • Zn/Co bimetallic MOF  89
    ..................Content has been hidden....................

    You can't read the all page of ebook, please click here login for view all page.
    Reset