3

 

 

Intelligent AGC: Past Achievements and New Perspectives

 

Automatic generation control (AGC) synthesis and analysis in power systems has a long history and its literature is voluminous. The preliminary AGC schemes have evolved over the past decades, and interest continues in proposing new intelligent AGC approaches with an improved ability to maintain tie-line power flow and system frequency close to specified values.

The first attempts in the area of AGC are given in several references.14 Then the standard definitions of the terms associated with power systems AGC were provided by the IEEE working group.5 The first optimal control concept for megawatt-frequency control design of interconnected power systems was addressed by Elgerd and Fosha.6,7 According to physical constraints and to cope with the changed system environment, suggestions for dynamic modeling and modifications to the AGC definitions were given from time to time over the past years.8,9 System nonlinearities and dynamic behaviors such as governor dead-band and generation rate constraint, load characteristics, and the interaction between the frequency (real power) and voltage (reactive power) control loops for the AGC design procedure have been considered.1014 The AGC analysis/modeling, special applications, constraints formulation, frequency bias estimation, model identification, and performance standards have led to the publishing of numerous reports.1524

The AGC analysis and synthesis has been augmented with valuable research contributions during the last few decades. Significant improvements have appeared in the area of AGC designs to cope with uncertainties, various load characteristics, changing structure, and integration of new systems, such as energy storage devices, wind turbines, photovoltaic cells, and other sources of electrical energy.25 Numerous analog and digital control schemes using nonlinear and linear optimal/robust, adaptive, and intelligent control techniques have been presented. The most recent advance in the AGC synthesis to tackle the difficulty of using complex/nonlinear power system models or insufficient knowledge about the system is the application of intelligent concepts such as neural networks, fuzzy logic, genetic algorithms, multiagent systems, and evolutionary and heuristic optimization techniques. A survey and exhaustive bibliography on the AGC have been published.2527

Since Elgerd and Fosha’s work,6,7 extensive research has been done on the application of modern control theory to design more effective supplementary controllers. Several AGC synthesis approaches using optimal control techniques have been presented.2835 The efforts were usually directed toward the application of suitable linear state feedback controllers to the AGC problem. They have mainly optimized a constructed cost function to meet AGC objectives by well-known optimization techniques. Since an optimal AGC scheme needs the availability of all state variables, some developed strategies have used state estimation using an observer. Due to technical constraints in the design of AGC using all state variables, suboptimal AGC systems were introduced. Apart from optimal/suboptimal control strategies, the concept of variable structure systems has also been used to design AGC regulators for power systems.3639 These approaches enhance the insensitivity of an AGC system to parameter variations.

Since parametric uncertainty is an important issue in AGC design, the application of robust control theory to the AGC problem in multiarea power systems has been extensively studied during the last two decades.25,4043 The main goal is to maintain robust stability and robust performance against system uncertainties and disturbances. For this purpose, various robust control techniques such as H∞, linear matrix inequalities (LMIs), Riccati equation approaches, Kharitonov’s theorem, structured singular value (µ) theory, quantitative feedback theory, Lyapunov stability theory, pole placement technique, and Q-parameterization have been used.

Apart from these design methodologies, adaptive and self-tuning control techniques have been widely used for power system AGC design during the last three decades.4446 The major part of the work reported so far has been performed by considering continuous time power system models. The digital and discrete type frequency regulator is also reported in some work.13,32,4648 Few publications have appeared on the application (or in the presence) of special devices such as superconductivity magnetic energy storage (SMES) and solid-state phase shifter.49 The increasing need for electrical energy, limited fossil fuel reserves, and increasing concerns to environmental issues call for a fast development in the area of renewable energy sources (RESs). Some recent studies analyze the impacts of battery energy storage (BES), photovoltaic (PV) power generation, capacitive energy, and wind turbines on the performance of the AGC system, or their application in power system frequency control.25 Considerable research on the AGC incorporating a high voltage direct current (HVDC) link is contained in Yoshida and Machida50 and Sanpei et al.51

The intelligent technology offers many benefits in the area of complex and nonlinear control problems, particularly when the system is operating over an uncertain operating range. Generally, for the sake of control synthesis, nonlinear systems such as power systems are approximated by reduced order dynamic models, possibly linear, that represent the simplified dominant system’s characteristics. However, these models are only valid within specific operating ranges, and a different model may be required in the case of changing operating conditions. On the other hand, due to increasing the size and complexity of modern power systems, classical and nonflexible AGC structures may not represent desirable performance over a wide range of operating conditions. Therefore, more flexible and intelligent approaches are needed.

In recent years, following the advent of modern intelligent methods, such as artificial neural networks (ANNs), fuzzy logic, multiagent systems, genetic algorithms (GAs), expert systems, simulated annealing (SA), Tabu search, particle swarm optimization, ant colony optimization, and hybrid intelligent techniques, some new potentials and powerful solutions for AGC synthesis have arisen. The human and nature ability to control complex organisms has encouraged researchers to pattern controls on human/nature responses, fuzzy behaviors, and neural network systems. Since all of the developed artificial intelligent techniques are usually dependent on knowledge extracted from environment and available data, knowledge management plays a pivotal role in the AGC synthesis procedures.

In the present chapter, the application of intelligent techniques on AGC synthesis is emphasized, and basic control configurations with recent achievements are briefly discussed. New challenges and key issues concerning system restructuring and integration of distributed generators and renewable energy sources are also discussed. The chapter is organized as follows: The applications of fuzzy logic, neural networks, genetic algorithms, multiagent systems, and combined intelligent techniques and evolutionary optimization approaches on the AGC synthesis problem are reviewed in Sections 3.1 to 3.5, respectively. An introduction to AGC design in deregulated environments is given in Section 3.6. AGC analysis and synthesis in the presence of renewable energy sources (RESs) and microgrids, including literature review, present worldwide status, impacts, and technical challenges, are presented in Sections 3.7 and 3.8. Finally, a discussion on the future works and research needs is given in Section 3.9.

 

 

3.1 Fuzzy Logic AGC

Nowadays, because of simplicity, robustness, and reliability, fuzzy logic is used in almost all fields of science and technology, including solving a wide range of control problems in power system control and operation. Unlike the traditional control theorems, which are essentially based on the linearized mathematical models of the controlled systems, the fuzzy control methodology tries to establish the controller directly based on the measurements, long-term experiences, and knowledge of domain experts/operators.

Several studies have been reported for the fuzzy-logic-based AGC design schemes in the literature.5270 There are many possible fuzzy logic controller structures for AGC purposes, some differing significantly from each other by the number and type of inputs and outputs, or less significantly by the number and type of input and output fuzzy sets and their membership functions, or by the type of control rules, inference engine, and defuzzification method. In fact, it is up to the designer to decide which controller structure would be optimal for the AGC problem. The applications of fuzzy logic in AGC systems can be classified into three categories: (1) using a fuzzy logic system as a dynamic fuzzy controller called fuzzy logic controller (FLC),55,58,61,6466,68 (2) using a fuzzy logic system in the form of a proportional integral (PI) (or proportional-integral-derivative [PID]) controller, or as a primer for tuning the gains of the existing PI (or PID) controller,53,55,57,59,62,69 and (3) using fuzzy logic for other AGC aspects, such as economic dispatching.70 Next, the first two categories are briefly described.

3.1.1 Fuzzy logic Controller

A general scheme for a fuzzy-logic-based AGC system is given in Figure 3.1. As shown, the fuzzy controller has four blocks. Crisp input information (usually measured by area control error (ACE) or frequency deviation) from the control area is converted into fuzzy values for each input fuzzy set with the fuzzification block. The universe of discourse of the input variables determines the required scaling/normalizing for correct per-unit operation. The inference mechanism determines how the fuzzy logic operations are performed and, together with the knowledge base, the outputs of each fuzzy if-then rule. Those are combined and converted to crispy values with the defuzzification block. The output crisp value can be calculated by the center of gravity or the weighted average; then the scaled output as a control signal is applied to the generating units.

Generally, a controller design based on fuzzy logic for a dynamical system involves the following four steps:

  1. Understanding of the system dynamic behavior and characteristics. Define the states and input/output control variables and their variation ranges.

  2. Identify appropriate fuzzy sets and membership functions. Create the degree of fuzzy membership function for each input/output variable and complete fuzzification.

  3. Define a suitable inference engine. Construct the fuzzy rule base, using the control rules that the system will operate under. Decide how the action will be executed by assigning strengths to the rules.

  4. Determine defuzzification method. Combine the rules and defuzzify the output.

Consistent with the AGC design, the first step of fuzzy controller design is to choose the correct input signals to the AGC. The ACE and its derivative are usually chosen as inputs of the fuzzy controller. These two signals are then used as rule-antecedent (if-part) in the formation of rule base, and the control output is used to represent the contents of the rule-consequent (then-part) in performing the rule base.

Images

FIGURE 3.1
A general scheme for fuzzy-logic-based AGC.

Normalization or scale transformation, which maps the physical values of the current system state variables into a normalized universe of discourse, should be properly considered. This action is also needed to map the normalized value of control output variables into its physical domain (denormalization output). The normalization can be obtained by dividing each crisp input on the upper boundary value for the associated universe.

In the real world, many phenomena and measures are not crisp and deterministic. Fuzzification plays an important role in dealing with uncertain information, which might be objective or subjective in nature. The fuzzification block in the fuzzy controller represents the process of making a crisp quantity fuzzy. In fact, the fuzzifier converts the crisp input to a linguistic variable using the membership functions stored in the fuzzy knowledge base. Fuzzines in a fuzzy set are characterized by the membership functions. Using suitable membership functions, the ranges of input and output variables are assigned linguistic variables. These variables transform the numerical values of the input of the fuzzy controller to fuzzy quantities. These linguistic variables specify the quality of the control. Triangular, trapezoid, and Gaussian are the more common membership functions used in fuzzy control systems.

A knowledge rule base consists of information storage for linguistic variable definitions (database) and fuzzy rules (control base). The concepts associated with a database are used to characterize fuzzy control rules and a fuzzy data manipulation in a fuzzy logic controller. A lookup table based on discrete universes defines the output of a controller for all possible combinations of the input signals. A fuzzy system is characterized by a set of linguistic statements in the form of if-then rules. Fuzzy conditional statements make the rules or the rule set of the fuzzy controller. Finally, the inference engine uses the if-then rules to convert the fuzzy input to the fuzzy output.

On the other hand, a defuzzifier converts the fuzzy output of the inference engine to crisp values using membership functions analogous to the ones used by the fuzzifier. For the defuzzification process, the center of sums, mean-max, weighted average, and centroid methods are commonly employed to defuzzify the fuzzy incremental control law. The parameters of the fuzzy logic controller, such as membership functions, can be adjusted using an external tuning mechanism. The resulting controller is known as an adaptive, self-learning, or self-tuning fuzzy controller. An adaptive fuzzy controller has a distinct architecture consisting of two loops: an inner control loop, which is the basic feedback loop, and an outer loop, which adjusts the parameters of the controller. This architecture is shown in Figure 3.2.

The adaptive fuzzy controllers commonly use some other intelligent techniques, such as neural networks, which have a learning capability. In this case, new control configurations such as neuro-fuzzy control appear. A tuning mechanism may use a reference model to provide the tuning/learning signal for changing the core of the fuzzy controller. In this way, the self-organization process enforces the fuzzy control system to follow the given reference model dynamics.

Images

FIGURE 3.2
A general scheme for adaptive fuzzy logic AGC.

3.1.2 Fuzzy-based Pi (PiD) Controller

The PI and PID control structures have been widely used in power system control due to their design/structure simplicity and inexpensive cost. Among these controllers, the most commonly used one in AGC systems is the PI. The success of the PI controller depends on an appropriate choice of its gains. The control signal generated by a PI controller in the continuous time domain is represented by

u(t)=kPACE(t)+kI0tACE(τ)dτ(3.1)

where u(t) = ∆PC(t) is the control signal, ACE(t) is the (area control) error signal, and kP and kI are the proportional and integral coefficients, respectively. For ease of digital implementation, a PI controller in the discrete time domain can be described by one of the following forms:

u(kT)=kPACE(kT)+kI{Ti=1nACE(iT)}(3.2)

δu(kT)=u(kT)-u[(k-1)T]=kP[ACE(kT)-ACE[(k-1)T]T]+kIACE(kT)(3.3)

where T is the sampling period. The second term in Equation 3.2 is the forward rectangular integration approximation of the integral term in Equation 3.1.

In AGC practice, tuning the PI gains is usually realized by experienced human experts; therefore, it may not be possible to achieve a desirable performance for AGC in large-scale power systems with high order, time delays, nonlinearities, and uncertainties, and without precise mathematical models. The fuzzy PI controllers are introduced to improve the performance of the AGC systems in comparison to conventional PI tuning methods. It has been found that the AGC systems with fuzzy-logic-based PI controllers have better capabilities of handling the aforesaid systems.

Next, the components of a fuzzy PI controller in an AGC system are briefly discussed. The fuzzy PI controller based on Equation 3.3 is shown in Figure 3.3. NP , NI , and Nu are the normalization factors for ACEp , ACEi , and ∆u, respectively. Nu−1 is the reciprocal of Nu , called a denormalization factor. These factors play a role similar to that of the gain coefficients kP and kI in a conventional PI controller. The fuzzy PI controller employs two inputs: the error signal ACE(kT), and the first-order time derivative of ACE(kT). It has a single control output u(t) = ∆PC(t); NP and NI are the normalized inputs, and Nu is the normalized output.

It is noteworthy that the PI (PID) fuzzy controllers require a two- (three-) dimensional rule base. This issue makes the AGC design process more difficult. To reduce the number of interactive fuzzy relations among subsystems, the concept of decomposition of multivariable systems for the purpose of distributed fuzzy control design can be used.61

In addition to the above fuzzy PI/PID-based AGC design, some works use fuzzy logic to tune the gain parameters of existing PI/PID controllers in the AGC systems.53,55 The mentioned control scheme is conceptually shown for a PI controller in Figure 3.4. The details of fuzzy-logic-based AGC design with the implementation process are presented in Chapter 9.

 

 

3.2 Neuro-Fuzzy and Neural-Networks-Based AGC

As described in Figure 3.2, to perform a self-tuning/adaptive fuzzy controller, one may use the learning capability of neural networks in the block of a tuning mechanism. This combination provides a type of neuro-fuzzy controller. A neuro-fuzzy controller is a fuzzy controller that uses a learning algorithm inspired by the neural network theory to determine its parameters by processing data samples. The combined intelligent-based AGC design using ANN and fuzzy logic techniques is presented in several works to utilize the novel aspects of both designs in a single hybrid AGC system.63,71

Neural networks are numerical model-free estimators, which can estimate from sample data how output functionally depends on input without the need for complex mathematical models. An ANN consists of a number of nonlinear computational processing elements (neurons) arranged in several layers, including an input layer, an output layer, and one or more hidden layers in between. Every layer contains one or more neurons, and the output of each neuron is usually fed into all or most of the inputs of the neurons in the next layer. The input layer receives input signals, which are then transformed and propagated simultaneously through the network, layer by layer.

Images

FIGURE 3.3
Fuzzy PI control scheme.

Images

FIGURE 3.4
Fuzzy logic for tuning of PI-based AGC system.

A neuron accepts one or more input signals and produces one output, which is a nonlinear function of the weighted sum of inputs. The mapping from the input variables to the output variables can be fixed by setting all the weights associated with each neuron to some constant. In fact, the training of an ANN in a control structure is a procedure to adjust these values so that the ANN can map all the input control values to the corresponding output control values.

The ANNs with their massive parallelism and ability to learn any type of nonlinearities are also purely used for the design of AGC systems.14,7280 A multilayer nonlinear network for supplementary control design using a backpropagation training algorithm is addressed in Beaufays et al.72 The ANN control performance is compared with classical PI control design on single-area and two-area power systems. An AGC scheme to incorporate the nonconforming load problem showing an effort to develop algorithms capable of discriminating between noncontrollable short-term and long-term excursions is presented in Douglas et al.14 The ANN techniques are used for recognition of controllable signals in the presence of a noisy random load.

The AGC system performance is evaluated with a nonlinear neural network controller using a generalized neural structure in Chaturvedi et al.73 An ANN-based AGC system is examined on a four-control area power system considering the reheat nonlinearity effect of the steam turbine and upper/lower constraints for generation rate constraint of the hydro turbine in Zeynelgil et al.74

From the control configuration point of view, the most proposed ANN-based AGC designs can be divided into three general control structures that are conceptually shown in Figure 3.5: (1) using the ANN system as a controller to provide control command in the main feedback loop, (2) using ANN for tuning the parameters of an existing fixed structure controller (I, PI, PID, etc.), and finally, (3) using the ANN system as an additional controller in parallel with the existing conventional simple controller, such as I/PI, to improve the closed-loop performance.

The aforementioned three configurations are presented in Figure 3.5a–c, respectively. Backpropagation, which is a gradient descent learning algorithm, is one of the most popular supervised learning algorithms in all mentioned configurations. It backpropagates the error signals from the output layer to all the hidden layers, such that their weights can be adjusted accordingly. Backpropagation is a generalization of the least mean squares (LMS) procedure for feedforward, multilayered networks with hidden layers. It uses a gradient descent technique, which changes the weights between neurons in its original and simplest form by an amount proportional to the partial derivative of the error function with respect to the given weight.

In Figure 3.5b, the ANN performs an automatic tuner. The initial values for the parameters of the fixed structure controller (e.g., kp, k1, and kD gains in PID) must first be defined. The trial and error, and the widely used Ziegler– Nichols tuning rules are usually employed to set initial gain values according to the open-loop step response of the plant. The ANN collects information about the system response and recommends adjustments to be made to the controller gains. This is an iterative procedure until the fastest possible critical damping for the controlled system is achieved. The main components of the ANN tuner include a response recognition unit to monitor the controlled response and extract knowledge about the performance of the current controller gain setting, and an embedded unit to suggest suitable changes to be made to the controller gains.

Combinations of ANN and robust control methodologies are presented for AGC synthesis in interconnected power systems.80 These ideas use the robust performance indices provided by robust control techniques for desirable training of neural networks under various operating conditions. These approaches combine the advantage of neural networks and robust control techniques to achieve the desired level of robust performance under large parametric uncertainness and lead to a flexible controller with a relatively simple structure.

Application of ANN to AGC design is comprehensively presented in Chapter 5. The application is supplemented by some nonlinear simulation on single- and multiarea power system examples.

 

 

3.3 Genetic-Algorithm-Based AGC

A genetic algorithm (GA) is a searching algorithm that uses the mechanism of natural selection and natural genetics, operates without knowledge of the task domain, and utilizes only the fitness of evaluated individuals. The GA as a general purpose optimization method has been widely used to solve many complex engineering optimization problems over the years. In fact, GA as a random search approach that imitates the natural process of evolution is appropriate for finding a global optimal solution inside a multidimensional searching space. From the random initial population, GA starts a loop of evolution processes, consisting of selection, crossover, and mutation, in order to improve the average fitness function of the whole population.

Images

FIGURE 3.5
Common configurations for ANN-based AGC schemes in (a)−(c).

Several reports are also available on the use of GAs in AGC systems.41,8190 GAs have been used to adjust parameters for different AGC schemes, e.g., integral, PI, PID, sliding mode control (SMC),82,84,87,89,90 or variable structure control (VSC).85,86 The overall control framework is shown in Figure 3.6.

An optimal adjustment of the classical AGC parameters for a two-area nonreheat thermal system using genetic techniques is investigated in AbdelMagid and Dawoud.81 A reinforced GA has been proposed as an appropriate optimization method to tune the membership functions, and rule sets for fuzzy gain scheduling of supplementary frequency controllers of multiarea power systems to improve the dynamic performance. The proposed control scheme incorporates dead-band and generation rate constraints also.

Images

FIGURE 3.6
GA-based AGC scheme.

The GA in cooperation with fuzzy logic is used for optimal tuning of the integral controller’s gain according to the performance indices’ integral square error (ISE) and the integral of time multiplied by the absolute value of error (ITAE) in Chang et al.84 A reinforced GA is employed to tune the membership function, and rule sets of fuzzy gain scheduling controllers to improve the dynamic performance of multiarea power systems in the presence of system nonlinearities, such as generation rate constraints (GRCs) and governor dead-band. Later, contrary to the trial-and-error selection of the variable-structure-based AGC feedback gains, a GA-based method was used for finding optimal feedback gains.85 Parameters of a sliding mode control-based AGC system are tuned in Vrdoljak et al.90 using GA in a way to minimize the integral square of the area control error and control signal. Combinations of GA and robust control methods for AGC synthesis in a multiarea power system are shown in Rerkpreedapong et al.41 The main idea is in running a GA optimization to track a robust performance index provided by robust control theory.

Chapter 11 addresses several GA-based AGC design methodologies and application examples. Chapter 11 shows the way to successfully use GAs for the tuning of control parameters, the solution of multiobjective optimization problems, satisfying robust performance indices, and the improvement of learning algorithms during the AGC synthesis process.

 

 

3.4 Multiagent-Based AGC

A multiagent system (MAS) is a system comprising two or more intelligent agents to follow a specific task. Nowadays, the MAS technology is being widely used in planning, monitoring, control, and automation systems. The MAS philosophy and its potential value to the power systems are discussed in McArthur et al.91,92 Several reports have been published on the application of MAS technology with different characteristics and intelligent cores for the AGC systems.25,9398

For a real-time AGC system, structural flexibility and having a degree of intelligence are highly important. In such systems, agents require real-time responses and must eliminate the possibility of massive communication among agents. In the synthesis of real-time MAS, the designer must at least denote the required number and type of agents in the system, the internal structure of each agent, and the communication protocol among the available agents.25 Each agent is implemented on a software platform that supports the general components of the agent. The software platform must provide a communication environment among the agents and support a standard interaction protocol.

Some MAS-based frequency control scenarios using reinforcement learning, Bayesian networks, and GA intelligent approaches are addressed.93,97,98 A multiagent reinforcement learning-based control approach with the capability of frequency bias estimation is proposed in Daneshfar and Bevrani.94 It consists of two agents in each control area that communicate with each other to control the whole system. The first agent (estimator agent) provides the ACE following the area’s frequency bias parameter estimation, and the second agent (controller agent) provides a control action signal according to the ACE signal received from the estimator agent, using reinforcement learning.

Bevrani25 introduces an agent-based scenario to follow the main AGC objectives in a deregulated environment. An agent control system is used to cover a minimum number of required processing activities to the AGC objectives in a control area. The operating center for each area includes two agents: data acquisition/monitoring agent and decision/control agent. In the first agent, special care was taken regarding the provision of appropriate signals following a filtering and signal conditioning process on the measured signals and received data from the input channels. The sorted information and washout signals will be passed to the second agent. The decision/control agent uses the received data from the data acquisition/ monitoring agent to provide the generation participation factors and appropriate control action signal, through an H∞-based robust PI controller. The decision/control agent evaluates the bids and performs the ACE signal using the measured frequency and tie-line power signals. The agent software estimates the total power imbalance and determines AGC participation factors, considering the ramp rate limits. The proposed control structure, which is summarized in Figure 3.7, is examined using real-time nonlinear simulation.

A multiagent-based frequency control scheme for isolated power systems with dispersed power sources such as photovoltaic units, wind generation units, diesel generation units, and an energy capacitor system (ECS) for the energy storage is presented.95,96 The addressed scheme has been proposed through the coordination of controllable power sources such as the diesel units and the ECS with small capacity. All the required information for the proposed frequency control is transferred between the diesel units and the ECS through computer networks. A basic configuration of the proposed frequency regulation scheme is shown in Figure 3.8. In this figure, WECS and PECS are the current stored energy and produced power by the ECS unit, respectively. Experimental studies have been performed on the laboratory system to investigate the efficiency of the proposed multiagent-based control scheme.

In Chapter 7, the main frameworks for agent-based control systems are generally discussed. New multiagent-based AGC schemes are introduced, and the potential of reinforcement learning in the agent-based AGC systems is explained. Furthermore, an intelligent multiagent-based AGC design methodology using Bayesian networks is described in Chapter 8. The proposed approaches are supplemented by several simulations, including a real-time laboratory examination.

 

 

3.5 Combined and Other Intelligent Techniques in AGC

In the light of recent advances in artificial intelligent control and evolutionary computations, various combined intelligent control methodologies have been proposed to solve the power system AGC problem.52,63,71,84,99106 A study on the AGC synthesis for an autonomous power system using the combined advent of ANN, fuzzy logic, and GA techniques is presented in Karnavas and Papadopoulos.63 In Ghoshal,99 a hybrid GA-simulated annealing (SA)-based fuzzy AGC scheme of a multiarea thermal generating system is addressed. A specific cost function named figure of demerit has been used as the fitness function for evaluating the fitness of GA/hybrid GA-SA optimization. This function directly depends on transient performance characteristics such as overshoots, undershoots, settling times, and time derivative of the frequency. The hybrid GA-SA technique yields more optimal gain values than the GA method.

Images

FIGURE 3.7
An agent-based AGC structure.

Images

FIGURE 3.8
Agent-based frequency regulation scheme presented in Hiyama et al.95,96

For optimal tuning of PID gains in designing a Sugeno fuzzy-logic-based AGC scheme, a particle swarm optimization (PSO) technique was reported.100 PSO, as one of the modern heuristic algorithms, is a population-based evolutionary algorithm that is motivated by simulation of social behavior instead of survival of the fittest. The proposed PSO algorithm establishes the true optimality of transient performance, similar to those obtained by the GA-SA-based optimization technique, but it is faster than the GA-SA algorithm. It has been shown in Ahamed et al.104 that the AGC problem can be viewed as a stochastic multistage decision-making problem or a Markov chain control problem, and algorithms have been presented for designing AGC based on a reinforcement learning approach.

The reinforcement learning (RL) approach is used to AGC design a stochastic multistage decision problem in Ahamed et al.104 Two specific RL-based AGC algorithms are presented. The first algorithm uses the traditional control objective of limiting ACE excursions, while in the second algorithm the controller can restore the load-generation balance by monitoring deviation in tie-line flows and system frequency without monitoring ACE signal. In Karnavas and Papadopoulos,105 an intelligent load-frequency controller was developed using a combination of fuzzy logic, genetic algorithms, and neural networks to regulate the power output and system frequency by controlling the speed of the generator with the help of fuel rack position control.

Some heuristic stochastic search techniques such as GA, PSO, and bacteria foraging optimization have been proposed for optimization of PID gains used in Sugeno fuzzy-logic-based AGC of multiarea thermal generating plants.103 An attempt is made to examine the application of bacterial foraging to optimize some AGC parameters in interconnected three unequal area thermal systems.106 The parameters considered are integral controller gains for the secondary control, governor speed regulation parameters for the primary control, and frequency bias. The system performance is compared with the GA-based approach and classical methods.

 

 

3.6 AGC in a Deregulated Environment

In a traditional power system, generation, transmission, and distribution are owned by a single entity called a vertically integrated utility, which supplies power to the customers at regulated rates. Usually, the definition of a control area is determined by the geographical boundaries of the entity. Toward the end of the twentieth century many countries sought to reduce direct government involvement and, to increase economic efficiency, started to change the power system management structure, often described as deregulation.

There are several control scenarios and AGC schemes depending on the power system structure. Different organizations are introduced for the provision of AGC as an ancillary service in countries with restructured power systems. The AGC service and related transactions can be supervised by an independent system operator (ISO), independent contract administrator (ICA), transmission system operator (TSO), or another responsible organization. The type of AGC scheme in a restructured power system is differentiated by how free the market is, who controls generator units, and who has the obligation to execute the AGC.107

Several modeling and control strategies have been reported to adapt well-tested classical load-frequency control (LFC) schemes to the changing environment of power system operation under deregulation.25,108113 A generalized modeling structure based on the introduced idea in several references25,112,114 is presented in Chapter 4. The effects of deregulation of the power industry on AGC, several AGC schemes, and control scenarios for power systems after deregulation have been addressed.25,107,113121

An agent-based AGC scenario in a deregulated environment is introduced in Bevrani.25 In order to cover a minimum number of required processing activities for the AGC objectives in a control area, a two-agent control system is used. Based on the proposed control strategy, a decision and control agent uses the received data from a data acquisition and monitoring agent to provide the generation participation factors and appropriate control action signal, through a simple robust controller. The system frequency has been analytically described, and to demonstrate the efficiency of the proposed control method, real-time nonlinear laboratory tests have been performed.

A decentralized robust AGC design in a deregulated power system under a bilateral-based policy scheme is addressed in Bevrani et al.120 In each control area, the effect of bilateral contracts is taken into account as a set of new input signals in a modified traditional dynamical model. The AGC problem is formulated as a multiobjective control problem via a mixed H2/H∞ control technique. In order to design a robust PI controller, the control problem is reduced to a static output feedback control synthesis, and then it is solved using a developed iterative linear matrix inequalities algorithm to get a robust performance index close to a specified optimal one. The results of the proposed multiobjective PI controllers are compared with H2/H∞ dynamic controllers.

Chapter 4 reviews the main structures, characteristics, and existing challenges for AGC synthesis in a deregulated environment. The AGC response and an updated AGC mode concerning the bilateral contracts are also introduced in Chapter 4.

 

 

3.7 AGC and Renewable Energy Options

The power system is currently undergoing fundamental changes in its structure. These changes are associated not just with the deregulation issue and the use of competitive policies, but also with the use of new types of power pro duction, new technologies, and rapidly increasing amounts of renewable energy sources (RESs).

The increasing need for electrical energy, as well as limited fossil fuel reserves, and the increasing concerns with environmental issues call for fast development in the area of RESs. Renewable energy is derived from natural sources such as the sun, wind, hydropower, biomass, geothermal, and oceans. These changes imply a requirement for new AGC schemes in modern power systems. Recent studies have found that the renewable integration impacts on system frequency and power fluctuation are nonzero and become more significant at higher sizes of penetrations. The variability and uncertainty are two major attributes of variable RESs that notably impact the bulk power system planning and operations. The main difficulties are caused by the variability and lim ited predictability of power from renewable sources such as wind, PV, and waves.

Integration of RESs into power system grids has impacts on optimum power flow, power quality, voltage and frequency control, system economics, and load dispatch. The effects of variability are different than the effects of uncertainty, and the mitigation measures that can be used to address each of these are different. Regarding the nature of RES power variation, the impact on the frequency regulation issue has attracted increasing research interest during the last decade. Some studies represent a range of estimates based on different system characteristics, penetration levels, and study methods.25

The RESs have different operational characteristics relative to the traditional forms of generating electric energy, and they affect the dynamic behavior of the power system in a way that might be different from conventional generators. This is due to the fact that the primary energy source in most RES types (such as wind, sunlight, and moving water) cannot presently be controlled or stored. Unlike coal or natural gas, which can be extracted from the earth, delivered to power plants thousands of miles away, and stockpiled for use when needed, variable fuels must be used when and where they are available. This fact alone results in RESs being viewed as nondispatchable, implying it is not possible to a priori specify what the power output of a RES unit should be.

3.7.1 Present Status and Future Prediction

RESs’ revolution has already commenced in many countries, as evidenced by the growth of RESs in response to the climate change challenge and the need to enhance fuel diversity. Renewable energy currently provides more than 14% of the world’s energy supply.122

Currently, wind is the most widely utilized renewable energy technology in power systems, and its global production is predicted to grow to more than 300 GW in 2015. It has been predicted that wind power global penetration will reach 8% by 2020. The European Union has set as a target 20% of electricity supplied by renewable generation by 2020.123 According to the European Wind Energy Association (EWEA), European wind power capacity is expected to be more than 180 GW in 2020.124 The U.S. Department of Energy has announced a goal of obtaining 6% of U.S. electricity only from wind by 2020—a goal that is consistent with the current growth rate of wind energy nationwide.125

Numerous works on solar (PV) energy, batteries, and energy capacitor units are being performed in Japan. Japan has set the target PV installed capacity of 28 GW by the year 2010.126 The growing wind power market in Asian countries is also impressive. Based on current growth rates, the Chinese Renewable Energy Industry Association (CREIA) forecasts a capacity of around 50,000 MW by 2015.127 India also continues to see a steady growth in wind power installations. In Korea, RES is gradually growing per year, and the government plans to replace 5% of the conventional energy source by the year 2011.123

After some slow years, the Pacific market has gained new impetus. In Australia, the government has pledged to introduce a 20% target for renewable energy by 2020. Although Europe, North America, Asia, and the Pacific region continue to have the largest additions to their RES capacity, the Middle East, North Africa, and Latin America have also increased their RES installations. New capacity was mostly added in Iran, Egypt, Morocco, Tunisia, and Brazil.127

3.7.2 New Technical Challenges

High renewable energy penetration in power systems may increase uncertainties during abnormal operation, introduce several technical implications, and open important questions as to whether the traditional power system control approaches (such as AGC systems) to operation in the new environment are still adequate. The main question that arises is: What happens to the AGC requirements if numerous RESs are added to the existing generation portfolio?

The impacts of large-scale penetration of variable RESs should be considered in terms of appropriate timeframes. In the seconds-to-minutes timeframe, overall power system reliability is almost entirely controlled by automatic equipment and control systems such as AGC systems, generator governor and excitation systems, power system stabilizers (PSSs), automatic voltage regulators (AVRs), protective relaying and special protection schemes, and fault ride-through capability of the generation resources. From the minutes-to-one-week timeframe, system operators and operational planners must be able to commit or dispatch needed facilities to rebalance, restore, and position the whole power system to maintain reliability through normal load variations as well as contingencies and disturbances.

The RES units must meet technical requirements with respect to voltage, frequency, and ability to rapidly isolate faulty parts from the rest of the network, and have a reasonable ability to withstand abnormal system operating conditions. They should be able to function effectively as part of the existing electricity industry, particularly during abnormal power system operating conditions when power system security may be at risk. High RES penetration, particularly in locations far away from major load centers and existing conventional generation units, increases the risk of tie-line overloading, and may require network augmentation, and possibly additional interconnections to avoid flow constraints. With the increasing RES penetration, the grid code for the connection of high RES capacity should be also updated.

Recent investigation studies indicate that relatively large-scale wind generation will have an impact on power system frequency regulation and AGC systems, as well as other control and operation issues. This impact may increase at penetration rates that are expected over the next several years. On the other hand, most existing variable RESs today do not have the control capability necessary to provide regulation. But perhaps even more significant is that the variability associated with those energy sources not only does not help regulate, but it contributes to a need for more regulation. The AGC system of the future will require increased flexibility and intelligence to ensure that it can continuously balance fluctu ating power and regulate frequency deviation caused by renewable energy sources such as wind, solar, or wave power.

To maintain reliable and efficient operation of the power system, operators must use forecasts of demand and generator availability. Today the majority of supply-demand balancing in a power system is achieved by controlling the output of dispatchable generation resources to follow the changes in demand. Typically, a smaller portion of the generation capacity in a control area is capable of and designated to provide AGC service in order to deal with the more rapid and uncertain demand variations, often within the seconds-to-minutes timeframe. AGC is expected to play a major role in managing short-term uncertainty of variable renewable power, and to mitigate some of the short-term impacts associated with variable generation forecast error. Hence, it may be necessary for planners and operators to review and potentially modify the AGC performance criteria, capabilities, and technologies to ensure that these systems perform properly.128

In response to the above-mentioned challenges, intelligent control certainly plays a significant role. It will not be possible to integrate large amounts of RESs into the conventional power systems without intelligent control and regulation systems. For this purpose, intelligent meters, devices, and communication stan dards should first be prepared to enable flexible matching of generation and load. Furthermore, an appropriate framework must be developed to ensure that fu ture flexible supply/demand and ancillary services have equal access and are free to the market.

3.7.3 Recent achievements

Here, a brief critical literature review and an up-to-date bibliography for the proposed studies on the frequency, tie-line power flow, and AGC issue in the presence of RESs, and associated issues, are presented. A comprehensive survey on past achievements and open research issues is presented in Bevrani et al.129

A considerable part of attempts has focused on wind power generation units. Integrating energy storage systems (ESSs) or energy capacitor systems (ECSs) into the wind energy system to diminish the wind power impact on power system frequency has been addressed in several reported works.25,130 Different ESSs by means of an electric double-layer capacitor (EDLC) and SMES and energy saving are proposed for wind power leveling. The impact of wind generation on the operation and development of the UK electricity systems is described in Strbac et al.131 Impacts of wind power components and variations on power system frequency control are described in Banakar et al.132 and Lalor et al.133 Using the kinetic energy storage system (blade and machine inertia) to participate in primary frequency control is addressed in Morren et al.134

The technology to filter out the power fluctuations (in resulting frequency deviation) by wind turbine generators for the increasing amount of wind power penetration is growing. The new generation of variable speed, large wind turbine generators with high moments of inertia from their long turbine blades can filter power fluctuations in the wind farms. A method is presented in Morren et al.134 to let variable speed wind turbines emulate inertia and support primary frequency control.

A method of quantifying wind penetration based on the amount of fluctuating power that can be filtered by wind turbine generation and thermal plants is addressed in Luo et al.135 A small power system including three thermal units (equipped with an AGC system) and a wind farm is considered as a test example. Using the Bode diagram of system transfer function between frequency deviation and real power fluctuation signals, the permitted power fluctuation for 1% frequency deviation is approximated.

Using modal techniques, the dynamic influence of wind power on the primary and supplementary frequency controls is studied.136,137 Some preliminary studies showed that the kinetic energy stored in the rotating mass of a wind turbine can be used to support primary frequency control for a short period of time.134 The capability of providing a short-term active power support of a wind farm to improve the primary frequency control performance is discussed in Ullah et al.138

Some recent studies analyze the impacts of RESs on AGC operation and supplementary frequency control.133,137,139143 A study is conducted in Hirst140 to help determine how wind generation might interact in the competitive whole-sale market for regulation services and a real-time balancing market. This study recognized that wind integration does not require that each deviation in wind power output be matched by a corresponding and opposite deviation in other resources, and the frequency performance requirement must apply to the aggregated system, not to each individual generator. Several works are reported on considering the effect of wind power fluctuation on LFC structure.133 An automatic generation control system for a wind farm with variable speed turbines is addressed in Amenedo et al.139 The proposed integrated control system includes two control levels (supervisory system and machine control system). Several multiagent, ANN, and fuzzy-logic-based intelligent control schemes for AGC systems concerning the wind farms are given.137,143

The impacts of wind power on tie-line power flow in the form of low-frequency oscillations due to insufficient system damping are studied in Slootweg and Kling144 and Chompoo-inwai et al.145 The need for retuning of UFLS df/dt relays is emphasized in Bevrani and coworkers.25,129 Using storage devices such as ESSs, ECSs, and redox flow (RF) batteries for supplementary control and maintenance of power quality in the presence of distributed power resources is suggested in many published works. It has been shown that the LFC capacity of RF battery systems is ten times that of fossil power systems, due to quick response characteristics.

Recently, several studies have been conducted on the required regulation reserve estimation in the presence of various RES units. Some efforts to evaluate the impact of small PV power generating stations on economic and performance factors for a large-scale power system are addressed in Asano et al.126 It was found that wind power, combined with the varying load, does not impose major extra variations on the system until a substantial penetration is reached. Large geographical spreading of wind power will reduce variability, increase predictability, and decrease the occasions with near zero or peak output. It is investigated in Holttinen142 that the power fluctuation from geographically dispersed wind farms will be uncorrelated with each other, hence smoothing the sum power and not imposing any significant requirement for additional frequency regulation reserve, and required extra balancing is small.

Chapter 6 addresses the AGC system concerning the integration of RES. It presents the impact of power fluctuation produced by variable RESs on the AGC performance, and gives an updated AGC frequency response model. The statements are supported by some nonlinear time-domain simulations on standard test systems.

 

 

3.8 AGC and Microgrids

A microgrid is a relatively novel concept in modern electric industry, consisting of small power systems owning the capability of performing isolated from the main network. A microgrid can tackle all distributed energy resources, including distributed generation (DG), RESs, distributed energy storage systems, and demand response, as a unique subsystem, and offers significant control capacities on its operation. Microgrids are usually based on loads fed through a low- or medium-voltage level, mostly in distribution radial systems. In order to ensure proper operation of the microgrid, it is important that its constituent parts and controls in both grid-connected and islanded modes operate satisfactorily.

A schematic diagram of a generic microgrid is shown in Figure 3.9. The microgrid is connected to the main grid at the point of interconnection (POI). The DG units of the microgrid can in general have any arbitrary configuration. Each DG unit is usually interfaced to the microgrid through a power electronic converter, at the point of coupling (POC). As mentioned, many of the DGs/RESs, such as PV and fuel cells, use a power electronic converter (inverter) for grid interfacing. Some wind applications as well as some synchronous machines and micro-turbines utilize power electronic devices for the grid interface, as the benefits of the electronic interface justify the additional cost and complexity.

Images

FIGURE 3.9
A simplified generic microgrid.

Power electronic inverters are capable of converting the energy from a variety of sources, such as variable frequency (wind), high frequency (turbines), and direct energy (PV and fuel cells). Inverter-based DGs/RESs are generally considered low power by utility standards, from 1 kW up to a few MW. Generators connected to renewable sources are not reliable, and so are not considered dispatchable by the utility and are not tightly integrated into the power supply system. The inverter interface decouples the generation source from the distribution network. Since inverters monitor the frequency at their output terminals for control purposes, it is easy to detect when the inverter frequency shifts outside a window centered on the nominal frequency set point.129

Increases in distributed generation, microgrids, and active control of consumption open the way to new control strategies with a greater control hierarchy/intelligence and decentralized property. In this direction, recently several new concepts and national proj ects, such as SmartGrids,146 Intelligrid,147 and Gridwise,148 have been defined in Europe and the United States. Their aim has been to take advantage of the possibilities created by combining intelligent communication, information technology, and distributed energy resources in the power system.

Similar to conventional generating units, droop control is one of the important control methods for a microgrid with multiple DG units. Without needing a communication channel and specific coordination, the DG units can automatically adjust their set points using the frequency measurement to meet the overall need of the microgrid.149

Unlike large power systems, the drooping system is poorly regulated in microgrids to support spinning reserve as an ancillary service in power markets. Some recent works address the scheduling of the droop coefficients for frequency regulation in microgrids.150,151 A methodology based on bifurcation theory is used in Chandorkar et al.151 to evaluate the impact that droops and primary reserve scheduling have on the microgrid stability. It was demonstrated in Diaz et al.150 that drooping characteristics can be successfully applied for controlling paralleled inverters in isolated alternative current (AC) systems, mimicking the performance of generator-turbine-governor units.

On the other hand, tie-line control can be designed to manage the feeder power flow at the POI to meet the needs of the system operator. Control is implemented by coordinating the assets of the microgrid, allowing the collection of these assets to appear as one aggregated dispatchable producing or consuming entity connected to the main grid. The overall objective is to optimize operating performance and cost in the normally grid-connected mode, while ensuring that the system is capable of meeting the performance requirements in stand-alone mode.152 Enforcing power and ramp rate limits at the POI with appropriate responses to system frequency deviation can be achieved via microgrid active power control. It is noteworthy that unlike standard AGC implementation, tie-line control is not applicable when an isolated microgrid is considered.

Another major issue in the area of microgrid control is the move toward active control of domestic loads. However, the flexibility introduced through the ability to control part of household power consumption is difficult to exploit, and up to now there have been no significant achievements.

As mentioned above, microgrids and DGs have great potential in contributing to the frequency control of the overall system. The main challenge is to coordinate their actions so that they can provide the regulation services. For this purpose, the aggregation technique to create virtual power plants (VPPs) could be useful. In this method, the aggregation is not based on the topology of the network; instead, any unit can participate in a VPP, regardless of its location. It facilitates the provision of some services (by VPPs), such as frequency regulation and power balance, which are global characteristics.

The possibility of having numerous controllable DG units and microgrids in distribution networks requires the use of intelligent and hierarchical control schemes that enable efficient control and management of this kind of system. During the last few years, several reports presenting various control methods on frequency regulation, tie-line control, and LFC/AGC issues have been published.152158 A PI control, following estimation of power demand (amount of load disturbance), is used in Fujimoto et al.153 The method is applied on a real microgrid, including PV, micro-hydropower generator, diesel generator, storage system, and wind turbine. The tie-line controls are important microgrid control features that regulate the active and reactive power flow between the microgrid and the main grid at the point of interconnection, and are addressed in Adamiak et al.152 These controls essentially allow the microgrid to behave as an aggregated power entity that can be made dispatchable by the utility. Molina and Mercado154 have used a combination of SMES and a distribution static synchronous compensator to control the tie-line power flow of microgrids. An electrolyzer system with a fuzzy PI control is used in Li et al.159 to solve power quality issues resulting from microgrid frequency fluctuations.

Fuzzy logic PID controllers for frequency regulation in isolated microgrids are given in Chaiyatham et al.155 and Hiyama et al.158 A bee colony optimization is used in Chaiyatham et al.155 to simultaneously optimize scale factors, membership function, and control rules of the fuzzy controller. A general and a hierarchical frequency control scheme for isolated microgrid operation are addressed in Madureia et al.156 and Gil and Pecas Lopes,157 respectively.

 

 

3.9 Scope for Future Work

Restructuring and introducing new uncertainty and variability by a significant number of DGs, RESs, and microgrids into power systems add new economical and technical challenges associated with AGC systems synthesis and analysis. As the electric industry seeks to reliably integrate large amounts of variable generation into the bulk power system, considerable effort will be needed to accommodate and effectively manage these unique operating and planning characteristics. A key aspect is how to handle chang es in topology caused by switching in the network, and how to make the AGC system robust and able to take advantage of the potential flexibility of distributed energy resources.

3.9.1 improvement of Modeling and analysis Tools

A complete understanding of reliability considerations via effective model-ing/aggregation techniques is vital to identify a variety of ways that bulk power systems can accommodate the large-scale integration of DGs/RESs. A more complete dynamic frequency response model is needed in order to analyze and synthesize AGC in interconnected power systems with a high degree of DG/RES penetration. Proper dynamic modeling and aggregation of the distributed generating units, for AGC studies, is a key issue to understand the dynamic impact of distributed resources and simulate the AGC functions in new environments.

3.9.2 Develop effective intelligent Control Schemes for Contribution of Dgs/ReSs in the agC issue

Additional flexibility may be required from various dispatchable generators, storage, and demand resources, so the system operator can continue to balance supply and demand on the modern bulk power system. The contribution of DGs/RESs (microgrids) in the AGC task refers to the ability of these systems to regulate their power output, either by disconnecting a part of generation or by an appropriate control action. More effective practical algorithms and control methodologies are needed to address these issues properly. Since the power coming from some DGs/RESs, specifically wind turbine, is stochastic, it is difficult to straightly use their kinetic energy storage in AGC. Further studies are needed to coordinate the timing and size of the kinetic energy discharge with the characteristics of conventional generating plants.

3.9.3 Coordination between Regulation Powers of Dgs/ReSs and Conventional generators

In the case of supporting the AGC system, an important feature of some DG/ RES units is the possibility of their fast active power injection. Following a power imbalance, the active power generated by DG/RES units quickly changes to recover the system frequency. Because this increased/decreased power can last just for a few seconds, conventional generators should eventually take charge of the huge changed demand by shifting their generation to compensate power imbalance.160 But the fast power injection by DG/RES units may slow down, to a certain extent, the response of conventional generators. To avoid this undesirable effect, coordination between DG/RES and conventional participating units in the AGC system is needed.

3.9.4 improvement of Computing Techniques and Measurement Technologies

The AGC system of tomorrow must be able to handle complex interactions between control areas, grid interconnections, distributed generating equipment and RESs, fluctuations in generating capacity, and some types of controllable de mand, while maintaining security of supply. These efforts are directed at de veloping computing techniques, intelligent control, and monitoring/measurement technologies to achieve optimal performance. Advanced compu tational methods for predicting prices, congestion, consumption, and weather, and improved measuring technologies are opening up new ways of controlling the power system via supervisory control and data acquisition (SCADA)/AGC centers.

The design of a definitive frequency threshold detector and trigger to reduce/increase the contribution of DG/RES generators requires extensive research to incorporate signal processing, adaptive strategies, pattern recognition, and intelligent features to achieve the same primary reserve capability of conventional plants. An advanced computing algorithm and fast hardware measurement devices are also needed to realize optimal/adaptive AGC schemes for modern power systems.

3.9.5 Use of advanced Communication and information Technology

The AGC structure for future power systems must be able to control/regulate frequency and power, and monitor itself as an intelligent system to a greater extent than is the case today. Key compo nents in the intelligent AGC system of the future will thus be systems for metering, controlling, regulating, and moni toring indices, allowing the resources of the power system to be used effectively in terms of both economics and operability. To achieve this vision, the future AGC systems must include advanced communications and information technology (IT).

Continuous development of metering, communications, market frameworks, and regulatory frameworks for genera tion and consumption is a precondition for a power system with intelligent electricity meters and intelligent communications.161

3.9.6 Update/Define New grid Codes

Further study is needed to define new grid codes for the contribution of microgrid, large DG/RES units (connected to the transmission system) to the AGC issue, and for investigation of their behavior in the case of abnormal operating conditions in the electric network. The active power ramp rate must comply with the respective rates applicable to conventional power units.162 The new grid codes should clearly impose the requirements on the regulation capabilities of the active power produced by microgrids and distributed sources.

3.9.7 Revising of existing Standards

Standards related to the overall reliable performance of the power system as instituted by technical committees, reliability entities, regulatory bodies, and organizations (such as NERC, UCTE, ISOs, and RTOs, etc.) ensure the integrity of the whole power system is maintained for credible contingencies and operating conditions. There exist some principles to be taken into account in future standards development on the AGC system in the presence of DGs/RESs and microgrids. Standards should be comprehensive, transparent, and explicit to avoid misinterpretation. Interconnection procedures and standards should be enhanced to address frequency regulation, real power control, and inertial response, and must be applied in a consistent manner to all generation technologies.

The overall behavior expected from a power system with high levels of variable generation will be different from what is experienced today; therefore, both the equipment design and performance requirements must be addressed. In this respect, reliability-focused equipment standards must also be further developed to facilitate the reliable integration of additional DGs/RESs into the bulk power system. From a bulk power system reliability perspective, a set of interconnection procedures and standards is required that applies equally to all generation resources interconnecting to the power grid. Significant work is required to standardize basic requirements in these interconnection procedures and standards, such as the ability of the generator owner and operator to provide an inertial response (effective inertia as seen from the grid), control of the MW ramp rates or curtailing of MW output, and frequency control (governor action, AGC, etc.).128

The requirements imposed should reflect an optimum balance between cost and technical performance. Proper consideration should also be given to coordinate the large-scale interconnected systems, via their responsible control centers and organizations, such as the collaboration among neighboring transmission system operators (TSOs) and the AGC owner. Finally, frequency performance standards compliance verification remains a major open issue for DG/RES units.

3.9.8 Updating Deregulation Policies

To allow for increased penetration of DGs/RESs and microgrids, a change in regulation reserve policy may be required. In this direction, in addition to deregulation policies, the amount and location of distributed sources, generation technology, and the size and characteristics of the electricity system must be considered as important technical aspects. Moreover, the updating of existing emergency frequency control schemes for N – 1 contingency, concerning economic assessment/analysis, the frequency of regulation prices, and other economical, social, and political issues, and the quantification of a reserve margin due to increasing DG/RES penetration are some important research needs.

 

 

3.10 Summary

The AGC design problem in power systems can be easily transferred into a performance optimization problem, which is suitable for application of artificial intelligent techniques. This has led to emerging trends of application of soft computing or computational intelligence and evolutionary computing in the power system AGC synthesis issue.

In this chapter, the most important issues on the intelligent AGC with the past achievements in this literature are briefly reviewed. The most important intelligent AGC design frameworks based on fuzzy logic, neural network, neuro-fuzzy, genetic algorithm, multiagent system, and other intelligent techniques and evolutionary optimization approaches are described. An overview of the key issues in the power system intelligent AGC—deregulation and integration of RESs/DGs and microgrids—is presented. The need for further research on the intelligent AGC and related areas, including the necessity of revising existing performance standards, is emphasized.

 

 

References

1. C. Concordia, L. K. Kirchmayer. 1953. Tie line power and frequency control of electric power systems. Am. Inst. Elect. Eng. Trans. 72(Part II):562–72.

2. N. Cohn. 1957. Some aspects of tie-line bias control on interconnected power systems. Am. Inst. Elect. Eng. Trans. 75:1415–36.

3. L. K. Kirchmayer. 1959. Economic control of interconnected systems. New York: Wiley.

4. J. E. Van Ness. 1963. Root loci of load frequency control systems. IEEE Trans. Power App. Syst. PAS-82(5):712–26.

5. IEEE. 1970. Standard definitions of terms for automatic generation control on electric power systems. IEEE committee report. IEEE Trans. Power App. Syst. PAS-89:1356–64.

6. O. I. Elgerd, C. Fosha. 1970. Optimum megawatt-frequency control of multiarea electric energy systems. IEEE Trans. Power App. Syst. PAS-89(4):556–63.

7. C. Fosha, O. I. Elgerd. 1970. The megawatt-frequency control problem: A new approach via optimal control. IEEE Trans. Power App. Syst. PAS-89(4):563–77.

8. IEEE. 1979. Current operating problems associated with automatic generation control. IEEE PES committee report. IEEE Trans. Power App. Syst. PAS-98:88–96.

9. N. Jaleeli, D. N. Ewart, L. H. Fink. 1992. Understanding automatic generation control. IEEE Trans. Power Syst. 7(3):1106–12.

10. C. Concordia, L. K. Kirchmayer, E. A. Szymanski. 1957. Effect of speed governor dead-band on tie-line power and frequency control performance. Am. Inst. Elect. Eng. Trans. 76:429–35.

11. F. F. Wu, V. S. Dea. 1978. Describing-function analysis of automatic generation control system with governor deadband. Elect. Power Syst. Res. 1(2):113–16.

12. S. C. Tripathy, T. S. Bhatti, C. S. Jha, O. P. Malik, G. S. Hope. 1984. Sampled data automatic generation control analysis with reheat steam turbines and governor dead band effects. IEEE Trans. Power App. Syst. AS-103(5):1045–51.

13. T. Hiyama. 1982. Optimisation of discrete-type load-frequency regulators considering generation-rate constraints. IEE Proc. C 129(6):285–89.

14. L. D. Douglas, T. A. Green, R. A. Kramer. 1994. New approaches to the AGC nonconforming load problem. IEEE Trans. Power Syst. 9(2):619–28.

15. L. D. Douglas, T. A. Green, R. A. Kramer. 1994. New approach to the AGC non-conforming load program. IEEE Trans. Power Syst. 9(2):619–28.

16. R. P. Schulte. 1996. An automatic generation control modification for present demands on interconnected power systems. IEEE Trans. Power Syst. 11(3): 1286–94.

17. N. Jaleeli, L. S. Vanslyck. 1999. NERC’s new control performance standards. IEEE Trans. Power Syst. 14(3):1092–99.

18. M. Yao, R. R. Shoults, R. Kelm. 2000. AGC logic based on NERC’s new control performance standard and disturbance control standard. IEEE Trans. Power Syst. 15(2):852–57.

19. Y. Hain, R. Kulessky, G. Nudelman. 2000. Identification-based power unit model for load-frequency control purposes. IEEE Trans. Power Syst. 15(4):1313–21.

20. N. Maruejouls, T. Margotin, M. Trotignon, P. L. Dupuis, J. M. Tesseron. 2000. Measurement of the load frequency control system service: Comparison between American and European indicators. IEEE Trans. Power Syst. 15(4):1382–87.

21. G. Gross, J. W. Lee. 2001. Analysis of load frequency control performance assessment criteria. IEEE Trans. Power Syst. 16(3):520–32.

22. N. Hoonchareon, C. M. Ong, R. A. Kramer. 2002. Feasibility of decomposing ACE1 to identify the impact of selected loads on CPS1 and CPS2. IEEE Trans. Power Syst. 17(3):752–56.

23. L. R. C. Chien, C. M. Ong, R. A. Kramer. 2003. Field tests and refinements of an ACE model. IEEE Trans. Power Syst. 18(2):898–903.

24. L. R. C. Chien, N. Hoonchareon, C. M. Ong, R. A. Kramer. 2003. Estimation of β for adaptive frequency bias setting in load frequency control. IEEE Trans. Power Syst. 18(2):904–11.

25. H. Bevrani. 2009. Robust power system frequency control. New York: Springer.

26. Ibraheem, P. Kumar, P. Kothari. 2005. Recent philosophies of automatic generation control strategies in power systems. IEEE Trans. Power Syst. 20(1):346–57.

27. H. Glavitsch, J. Stoffel. 1980. Automatic generation control. Elect. Power Energy Syst. 2(1):21–28.

28. E. V. Bohn, S. M. Miniesy. 1972. Optimum load frequency sample data control with randomly varying system disturbances. IEEE Trans. Power App. Syst. PAS-91(5):1916–23.

29. K. Yamashita, T. Taniguchi. 1986. Optimal observer design for load frequency control. Int. J. Elect. Power Energy Syst. 8(2):93–100.

30. M. S. Calovic. 1972. Linear regulator design for a load and frequency control. IEEE Trans. Power App. Syst. 91:2271–85.

31. T. Hiyama. 1982. Design of decentralised load-frequency regulators for interconnected power systems. IEE Proc. C 129(1):17–23.

32. J. Kanniah, S. C. Tripathy, O. P. Malik, G. S. Hope. 1984. Microprocessor-based adaptive load-frequency control. IEE Proc. Gener. Transm. Distrib. 131(4):121–28.

33. A. Feliachi. 1987. Optimal decentralized load frequency control. IEEE Trans. Power Syst. PWRS-2(2):379–84.

34. O. P. Malik, A. Kumar, G. S. Hope. 1988. A load frequency control algorithm based on a generalized approach. IEEE Trans. Power Syst. 3(2):375–82.

35. V. R. Moorthi, P. P. Aggarwal. 1982. Suboptimal and near optimal control of a load-frequency control system. IEE Proc. C 129(6):1635–60.

36. A. Y. Sivaramakrishnan, M. V. Hartiharan, M. C. Srisailam. 1984. Design of variable structure load frequency controller using pole assignment technique. Int. J. Control 40:487–98.

37. A. Z. Al-Hamouz, Y. L. Al-Magid. 1993. Variable structure load frequency controllers for multiarea power systems. Elect. Power Energy Syst. 15:293–300.

38. W. C. Chan, Y. Y. Hsu. 1981. Automatic generation control of interconnected power systems using variable-structure controller. Proc. Inst. Elect. Eng. C 128(5):269–79.

39. A. Kumar, O. P. Malik, G. S. Hope. 1985. Variable-structure-system control applied to AGC of an interconnected power system. Proc. Inst. Elect. Eng. C 132(1):23–29.

40. H. Bevrani, T. Hiyama. 2009. On robust load-frequency regulation with time delays: Design and real-time implementation. IEEE Trans. Energy Conversion 24(1):292–300.

41. D. Rerkpreedapong, A. Hasanovic, A. Feliachi. 2003. Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Trans. Power Syst. 18(2):855–61.

42. H. Bevrani, Y. Mitani, K. Tsuji. 2004. Robust decentralized load-frequency control using an iterative linear matrix inequalities algorithm. IEE Proc. Gener. Transm. Distrib. 151(3):347–54.

43. H. Bevrani, T. Hiyama. 2007. Robust load-frequency regulation: A real-time laboratory experiment. Optimal Control Appl. Methods 28(6):419–33.

44. I. Vajk, M. Vajta, L. Keviczky, R. Haber, J. Hetthessy, K. Kovacs. 1985. Adaptive load frequency control of the Hungarian power system. Automatica 21:129–37.

45. C. T. Pan, C. M. Liaw. 1989. An adaptive controller for power system load frequency control. IEEE Trans. Power Syst. PWRS-4:122–28.

46. A. Rubaai, V. Udo. 1994. Self-tuning load frequency control: Multilevel adaptive approach. IEE Proc. Gener. Transm. Distrib. 141(4):285–90.

47. L. M. Smith, L. H. Fink, R. P. Schulz. 1975. Use of computer model of interconnected power system to assess generation control strategies. IEEE Trans. Power App. Syst. 94(5). 48.

48. M. L. Kothari, J. Nanda, D. P. Kothari, D. Das. 1989. Discrete mode automatic generation control of a two area reheat thermal system with new area control error. IEEE Trans. Power App. Syst. 4(2):730–38.

49. I. Ngamroo, Y. Mitani, K. Tsuji. 1999. Application of SMES coordinated with solid-state phase shifter to load frequency control. IEEE Trans. Appl. Superconductivity 9(2):322–25.

50. Y. Yoshida, T. Machida. 1969. Study of the effect of the DC link on frequency control in interconnected AC systems. IEEE Trans. Power App. Syst. PAS-88(7):1036–42.

51. M. Sanpei, A. Kakehi, H. Takeda. 1994. Application of multi-variable control for automatic frequency controller of HVDC transmission system. IEEE Trans. Power Del. 9(2):1063–68.

52. C. F. Juang, C. F. Lu. 2006. Load-frequency control by hybrid evolutionary fuzzy PI controller. IEE Proc. Gener. Transm. Distrib. 153(2):196–204.

53. C. S. Chang, W. Fu. 1997. Area load frequency control using fuzzy gain scheduling of PI controllers. Elect. Power Syst. Res. 42:145–52.

54. G. A. Chown, R. C. Hartman. 1998. Design and experience with a fuzzy logic controller for automatic generation control (AGC). IEEE Trans. Power Syst. 13(3):965–70.

55. J. Talaq, F. Al-Basri. 1999. Adaptive fuzzy gain scheduling for load frequency control. IEEE Trans. Power Syst. 14(1):145–50.

56. A. Feliachi, D. Rerkpreedapong. 2005. NERC compliant load frequency control design using fuzzy rules. Elect. Power Syst. Res. 73:101–6.

57. A. Demiroren, E. Yesil. 2004. Automatic generation control with fuzzy logic controllers in the power system including SMES units. Elect. Power Energy Syst. 26:291–305.

58. M. K. El-Sherbiny, G. El-Saady, A. M. Yousef. 2002. Efficient fuzzy logic load-frequency controller. Energy Conversion Management 43:1853–63.

59. E. Yesil, M. Guzelkaya, I. Eksin. 2004. Self tuning fuzzy PID type load frequency controller. Energy Conversion Management 45:377–90.

60. C. S. Indulkar, B. Raj. 1995. Application of fuzzy controller to automatic generation control. Elect. Machines Power Syst. 23(2):209–20.

61. A. E. Gegov, P. M. Frank. 1995. Decomposition of multivariable systems for distributed fuzzy control [power system load frequency control]. Fuzzy Sets Syst. 73(3):329–40.

62. E. Cam, I. Kocaarslan. 2005. A fuzzy gain scheduling PI controller application for an interconnected electrical power system. Elect. Power Syst. Res. 73:267–74.

63. Y. L. Karnavas, D. P. Papadopoulos. 2002. AGC for autonomous power system using combined intelligent techniques. Elect. Power Syst. Res. 62:225–39.

64. C. S. Rao, S. S. Nagaraju, P. S. Raju. 2009. Automatic generation control of TCPS based hydrothermal system under open market scenario: A fuzzy logic approach. Elect. Power Energy Syst. 31:315–22.

65. A. P. Fathima, M. A. Khan. 2008. Design of a new market structure and robust controller for the frequency regulation service in the deregulated power system. Elect. Power Components Syst. 36:864–83.

66. P. Subbaraj, K. Manickavasagam. 2008. Automatic generation control of multi-area power system using fuzzy logic controller. Eur. Trans. Elect. Power 18:266–80.

67. H. Shyeghi, A. Jalili, H. A. Shayanfar. 2004. Multi-stage fuzzy load frequency control using PSO. Energy Conversion Management 49:377–90.

68. J. Nanda, A. Mangla. 2004. Automatic generation control of an interconnected hydro-thermal system using conventional integral and fuzzy logic controller. In Proceedings of IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, vol. 1, pp. 372–77.

69. C. S. Indulkar, B. Raj. 2008. Application of fuzzy controller to automatic generation control. Elect. Machine Power Syst. 23:2570–80.

70. P. Attaviriyanupap, H. Kita, E. Tanaka, J. Hasegawa. 2004. A fuzzy-optimization approach to dynamic dispatch considering uncertainties. IEEE Trans. Power Syst. 19(3):1299–307.

71. M. Djukanovic, M. Novicevic, D. J. Sobajic, Y. P. Pao. 1995. Conceptual development of optimal load frequency control using artificial neural networks and fuzzy set theory. Int. J. Eng. Intelligent Syst. Elect. Eng. Commun. 3(2):95–108.

72. F. Beaufays, Y. Abdel-Magid, B. Widrow. 1994. Application of neural networks to load-frequency control in power systems. Neural Networks 7(1):183–94.

73. D. K. Chaturvedi, P. S. Satsangi, P. K. Kalra. 1999. Load frequency control: A generalised neural network approach. Elect. Power Energy Syst. 21:405–15.

74. H. L. Zeynelgil, A. Demirorem, N. S. Sengor. 2002. Load frequency control for power system with reheat steam turbine and governor deadband non-linearity by using neural network controller. Eur. Trans. Elect. Power 12(3):179–84.

75. H. Bevrani, T. Hiyama, Y. Mitani, K. Tsuji, M. Teshnehlab. 2006. Load-frequency regulation under a bilateral LFC scheme using flexible neural networks. Eng. Intelligent Syst. J. 14(2):109–17.

76. H. Bevrani. 2002. A novel approach for power system load frequency controller design. In Proceedings of IEEE/PES T&D 2002 Asia Pacific, Yokohama, Japan, vol. 1, pp. 184–89.

77. A. Demiroren, N. S. Sengor, H. L. Zeynelgil. 2001. Automatic generation control by using ANN technique. Elect. Power Components Syst. 29:883–96.

78. T. P. I. Ahamed, P. S. N. Rao. 2006. A neural network based automatic generation controller design through reinforcement learning. Int. J. Emerging Elect. Power Syst. 6(1):1–31.

79. L. D. Douglas, T. A. Green, R. A. Kramer. 1994. New approaches to the AGC nonconforming load problem. IEEE Trans. Power Syst. 9(2):619–28.

80. H. Shayeghi, H. A. Shayanfar. 2006. Application of ANN technique based on Mu-synthesis to load frequency control of interconnected power system. Elect. Power Energy Syst. 28:503–11.

81. Y. L. Abdel-Magid, M. M. Dawoud. 1996. Optimal AGC tuning with genetic algorithms. Elect. Power Syst. Res. 38(3):231–38.

82. A. Abdennour. 2002. Adaptive optimal gain scheduling for the load frequency control problem. Elect. Power Components Syst. 30(1):45–56.

83. S. K. Aditya, D. Das. 2003. Design of load frequency controllers using genetic algorithm for two area interconnected hydro power system. Elect. Power Components Syst. 31(1):81–94.

84. C. S. Chang, W. Fu, F. Wen. 1998. Load frequency controller using genetic algorithm based fuzzy gain scheduling of PI controller. Elect. Machines Power Syst. 26:39–52.

85. Z. M. Al-Hamouz, H. N. Al-Duwaish. 2000. A new load frequency variable structure controller using genetic algorithm. Elect. Power Syst. Res. 55:1–6.

86. A. Huddar, P. S. Kulkarni. 2008. A robust method of tuning the feedback gains of a variable structure load frequency controller using genetic algorithm optimization. Elect. Power Components Syst. 36:1351–68.

87. P. Bhatt, R. Roy, S. P. Ghoshal. 2010. Optimized multi area AGC simulation in restructured power systems. Elect. Power Energy Syst. 32:311–22.

88. A. Demirorem, S. Kent, T. Gunel. 2002. A genetic approach to the optimization of automatic generation control parameters for power systems. Eur. Trans. Elect. Power 12(4):275–81.

89. P. Bhatt, R. Roy, S. P. Ghoshal. 2010. GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control. Elect. Power Energy Syst. 32:299–310.

90. K. Vrdoljak, N. Peric, I. Petrovic. 2010. Sliding mode based load-frequency control in power systems. Elect. Power Syst. Res. 80:514–27.

91. S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. D. Hatziargyriou, F. Ponci, T. Funabashi. 2007. Multi-agent systems for power engineering applications. Part I. Concepts, applications and technical challenges. IEEE Trans. Power Syst. 22(4):1743–52.

92. S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. D. Hatziargyriou, F. Ponci, T. Funabashi. 2007. Multi-agent systems for power engineering applications. Part II. Technologies, standards and tools for multiagent systems. IEEE Trans. Power Syst. 22(4):1753–59.

93. F. Daneshfar. 2009. Automatic generation control using multi-agent systems. MSc dissertation, Department of Electrical and Computer Engineering, University of Kurdistan, Sanandaj, Iran.

94. F. Daneshfar, H. Bevrani. 2010. Load-frequency control: A GA-based multi-agent reinforcement learning. IET Gener. Transm. Distrib. 4(1):13–26.

95. T. Hiyama, D. Zuo, T. Funabashi. 2002. Multi-agent based automatic generation control of isolated stand alone power system. Paper presented at Proceedings of International Conference on Power System Technology, Kunming, China.

96. T. Hiyama, D. Zuo, T. Funabashi. 2002. Multi-agent based control and operation of distribution system with dispersed power sources. In Proceedings of Transmission and Distribution Conference and Exhibition, Asia Pacific. IEEE/PES, Yokohama, Japan.

97. H. Bevrani, F. Daneshfar, P. R. Daneshmand. 2010. Intelligent power system frequency regulation concerning the integration of wind power units. In Wind power systems: Applications of computational intelligence, ed. L. F. Wang, C. Singh, A. Kusiak. Springer Book Series on Green Energy and Technology, 407–37. Heidelberg, Germany: Springer-Verlag.

98. H. Bevrani, F. Daneshfar, P. R. Daneshmand, T. Hiyama. 2010. Reinforcement learning based multi-agent LFC design concerning the integration of wind farms. In Proceedings of IEEE International Conference on Control Applications, Yokohama, Japan, CD-ROM.

99. S. P. Ghoshal. 2004. Application of GA/GA–SA based fuzzy automatic generation control of a multi-area thermal generating system. Elect. Power Syst. Res. 70(2):115–27.

100. S. P. Ghoshal. 2004. Optimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation control. Elect. Power Syst. Res. 72(3):203–12.

101. S. Ganapathy, S. Velusami. 2010. MOEA based design of decentralized controllers for LFC of interconnected power systems with nonlinearities, AC-DC parallel tie-lines and SMES units. Energy Conversion Management 51:873–80.

102. K. Sabahi, M. Teshnehlab, M. A. Shoorhedeli. 2009. Recurrent fuzzy neural network by using feedback error learning approaches for LFC in interconnected power system. Energy Conversion Management 50:938–46.

103. R. Roy, P. Bhatt, S. P. Ghoshal. 2010. Evolutionary computation based three-area automatic generation control. Expert Syst. Appl. 37(8):5913–24.

104. T. P. I. Ahamed, P. S. N. Rao, P. S. Sastry. 2002. A reinforcement learning approach to automatic generation control. Elect. Power Syst. Res. 63:9–26.

105. Y. L. Karnavas, D. P. Papadopoulos. 2002. AGC for autonomous power system using combined intelligent techniques. Elect. Power Syst. Res. 62:225–39.

106. J. Nanda, S. Mishra, L. C. Saikia. 2009. Maiden application of bacterial foraging-based optimization technique in multiarea automatic generation control. IEEE Trans. Power Syst. 24(2):602–9.

107. R. D. Chritie, A. Bose. 1996. Load frequency control issues in power system operation after deregulation. IEEE Trans. Power Syst. 11(3):1191–200.

108. J. Kumar, N. G. K. Hoe, G. B. Sheble. 1997. AGC simulator for price-based operation. Part I. A model. IEEE Trans. Power Syst. 2(12):527–32.

109. J. Kumar, N. G. K. Hoe, G. B. Sheble. 1997. AGC simulator for price-based operation. Part II. Case study results. IEEE Trans. Power Syst. 2(12):533–38.

110. V. Donde, M. A. Pai, I. A. Hiskens. 2001. Simulation and optimization in a AGC system after deregulation. IEEE Trans. Power Syst. 16(3):481–89.

111. B. Delfino, F. Fornari, S. Massucco. 2002. Load-frequency control and inadvertent interchange evaluation in restructured power systems. IEE Proc. Gener. Transm. Distrib. 149(5):607–14.

112. H. Bevrani, Y. Mitani, K. Tsuji. 2004. Robust AGC: Traditional structure versus restructured scheme. IEEJ Trans. Power Energy 124-B(5):751–61.

113. G. Dellolio, M. Sforna, C. Bruno, M. Pozzi. 2005. A pluralistic LFC scheme for online resolution of power congestions between market zones. IEEE Trans. Power Syst. 20(4):2070–77.

114. H. Bevrani. 2004. Decentralized robust load-frequency control synthesis in restructured power systems. PhD dissertation, Osaka University.

115. B. H. Bakken, O. S. Grande. 1998. Automatic generation control in a deregulated power system. IEEE Trans. Power Syst. 13(4):1401–6.

116. B. Tyagi, S. C. Srivastava. 2006. A decentralized automatic generation control scheme for competitive electricity market. IEEE Trans. Power Syst. 21(1):312–20.

117. J. M. Arroyo, A. J. Conejo. 2002. Optimal response of a power generator to energy, AGC, and reserve pool-based markets. IEEE Trans. Power Syst. 17(2):404–10.

118. F. Liu, Y. H. Song, J. Ma, S. Mei, Q. Lu. 2003. Optimal load-frequency control in restructured power systems. IEE Proc. Gener. Transm. Distrib. 150(1):377–86.

119. S. Bhowmik, K. Tomsovic, A. Bose. 2004. Communication models for third party load frequency control. IEEE Trans. Power Syst. 19(1):543–48.

120. H. Bevrani, Y. Mitani, K. Tsuji, H. Bevrani. 2005. Bilateral-based robust load-frequency control. Energy Conversion Management 46:1129–46.

121. H. Bevrani, T. Hiyama. 2007. Robust decentralized PI based LFC design for time-delay power systems. Energy Conversion Management 49:193–204.

122. H. Outhred, S. R. Bull, S. Kelly. 2007. Meeting the challenges of integrating renewable energy into competitive electricity industries. http://www.reilproject.org/documents/GridIntegrationFINAL.pdf.

123. Department of Trade and Industry. 2006. The energy challenge energy review report. London: DTI.

124. EWIS. 2007. Towards a successful integration of wind power into European electricity grids. Final report. http://www.ornl.gov/~webworks/cppr/y2001/rpt/122302.pdf.

125. AWEA Resources. 2008. U.S. wind energy projects. The American Wind Energy Association. http://www.awea.org.

126. M. Yamamoto, O. Ikki. 2010. National survey report of PV power applications in Japan 2009. Int. Energy Agency. Available: http://www.iea-pvps.org/countries/download/nsr09/NSR_2009_Japan_100620.pdf.

127. The Global Wind Energy Council. 2008. US, China & Spain lead world wind power market in 2007. GWEC Latest News. http://www.gwec.net (accessed February 28, 2008).

128. NERC Special Report. 2009. Accommodating high levels of variable generation. http://www.nerc.com/files/IVGTF_Report_041609.pdf (accessed May 17, 2010).

129. H. Bevrani, A. Ghosh, G. Ledwich. 2010. Renewable energy resources and frequency regulation: Survey and new perspectives. IET Renewable Power Gener., 4(5): 438–57.

130. S. Nomura, Y. Ohata, T. Hagita, et al. 2005. Wind farms linked by SMES systems. IEEE Trans. Appl. Superconductivity 15(2):1951–54.

131. G. Strbac, A. Shakoor, M. Black, et al. 2007. Impact of wind generation on the operation and development of the UK electricity systems. Elect. Power Syst. Res. 77:1214–27.

132. H. Banakar, C. Luo, B. T. Ooi. 2008. Impacts of wind power minute to minute variation on power system operation. IEEE Trans. Power Syst. 23(1):150–60.

133. G. Lalor, A. Mullane, M. O’Malley. 2005. Frequency control and wind turbine technology. IEEE Trans. Power Syst. 20(4):1905–13.

134. J. Morren, S. W. H. de Haan, W. L. Kling, et al. 2006. Wind turbine emulating inertia and supporting primary frequency control. IEEE Trans. Power Syst. 21(1):433–34.

135. C. Luo, H. Golestani Far, H. Banakar, et al. 2007. Estimation of wind penetration as limited by frequency deviation. IEEE Trans. Energy Conversion 22(2):783–91.

136. P. Rosas. 2003. Dynamic influences of wind power on the power system. PhD dissertation, Technical University of Denmark.

137. P. R. Daneshmand. 2010. Power system frequency control in the presence of wind turbines. Master’s thesis, Department of Computer and Electrical Engineering, University of Kurdistan.

138. N. R. Ullah, T. Thiringer, D. Karlsson. 2008. Temporary primary frequency control support by variable speed wind turbines: Potential and applications. IEEE Trans. Power Syst. 23(2):601–12.

139. J. L. R. Amenedo, S. Arnalte, J. C. Burgos. 2002. Automatic generation control of a wind farm with variable speed wind turbines. IEEE Trans. Energy Conversion 17(2):279–84.

140. E. Hirst. 2002. Integrating wind output with bulk power operations and wholesale electricity markets. Wind Energy 5(1):19–36.

141. R. Doherty, H. Outhred, M. O’Malley. 2006. Establishing the role that wind generation may have in future generation portfolios. IEEE Trans. Power Syst. 21:1415–22.

142. H. Holttinen. 2005. Impact of hourly wind power variation on the system operation in the Nordic countries. Wind Energy 8(2):197–218.

143. H. Bevrani, A. G. Tikdari. 2010. An ANN-based power system emergency control scheme in the presence of high wind power penetration. In Wind power systems: Applications of computational intelligence, ed. L. F. Wang, C. Singh, A. Kusiak, 215–54. Springer Book Series on Green Energy and Technology. Heidelberg: Springer-Verlag.

144. J. G. Slootweg, W. L. Kling. 2003. The impact of large scale wind power generation on power system oscillations. Elect. Power Syst. Res. 67:9–20.

145. C. Chompoo-inwai, W. Lee, P. Fuangfoo, et al. 2005. System impact study for the interconnection of wind generation and utility system. IEEE Trans. Industry Appl. 41:163–68.

146. SmartGrids. www.smartgrids.eu (accessed May 17, 2010).

147. IntelliGrid architecture. www.intelligrid.info/intelliGrid_architecture/Overview_Guidelines/index.htm (accessed May 17, 2010).

148. Gridwise Alliance. www.gridwise.org (accessed May 17, 2010).

149. A. Mehrizi-Sani, R. Iravani. 2009. Secondary control for microgrids using potential functions: Modelling issues. Paper presented at Proceedings of CIGRE Conference on Power Systems, Toronto.

150. G. Diaz, C. Gonzalez-Moran, J. Gomez-Aleixandre, A. Diez. 2010. Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids. IEEE Trans. Power Syst. 25(1):489–96.

151. M. C. Chandorkar, D. M. Divan, R. Adapa. 2007. Control of parallel connected inverters in standalone ac supply-systems. IEEE Trans. Ind. Appl. 22(4):136–43.

152. M. Adamiak, S. Bose, Y. Liu, K. Bahei-Eldin, J. deBedout. Tieline controls in microgrid applications. http://www.gedigitalenergy.com/smartgrid/May08/4_Microgrid_Applications.pdf (accessed May 17, 2010).

153. K. Fujimoto, et al. 2009. Load frequency control using storage system for a micro grid. Paper presented at Proceedings of IEEE T&D Asia Conference and Exposition, Seoul.

154. M. G. Molina, P. E. Mercado. 2009. Control of tie-line power flow of microgrid including wind generation by DSTATCOM-SMES controller. Paper presented at Proceedings of IEEE Energy Conversion Congress and Expo (ECCE) San Jose, CA.

155. T. Chaiyatham, I. Ngmroo, S. Pothiya, S. Vachirasricirikul. 2009. Design of optimal fuzzy logic-PID controller using bee colony optimization for frequency control in an isolated wind-diesel system. Paper presented at Proceedings of IEEE T&D Asia Conference and Exposition, Seoul.

156. A. Madureia, C. Moreira, J. Pecas Lopes. 2005. Secondary load-frequency control for microgrids in islanded operation. Paper presented at Proceedings of International Conference on Renewable Energy and Power Quality (ICREPQ05), Zavagoza, Spain.

157. N. J. Gil, J. A. Pecas Lopes. 2007. Hierarchical frequency control scheme for islanded multi-microgrids operation. Paper presented at Proceedings of IEEE Power Tech, Lausanne, Switzerland.

158. T. Hiyama, et al. 2004. Multi-agent based operation and control of isolated power system with dispersed power sources including new energy storage device. In Proceedings of International Conference on Renewable Energies and Power Quality (ICREPQ’04), CD-ROM.

159. X. Li, Y. J. Song, S. B. Han. 2008. Frequency control in micro-grid power system combined with electrolyzer system and fuzzy PI controller. J. Power Sources 180:468–75.

160. J. M. Manuel, et al. 2009. Frequency regulation contribution through variable-speed wind energy conversion systems. IEEE Trans. Power Syst. 24(1):173–80.

161. National Laboratory for Sustainable Energy. 2009. The intelligent energy system infrastructure for the future, ed. H. Larsen, L. S. Petersen. RisØ Energy Report, vol. 8. National Laboratory for Sustainable Energy, Roskilde, Denmark.

162. M. Tsili, S. Papathanassiou. 2009. A review of grid code technical requirements for wind farms. IET Renew. Power Gener. 3(3):308–32.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset