2

 

 

Automatic Generation Control (AGC): Fundamentals and Concepts

 

Automatic generation control (AGC) is a significant control process that operates constantly to balance the generation and load in power systems at a minimum cost. The AGC system is responsible for frequency control and power interchange, as well as economic dispatch.

This chapter presents the fundamentals of AGC, providing structure, definitions, and basic concepts. The AGC mechanism in an interconnected power system, the major functions, and characteristics are described. The role of the AGC system in connection with the power system monitoring/ control master stations, and remote site control centers to manage the electric energy, is emphasized. Power system operations and frequency control in different ranges of frequency deviation are briefly explained. A frequency response model is described, and its usefulness for the purpose of simulation and AGC dynamic analysis is examined.

 

 

2.1 AGC in a Modern Power System

AGC provides an effective mechanism for adjusting the generation to minimize frequency deviation and regulate tie-line power flows. The AGC system realizes generation changes by sending signals to the under-control generating units. The AGC performance is highly dependent on how those generating units respond to the commands.1 The generating unit response characteristics are dependent on many factors, such as type of unit, fuel, control strategy, and operating point.

The AGC, security control, supervisory control and data acquisition (SCADA), and load management are the major units in the application layer of a modern energy management system (EMS).2 The AGC process is performed in a control center remote from generating plants, while the power production is controlled by turbine-governors at the generation site. The AGC communicates with SCADA, the load management unit, and the security control center in the EMS, as shown in Figure 2.1.

The SCADA system consists of a master station to communicate with remote terminal units (RTUs) and intelligent electronic devices (IEDs) for a wide range of monitoring and control processes. In a modern SCADA system, the monitoring, processing, and control functions are distributed among various servers and computers that communicate in the control center using a real-time local area network (LAN). A simplified SCADA center is shown in Figure 2.2. Although nowadays many data processing and control functions are moved to the IEDs, the power systems still need a master station or control center to organize and coordinate various applications.

Images

FIGURE 2.1
Application layer of a modern EMS.

As shown in Figure 2.2, the human machine interface (HMI), application servers, and communication servers are the major elements of the SCADA system. The HMI consists of a multi-video-display (multi-VD) interface and a large display or map board/mimic board to display an overview of the power system. The application servers are used for a general database, a historical database, data processing, real-time control functions, EMS configuration, and system maintenance. The communication servers are used for data acquisition from RTUs/IEDs, and data exchange with other control centers.

The data communication, system monitoring, alarms detection, and control commands transmission are the common actions in a SCADA center. Moreover, the SCADA system performs load shedding and special control schemes in cooperation with the AGC system and security control unit. Various security methods and physical options can be applied to protect SCADA systems. To improve the operation security, usually a dual configuration for the operating computers/devices and networks in the form of primary and standby is used.

In a modern SCADA station, the performed control and monitoring processes are highly distributed among several servers, monitors, and communication devices. Using a distributed structure has many advantages, such as easy upgrading of hardware/software parts, reducing costs, and limiting the failures effect. The SCADA system uses open architecture for communication with other systems, and to support interfaces with various vendors’ products.3 A mix of communication technologies, such as wireless, fiber optics, and power line communications, could be a viable solution in a SCADA system.

Images

FIGURE 2.2
A simplified structure for a typical SCADA center.

In many power systems, modern communications are al ready being installed. Substations at both transmission and distribution levels are being equipped with advanced measurement and protection devices as well as new SCADA systems for supervision and control. Communica tion between control units is also being modernized, as is the communication between several subsystems of the high-level control at large power producers at the EMS level. These are often based on open protocols, notably the IEC61850 family for SCADA-level communication with substations and distributed generating units, and the IEC61968/61970 CIM family for EMS-level communication between control centers.4

In some cases, the role of the SCADA system is distributed between several area operating centers; usually one of them is the coordinator and works as the master SCADA center. A real view of an area operating center is shown in Figure 2.3.

In real-power system structures, the AGC centers closely work with the SCADA systems. In this case, a unique SCADA/AGC station effectively uses IEDs for doing remote monitoring and control actions. The IEDs as a monitoring and control interface to the power system equipment can be installed in remote (site/substation) control centers and integrated using suitable communication networks. This accomplishes a remote site control system similar to the major station in the SCADA/AGC center. A simplified architecture is presented in Figure 2.4.

Images

FIGURE 2.3
West Area Operating Center at West Regional Electric Co., Kermanshah.

A remote site control center may consist of RTU, IEDs, an HMI database server, and a synchronizing time generator. The RTU and IEDs are for communication with the SCADA station, remote access control functions, data measurement/concentration, and status monitoring. The synchronizing time generator is typically a GPS satellite clock that distributes a time signal to the IEDs.

The local access to the IEDs and the local communication can be accomplished over a LAN. Whereas the remote site control center is connected to the SCADA/AGC center, EMS and other engineering systems are through the power system wide area network (WAN). Figure 2.4 shows that the SCADA/ AGC center, in addition to the use of WAN (in cooperation with the EMS), can be directly connected to the remote site and generating plant control centers.

Images

FIGURE 2.4
A simplified architecture including remote site/generating plant controls and SCADA/AGC system.

Interested readers can find appropriate standards for SCADA systems, substation automation, remote site controls with detailed architectures, and functions of various servers, networks, and communication devices in IEEE PES.3 The AGC performs a continuous real-time operation to adjust the power system generation to track the load changes economically. Frequency control, economic dispatch, interchange transaction scheduling, reserve monitoring, and related data recording are the main functions of an AGC system, of which frequency control is the most important issue.

 

 

2.2 Power System Frequency Control

Frequency deviation is a direct result of the imbalance between the electrical load and the power supplied by the connected generators, so it provides a useful index to indicate the generation and load imbalance. A permanent off-normal frequency deviation directly affects power system operation, security, reliability, and efficiency by damaging equipment, degrading load performance, overloading transmission lines, and triggering the protection devices.

Since the frequency generated in the electric network is proportional to the rotation speed of the generator, the problem of frequency control may be directly translated into a speed control problem of the turbine generator unit. This is initially overcome by adding a governing mechanism that senses the machine speed, and adjusts the input valve to change the mechanical power output to track the load change and to restore frequency to a nominal value.

Depending on the frequency deviation range, as shown in Figure 2.5, in addition to the natural governor response known as the primary control, the supplementary control (AGC), or secondary control, and emergency control may all be required to maintain power system frequency.1 In Figure 2.5, the f0 is nominal frequency, and Δf1, Δf2, and Δf3 show frequency variation range corresponding to the different operating conditions based on the accepted frequency operating standards.

Images

FIGURE 2.5
Frequency deviations and associated operating controls.

Under normal operation, the small frequency deviations can be attenuated by the primary control. For larger frequency deviation (off-normal operation), according to the available amount of power reserve, the AGC is responsible for restoring system frequency. However, for a serious load-generation imbalance associated with rapid frequency changes following a significant fault, the AGC system may be unable to restore frequency via the supplementary frequency control loop. In this situation, the emergency control and protection schemes, such as under-frequency load shedding (UFLS), must be used to decrease the risk of cascade faults, additional generation events, load/network, and separation events.

Images

FIGURE 2.6
An example of responses of primary, supplementary, and emergency controls.

Figure 2.6 shows an example of a typical power system response to a power plant trip event, with the responses of primary, supplementary, and emergency controls. Following event 1, the primary control loops of all generating units respond within a few seconds. As soon as the balance is reestablished, the system frequency stabilizes and remains at a fixed value, but differs from the nominal frequency because of the droop of the generators, which provide a proportional type of action that will be explained later. Consequently, the tie-line power flows in a multiarea power system will differ from the scheduled values.

The supplementary control will take over the remaining frequency and power deviation after a few seconds, and can reestablish the nominal frequency and specified power cross-border exchanges by allocation of regulating power. Following event 1, the frequency does not fall too quickly, so there is time for the AGC system to use the regulation power and thus recover the load-generation balance. However, it does not happen following event 2, where the frequency is quickly dropped to a critical value. In this case, where the frequency exceeds the permissible limits, an emergency control plan such as UFLS may need to restore frequency and maintain system stability. Otherwise, due to critical underspeed, other generators may trip out, creating a cascade failure, which can cause widespread blackouts.

As mentioned above, following an imbalance between total generation and demand, the regulating units will then perform automatic frequency control actions, i.e., primary and supplementary control actions, and the balance between generation and demand will be reestablished. Using Union for the Coordination of Transmission of Electricity (UCTE) terminology,5 in addition to supplementary (secondary) control, the AGC systems can perform another level of control named tertiary control. The tertiary control concept is close to the meaning of the emergency control term in the present text. This control is used to restore the secondary control reserve, manage eventual congestions, and bring back the frequency and tie-line power to their specified values if the supplementary reserve is not sufficient. These targets may be achieved by connection and tripping of power, redistributing the output from AGC participating units, and demand side (load) control.

The typical frequency control loops are represented in Figure 2.7, in a simplified scheme. In a large multiarea power system, all three forms of frequency control (primary, supplementary, and emergency) are usually available. The demand side also participates in frequency control through the action of frequency-sensitive relays that disconnect some loads at given frequency thresholds (UFLS). The demand side may also contribute to frequency control using a self-regulating effect of frequency-sensitive loads, such as induction motors. However, this type of contribution is not always taken into account in the calculation of the overall frequency control response. The following subsections summarize the characteristics of the three frequency control levels.

2.2.1 Primary Control

Images

FIGURE 2.7
Frequency control loops.

Depending on the type of generation, the real power delivered by a generator is controlled by the mechanical power output of a prime mover such as a steam turbine, gas turbine, hydro turbine, or diesel engine. In the case of a steam or hydro turbine, mechanical power is controlled by the opening or closing of valves regulating the input of steam or water flow into the turbine. Steam (or water) input to generators must be continuously regulated to match real power demand. Without this regulation, the machine speed will vary with consequent change in frequency. For satisfactory operation of a power system, the frequency should remain nearly constant.6

Images

FIGURE 2.8
Governor-turbine with primary frequency control loop.

A schematic block diagram of a synchronous generator equipped with a primary frequency control loop is shown in Figure 2.8. The speed governor senses the change in speed (frequency) via the primary control loop. In fact, primary control performs a local automatic control that delivers reserve power in opposition to any frequency change. The necessary mechanical forces to position the main valve against the high steam (or hydro) pressure is provided by the hydraulic amplifier, and the speed changer provides a steady-state power output setting for the turbine.1

The speed governor on each generating unit provides the primary speed control function, and all generating units contribute to the overall change in generation, irrespective of the location of the load change, using their speed governing. However, as mentioned, the primary control action is not usually sufficient to restore the system frequency, especially in an interconnected power system, and the supplementary control loop is required to adjust the load reference set point through the speed changer motor.

2.2.2 Supplementary Control

In addition to primary frequency control, a large synchronous generator may be equipped with a supplementary frequency control loop. A schematic block diagram of a synchronous generator equipped with primary and supplementary frequency control loops is shown in Figure 2.9.

The supplementary loop gives feedback via the frequency deviation and adds it to the primary control loop through a dynamic controller. The resulting signal (ΔPC) is used to regulate the system frequency. In real-world power systems, the dynamic controller is usually a simple integral or proportional-integral (PI) controller. Following a change in load, the feedback mechanism provides an appropriate signal for the turbine to make generation (ΔPm) track the load and restore the system frequency.

Images

FIGURE 2.9
Frequency control mechanism.

Supplementary frequency control, which is known as load-frequency control (LFC), is a major function of AGC systems as they operate online to control system frequency and power generation. As mentioned, the AGC performance is highly dependent on how the participant generating units would respond to the control action signals. The North American Electric Reliability Council (NERC) separated generator actions into two groups. The first group is associated with large frequency deviations where generators respond through governor action and then in response to AGC signals, and the second group is associated with a continuous regulation process in response to AGC signals only. During a sudden increase in area load, the area frequency experiences a transient drop. At the transient state, there are flows of power from other areas to supply the excess load in this area. Usually, certain generating units within each area are on regulation to meet this load change. At steady state, the generation is closely matched with the load, causing tie-line power and frequency deviations to drop to zero.7

Several frequency control criteria and standards are available to find how well each control area must balance its aggregate generation and load. For instance, control performance standards 1 and 2 (CPS1 and CPS2) were introduced by NERC to achieve the optimum AGC performance.8,9 CPS1 and CPS2 are measurable and can be fixed as normal functions of EMS unit in each control area. Measurements are taken continuously, with data recorded at each minute of operation. CPS1 indicates the relationship between the area control error (ACE) and the system frequency on a 1 min basis; it is the measure of short-term error between load and generation. CPS1’s performance will be good if a control area closely matches generation with the load, or if the mismatch causes system frequency to be driven closer to the nominal frequency. CPS1’s performance will be degraded if the system frequency is driven away from the nominal frequency.

CPS2 will place boundaries on CPS1 to limit net unscheduled power flows that are unacceptably large. Actually, it sets limits on the maximum average ACE for every 10 min period. CPS2 will prevent excessive generation/load mismatches even if a mismatch is in the proper direction. Large mismatches can cause excessive power flows and potential transmission overloads between areas with overgeneration and those with insufficient generation.7

2.2.3 Emergency Control

Emergency control, such as load shedding, shall be established in emergency conditions to minimize the risk of further uncontrolled separation, loss of generation, or system shutdown. Load shedding is an emergency control action to ensure system stability, by curtailing system load. The load shedding will only be used if the frequency (or voltage) falls below a specified frequency (voltage) threshold. Typically, the load shedding protects against excessive frequency (or voltage) decline by attempting to balance real (reactive) power supply and demand in the system.

The load shedding curtails the amount of load in the power system until the available generation can supply the remaining loads. If the power system is unable to supply its active (reactive) load demands, the under-frequency (under-voltage) condition will be intense. The number of load shedding steps, the amount of load that should be shed in each step, the delay between the stages, and the location of shed load are the important objects that should be determined in a load shedding algorithm. A load shedding scheme is usually composed of several stages. Each stage is characterized by frequency/ voltage threshold, amount of load, and delay before tripping. The objective of an effective load shedding scheme is to curtail a minimum amount of load, and provide a quick, smooth, and safe transition of the system from an emergency situation to a normal equilibrium state.1

The interested load shedding type in power system frequency control is UFLS. Most common UFLS schemes, which involve shedding, predetermine the amounts of load if the frequency drops below specified frequency thresholds. There are various types of UFLS schemes discussed in the literature and applied by the electric utilities around the world. A classification divides the existing schemes into static and dynamic (or fixed and adaptive) load shedding types. Static load shedding curtails the constant block of load at each stage, while dynamic load shedding curtails a dynamic amount of load by taking into account the magnitude of disturbance and dynamic characteristics of the system at each stage. Although the dynamic load shedding schemes are more flexible and have several advantages, most real-world load shedding plans are of the static type.1

There are two basic paradigms for load shedding: a shared LS paradigm and a targeted LS paradigm. The first paradigm appears in the well-known UFLS schemes, and the second paradigm includes some recently proposed wide area LS approaches.10 Sharing load shedding responsibilities (such as induced by UFLS) are not necessarily an undesirable feature and can be justified on a number of grounds. For example, shared load shedding schemes tend to improve the security of the interconnected regions by allowing generation reserve to be shared. Further, load shedding approaches can be indirectly used to preferentially shed the least important load in the system. However, sharing load shedding can have a significant impact on interregion power flows and, in certain situations, might increase the risk of cascade failure. Although both shared and targeted load shedding schemes may be able to stabilize the overall system frequency, the shared load shedding response leads to a situation requiring more power transmission requirements. In some situations, this increased power flow might cause line overloading and increase the risk of cascade failure.1

Some useful guideline for UFLS strategies can be found in IEEE.11 The UFLS schemes typically curtail a predetermined amount of load at specific frequency thresholds. The frequency thresholds are also biased, using a disturbance magnitude to shed load at higher-frequency levels in dangerous contingencies.10,12,13 The UCTE recommends that its members initiate the first stage of automatic UFLS in response to a frequency threshold not lower than 49 Hz.5 Based on this recommendation, in case of a frequency drop of 49 Hz, the automatic UFLS begins with a minimum of 10 to 20% of the load. In case of lower frequency, the synchronously interconnected network may be divided into partial networks (islanding). The UFLS is performed at trigger frequencies to curtail the amount of the load (usually about 5 to 20%).

The emergency control schemes and protection plans are usually represented using incremented/decremented step behavior.1 For instance, according to Figure 2.7, for a fixed UFLS scheme, the function of uUFLS in the time domain could be considered a sum of the incremental step functions of ΔPju(ttj), as shown in Figure 2.10a. Here, ΔPj and tj denote the incremental amount of load shed and the time instant of the jth load shedding step, respectively. Therefore, for L load shedding steps,

uUFLS(t)=i=0LΔPju(t-tj)(2.1)

Similarly, to formulate the other emergency control schemes, such as connection and tripping of power plants, uCT (Figure 2.7), appropriate step functions can be used. Therefore, using the Laplace transformation, one can represent the emergency control effect uEC in the following abstracted form:

uEC(s)=uUFLS(s)+uCT(s)=l=0NΔPlse-tls(2.2)

where ΔPl is the size of the equivalent step load/power changes due to a generation/load event or a load shedding scheme at tl.

As an example, to show the role of load shedding in stabilizing the power system, the dynamic behavior (voltage-frequency trajectory) of a standard nine-bus IEEE test system, following a serious disturbance (tripping of the largest generator), and applying an intelligent load shedding scheme,13 is shown in Figure 2.10b. The load shedding steps are determined by several ellipses, and when the phase trajectory reaches each ellipse, the corresponding load shedding step is triggered. The trajectory is represented in the following complex plane:

S=Δf*+jΔυ*(2.3)

where

Δf*=Δff0,Δυ*=Δυυ0(2.4)

Here f0 and v0 are the frequency and voltage before contingency. The system frequency (and voltage) is reestablished following the five steps of load shedding.

Images

FIGURE 2.10
Load shedding: (a) L-step UFLS and (b) voltage-frequency trajectory following load shedding.

 

 

2.3 Frequency Response Model and AGC Characteristics

In an interconnected power system the control area concept needs to be used for the sake of synthesis and analysis of the AGC system. The control area is a coherent area consisting of a group of generators and loads, where all the generators respond to changes in load or speed changer settings, in unison. The frequency is assumed to be the same in all points of a control area. A multiarea power system comprises areas that are interconnected by high-voltage transmission lines or tie-lines. The AGC system in an interconnected power system should control the area frequency as well as the interchange power with the other control areas.

An appropriate frequency response model for a control area i in a multiarea power system is shown in Figure 2.11. In AGC practice, to clear the fast changes and probable added noises, system frequency gradient and ACE signals must be filtered before being used.1 If the ACE signal exceeds a threshold at interval TW, it will be applied to the controller block. The controller can be activated to send higher/lower pulses to the participant generation units if its input ACE signal exceeds a standard limits. Delays, ramping rate, and range limits are different for various generation units. Concerning the limit on generation, governor dead-band, and time delays, the AGC model becomes highly nonlinear; hence, it will be difficult to use the conventional linear techniques for performance optimization and control design.

2.3.1 Droop Characteristic

The ratio of speed (frequency) change (Δf) to change in output-generated power (ΔPg) is known as droop or speed regulation, and can be expressed as

R(Hzpu.MW)=ΔfΔPg(2.5)

For example, a 5% droop means that a 5% deviation in nominal frequency (from 60 to 57 Hz) causes a 100% change in output power. In Figure 2.11, the droop characteristics for the generating units (Rki) are properly shown in the primary frequency control loops.

The interconnected generating units with different droop characteristics can jointly track the load change to restore the nominal system frequency. This is illustrated in Figure 2.12, representing two units with different droop characteristics connected to a common load. Two generating units are operating at a unique nominal frequency with different output powers. The change in the network load causes the units to decrease their speed, and the governors increase the outputs until they reach a new common operating frequency. As expressed in Equation 2.6, the amount of produced power by each generating unit to compensate the network load change depends on the unit’s droop characteristic.14,15

ΔPgi=ΔfRi(2.6)

Images

FIGURE 2.11
A frequency response model for dynamic performance analysis.

Images

FIGURE 2.12
Load tracking by generators with different droops.

Hence,

ΔPg1ΔPg2=R2R1(2.7)

2.3.2 Generation-Load Model

For the purposes of AGC synthesis and analysis in the presence of load disturbances, a simple, low-order linearized model is commonly used. The overall generation-load dynamic relationship between the incremental mismatch power (ΔPm – ΔPL) and the frequency deviation (Δf) can be expressed as1,16

Pm(t)-ΔPL(t)=2HdΔf(t)dt+DΔf(t)(2.8)

where ΔPm is the mechanical power change, ΔPL is the load change, H is the inertia constant, and D is the load damping coefficient.

Using the Laplace transform, Equation 2.8 can be written as

Pm(s)-ΔPL(s)=2HsΔf(s)+DΔf(s)(2.9)

Equation 2.9 is represented in the right-hand side of the frequency response model described in Figure 2.11.

2.3.3 Area Interface

In a multiarea power system, the trend of frequency measured in each control area is an indicator of the trend of the mismatch power in the interconnection and not in the control area alone. Therefore, the power interchange should be properly considered in the LFC model. It is easy to show that in an interconnected power system with N control areas, the tie-line power change between area i and other areas can be represented as1

ΔPtie,i=j=1j1NΔPtie,ij=2πs[j=1j1NTijΔfij=1j1NTijΔfj](2.10)

where ΔPtie,i indicates the tie-line power change of area i, and T12 is the synchronizing torque coefficient between areas i and j. Equation 2.10 is also realized in the bottom-right side of the AGC block diagram in Figure 2.11. The effect of changing the tie-line power for an area is equivalent to changing the load of that area. That is why in Figure 2.11, the ΔPtie,i has been added to the mechanical power change (ΔPm) and area load change (ΔPL) using an appropriate sign.

In addition to the regulating area frequency, the LFC loop should control the net interchange power with neighboring areas at scheduled values. This is generally accomplished by feeding a linear combination of tie-line flow and frequency deviations, known as area control error (ACE), via supplementary feedback to the dynamic controller. The ACE can be calculated as follows:

ACEi=ΔPtie,i+βiΔfi(2.11)

where βi is a bias factor, and its suitable value can be computed as16

βi=1Ri+Di(2.12)

The block diagram shown in Figure 2.11 illustrates how Equation 2.11 is implemented in the supplementary frequency control loop. The effects of local load changes and interface with other areas are also considered as the following two input signals:

w1=ΔPLi,w2=j=1jiNTijΔfj(2.13)

Each control area monitors its own tie-line power flow and frequency at the area control center, and the combined signal (ACE) is allocated to the dynamic controller. Finally, the resulting control action signal is applied to the turbine-governor units, according their participation factors. In Figure 2.11, Mki(s) and αki are the governor-turbine model and AGC participation factor for generator unit k, respectively.

2.3.4 Spinning Reserve

There are different definitions for the spinning reserve term. Using UCTE terminology, it is a tertiary reserve that can be available within 15 min and is provided chiefly by storage stations, pumped-storage stations, gas turbines, and thermal power stations operating at less than full output. While based on the definition provided by NERC, it is an unloaded generation that is synchronized and ready to serve additional demand.17

The spinning reserve can be simply defined as the difference between capacity and existing generation level. It refers to spare power capacity to provide the necessary regulation power for the sum of primary and secondary control issues. Regulation power is required power to bring the system frequency back to its nominal value. The frequency-dependent reserves are automatically activated by the AGC system, when the frequency is at a lower level than the nominal value (50 or 60 Hz, depending on the system).

Always, the market operator needs to ensure that there is enough reserved capacity for potential future occurrences. The size of the AGC reserve that is required depends on the size of load variation, schedule changes, and generating units. In a deregulated environment, the reserve levels may be influenced by the market operation. If too much energy is traded, the market operator must contract more reserves to ensure that the predicted demand can be met.18 Additional reserves need to be activated to restore the used power spinning reserves in preparation for further incidents.

2.3.5 Participation Factor

The participation factor indicates the amount of participation of a generator unit in the AGC system. Following a load disturbance within the control area, the produced appropriate supplementary control signal is distributed among generator units in proportion to their participation, to make generation follow the load. In a given control area, the sum of participation factors is equal to 1:

k=1nαki=1,0αki1(2.14)

In a competitive environment, AGC participation factors are actually time-dependent variables and must be computed dynamically by an independent organization based on bid prices, availability, congestion problems, costs, and other related issues.1

2.3.6 Generation Rate Constraint

Although considering all dynamics to achieve an accurate perception of the AGC subject may be difficult and not useful, considering the main inherent requirement and the basic constraints imposed by the physical system dynamics to model/evaluate the AGC performance is important. An important physical constraint is the rate of change of power generation due to the limitation of thermal and mechanical movements, which is known as generation rate constraint (GRC).1

Rapidly varying components of system signals are almost unobservable due to various filters involved in the process, and an appropriate AGC scheme must be able to maintain sufficient levels of reserved control range and control rate. Therefore, the rate of change in the power output of generating units used for AGC must in total be sufficient for the AGC purpose. It is defined as a percentage of the rated output of the control generator per unit of time. The generation rates for generation units, depending on their technology and types, are different. Typical ramp rates for different kinds of units (as a percentage of capacity) for diesel engines, industrial GT, GT combined cycle, steam turbine plants, and nuclear plants are 40%/min, 20%/min, 5 to 10%/min, 1 to 5%/min, and 1 to 5%/min, respectively.19 In hard-coal-fired and lignite-fired power plants, this rate is 2 to 4%/min and 1 to 2%/min, respectively.5

2.3.7 Speed Governor Dead-Band

If the input signal of a speed governor is changed, it may not immediately react until the input reaches a specified value. This phenomenon is known as speed governor dead-band. All governors have a dead-band in response, which is important for AGC systems. Governor dead-band is defined as the total magnitude of a sustained speed change, within which there is no resulting change in valve position.

The maximum value of dead-band for governors of large steam turbines is specified as 0.06% (0.036 Hz).20 For a wide dead-band the AGC performance may be significantly degraded. An effect of the governor dead-band on the AGC operation is to increase the apparent steady-state frequency regulation. In Figure 2.11, the GRC and speed governor dead-band are considered by adding limiters and hysteresis patterns to the governor-turbine system models.

2.3.8 Time Delays

In new power systems, communication delays are becoming a more significant challenge in system operation and control. Although, under a traditional AGC structure, the problems associated with the communication links may ignorable, considering the problems that may arise in the communication system in use of an open communication infrastructure to support the ancillary services in a restructured environment is important. It has been shown that time delays can degrade the AGC performance seriously.21 The AGC performance declines when the time delay increases.

The time delays in the AGC systems mainly exist on the communication channels between the control center and operating stations—specifically on the measured frequency and power tie-line flow from RTUs or IEDs to the control center, and the delay on the produced rise/lower signal from the control center to individual generation units.22 Furthermore, all other probable data communication, signal processing, and filtering among an AGC system introduce delays that should be considered. These delays are schematically shown in Figure 2.11.

 

 

2.4 A Three-Control Area Power System Example

To illustrate the system frequency response in a multiarea power system based on the model described in Figure 2.11, consider three identical interconnected control areas, as shown in Figure 2.13. The simulation parameters are given in Table 2.1. Here, the Mega-Volt-Ampere (MVA) base is 1,000, and each control area uses a PI controller in its supplementary frequency control loop.

The system response following a simultaneous 0.05 pu load step (disturbance) increase at 2 s in control areas 1 and 2 is shown in Figures 2.14 to 2.17. Although the load disturbances occur in areas 1 and 2, area 3 also participates in restoring the system frequency and minimizing the tie-line power fluctuation using generating units G8 and G9.

Images

FIGURE 2.13
Three-control area power system.

Several low-order models for representing turbine-governor dynamics, Mi(s), for use in power system frequency analysis and control design are introduced in Bevrani.1 For the present example, it is assumed that all generators are nonreheat steam units; therefore, the turbine-governor dynamics can be approximated by1

TABLE 2.1
Simulation Parameters for Three-Control Area Power System

Images

Images

FIGURE 2.14
The system response in control area 1.

Images

FIGURE 2.15
The system response in control area 2.

Images

FIGURE 2.16
The system response in control area 3.

Images

FIGURE 2.17
Mechanical power changes in the generating units.

Mki(s)=1(1+Tgks).1(1+Ttks)(2.15)

where Tgk and Ttk are governor and turbine time constants, respectively. The balance between connected control areas is achieved by detecting the frequency and tie-line power deviations to generate the ACE signal, which is in turn utilized in a dynamic controller.

The frequency response model, which is described in Figure 2.11, is implemented for each control area in the MATLAB software. Figures 2.14 to 2.16 show the frequency deviation, ACE, tie-line power change, and control action signal for control areas 1 to 3, respectively. The proposed simulation shows the supplementary frequency control loops properly act to maintain system frequency and exchange powers close to the scheduled values by sending a corrective signal to the generating units in proportion to their participation in the AGC system.

The difference between the starting times in simulations is because of considering a small communication delay (about 1 s). This delay is needed for producing the ACE and the control action signals in the control center following a disturbance. Figure 2.17 shows the mechanical power fluctuation in all generating units following the simultaneous 0.05 step load disturbance in areas 1 and 2.

Figure 2.17 indicates that the mechanical power to compensate the frequency deviation and tie-line power change initially comes from all generating units to respond to the step load increase in areas 1 and 2, and results in a frequency drop sensed by the speed governors of all generators. However, after a few seconds (at steady state), the additional powers against the local load changes come only from generating units that are participating in the AGC issue.

The amount of additional generated power by each unit is proportional to the related participation factor. Figure 2.17 shows that the participation factors for generating units G5 and G7 is zero, while the maximum participation belongs to generating unit G4. These results agree with the data given in Table 2.1.

 

 

2.5 Summary

The AGC issue, with definitions provided in cooperation with SCADA and EMS, and basic concepts are addressed. The AGC mechanism in an interconnected power system is described. The important AGC characteristics and physical constraints are explained. The impacts of generation rate, dead-band, and time delays on the AGC performance are emphasized. Finally, a suitable dynamic frequency response model is introduced, and in order to understand the dynamic behavior of AGC in a multiarea power system, some simulations are performed.

 

 

References

1. H. Bevrani. 2009. Robust power system frequency control. New York: Springer.

2. N. K. Stanton, J. C. Giri, A. Bose. 2007. Energy management. In Power system stability and control, ed. L. L. Grigsby. Boca Raton, FL: CRC Press.

3. IEEE PES. 2008. Standard for SCADA and automation systems. IEEE Standard C37.1.

4. H. Bindner, O. Gehrke. 2009. System control and communication. In RisØ enery report: The intelligent energy system infrastructure for the future, ed. H. Larsen, L.S. Petersen, 39–42. Vol. 8. National Laboratory for Sustainable Energy, Roskilde, Denmark.

5. UCTE operation handbook. 2009. http://www.ucte.org.

6. T. K. Nagsarkar, M. S. Sukhija. 2007. Power system analysis. New Delhi, IN: Oxford University Press.

7. M. Shahidehpour, H. Yamin, Z. Li. 2002. Market operations in electric power systems: Forecasting, scheduling, and risk management. New York: John Wiley & Sons.

8. NERC. 2002. NERC operating manual. Princeton, NJ.

9. N. Jaleeli, L. S. Vanslyck. 1999. NERC’s new control performance standards. IEEE Trans. Power Syst. 14(3):1092–99.

10. J. J. Ford, H. Bevrani, G. Ledwich. 2009. Adaptive load shedding and regional protection. Int. J. Electrical Power Energy Syst. 31:611–18.

11. IEEE. 2007. Guide for the application of protective relays used for abnormal frequency load shedding and restoration, c1–43. IEEE Standard C37.117.

12. H. Bevrani, G. Ledwich, Z. Y. Dong, J. J. Ford. 2009. Regional frequency response analysis under normal and emergency conditions. Electric Power Syst. Res. 79:837–45.

13. H. Bevrani, A. G. Tikdari. 2010. An ANN-based power system emergency control scheme in the presence of high wind power penetration. In Wind power systems: Applications of computational intelligence, ed. L. F. Wang, C. Singh, A. Kusiak, 215–54. Heidelberg: Springer-Verlag.

14. A. J. Wood, B. F. Wollenberg. 1996. Power generation, operation and control. 2nd ed. New York: John Wiley & Sons.

15. D. Das. 2006. Electric power systems. New Delhi, IN: New Age International Ltd.

16. P. Kundur. 1994. Power system stability and control. New York: McGraw-Hill.

17. Y. Rebours. 2008. A comprehensive assessment of markets for frequency and voltage control ancillary services. PhD dissertation, University of Manchester.

18. G. A. Chown, B. Wigdorowitz. 2004. A methodology for the redesign of frequency control for AC networks. IEEE Trans. Power Syst. 19(3):1546–54.

19. Power Systems Engineering Research Center (PSERC). 2009. Impact of increased DFIG wind penetration on power systems and markets. Final project report.

20. IEEE. 1992. Recommended practice for functional and performance characteristics of control systems for steam turbine-generator units. IEEE Standard 122-1991.

21. H. Bevrani, T. Hiyama. 2009. On robust load-frequency regulation with time delays: Design and real-time implementation. IEEE Trans. Energy Conversion 24(1):292–300.

22. H. Bevrani, T. Hiyama. 2007. Robust load-frequency regulation: A real-time laboratory experiment. Optimal Control Appl. Methods 28(6):419–33.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset