10. Gray code

Gray code, also known as reflected binary code or simply reflected binary, is a form of binary encoding where two consecutive numbers differ by only one bit. To perform a binary reflected Gray code encoding, we need to use the following formula:

if b[i-1] = 1 then g[i] = not b[i]
else g[i] = b[i]

This is equivalent to the following:

g = b xor (b logically right shifted 1 time)

For decoding a binary reflected Gray code, the following formula should be used:

b[0] = g[0]
b[i] = g[i] xor b[i-1]

These can be written in C++ as follows, for 32-bit unsigned integers:

unsigned int gray_encode(unsigned int const num)
{
return num ^ (num >> 1);
}

unsigned int gray_decode(unsigned int gray)
{
for (unsigned int bit = 1U << 31; bit > 1; bit >>= 1)
{
if (gray & bit) gray ^= bit >> 1;
}
return gray;
}

To print the all 5-bit integers, their binary representation, the encoded Gray code representation, and the decoded value, we could use the following code:

std::string to_binary(unsigned int value, int const digits)
{
return std::bitset<32>(value).to_string().substr(32-digits, digits);
}

int main()
{
std::cout << "Number Binary Gray Decoded ";
std::cout << "------ ------ ---- ------- ";

for (unsigned int n = 0; n < 32; ++n)
{
auto encg = gray_encode(n);
auto decg = gray_decode(encg);

std::cout
<< n << " " << to_binary(n, 5) << " "
<< to_binary(encg, 5) << " " << decg << " ";
}
}
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset