Index

  • Acceleration, 20
  • Activity coefficients, 98, 190, 191, 193, 197
  • Adsorption, 107–112
  • Age of universe, 31
  • Amp.hour, 31
  • Anode, 72
  • Area capacity, 31
  • Baryon-7, 32
  • Batteries, 4–6, 290
    • for bulk storage, 86–87
    • history of, 307–309
    • inherent failure mechanisms of, 73
    • initial survey, 311–312
    • for portable or electric vehicle use, 87
    • problems with, 72–74
    • research path, long-life high ED battery, 312–322
  • Big Bang nucleosynthesis, 1, 32
  • Biofuels, 7
  • Biological energy storage, 6, 7
  • Biomass, 10
  • Bipolar electrodes, cell arrays, 231
  • Bond energies, 35
  • British thermal unit (Btu), 2
  • Capacitance, 29, 274
  • Carbon conductor electrode pore, 185
  • Carbon-polymer composite electrodes, 233–237
    • cell spacing, 236–237
    • metal to carbon resistance, 235–236
    • particle shapes and sizes, 235
  • Cathodes, 72
  • Cell design considerations
    • carbon-polymer composite electrodes, 233–237
    • diffusion and reaction rates, 227
    • electrodes, 228–229
    • electrolytes and membranes, 239–240
    • energy and power density, 240–244
    • imbalance considerations, 244
    • overcharging effects, 244
    • physical spacing in, 229–232
    • test cells, resistance measurements, 237–239
  • Cell dynamics, 186–198
    • electrode processes analyses, 186
    • polymeric number change, 186–198
  • Cell imbalance, 86
  • Cell potential, 303
  • Cell resistance vs. electrode separation, 238
  • Ceramic or glassy electrolytes, 272
  • Charge retention, 132
  • “Charging” process, 119
  • Chemical energy, 1, 31–38
    • breaking and forming, chemical bonds, 35–36
    • chemical vs. electrochemical reactions, 36–37
    • hydrogen, 37–38
    • nucleosynthesis and elements origin, 31–35
    • storage, 6, 7
  • Classical mechanics, 15–28
  • Classical molecular theory, 89
  • Closed system gas compression, 93
  • Coefficient of thermal expansion (CTE), 259
  • Colligative properties
    • electrochemical application of, 91–101
    • of matter, 89–90
  • Common Ion Redox cell (CIR), 91, 166–173
  • Common Ion Redox (CIR) process, 96–101
  • Competing storage methods, 71–88
  • Concentration cells, 89–161, 302–305
    • adsorbed state, reagents storage, 137–140
    • adsorption and diffusion rate balance, 107–109
    • adsorption and solids precipitation, 109–112
    • aspects of, 113–116
    • bulk electrolyte, storage, 134–136
    • calculated performance data, 150–153
    • Common Ion Redox (CIR), 96–101
    • concentration cell mechanism and mathematics, 149–150
    • electrical behavior, observations, 141–143
    • electrode surface potentials, 119–120
    • electrolyte information, 146–149
    • empirical data, 160–161
    • energy density, 140–141
    • energy storage cells mechanisms, 127–132
    • Fe+2/Fe+3, example, 155–156
    • fundamental issues, 101–107
    • future performance and limitations, 304–305
    • general cell attributes, 146
    • Nernst potentials, performance calculations, 156–160
    • performance characteristics, 145
    • pros and cons of, 303–304
    • species balance, 118–119
    • S/S–2 cell balance analysis method, 153–155
    • storage mechanisms, sulfur, 116–118
    • sulfide based cells, operational models, 132–134
    • sulfide/sulfur half cell balance, 145
    • thermodynamics of, 163–173
    • van der Waals equation and, 325–326
  • Concentration gradient, 122, 252
  • Concentration ratios examination, 120–122
  • Constant current discharge, 142
  • Contact resistance, 239
  • Conventional batteries, 227
  • Conventional cell, 304
  • Conventional energy storage devices, 290
  • Conversion processes, 48–54
    • multiple P-N cell structure with heat, 50
    • photovoltaic conversion process, 49
    • Seebeck and Peltier effects, 49–50
    • thermionic converter, 51
    • thermoelectric effects, 49–50
    • thermoelectric generators examples, 50
    • thermogalvanic conversion, 51–54
  • Cooperative motion, 261
  • Coulombic efficiency, 221, 225, 331
  • Coulombic losses, 330
  • Current density, 214–218
  • Daniel cell, 103
  • Dark energy, 34, 35
  • Dark matter, 34
  • Deuterium, 32
  • Differential energy, 29, 30
  • Differential equations, 207–219
  • Diffusion balances, 176
  • Diffusion coefficients, 112
  • Diffusion rate, 107–109
  • Diffusion tests, 323–325
  • Dimension theory, 20
  • Double-layer capacitor, 272
  • Double-layer supercapacitors, 290
  • Earth’s surface, 11
  • Einstein’s Relativity Theory, 16
  • Einstein-Stokes relation, 254
  • Elastic potential energy, 27–28
  • Electrical capacitors, 63
  • Electrical conductivity, 112
  • Electrical double-layer capacitor (EDLC), 272
  • Electrical energy, 28–31
  • Electrical energy storage, 6
  • Electric car, 309–311
  • Electric (ionic) current density, 183–184
  • Electroadsorption, 111
  • Electrochemical application, colligative properties
    • compressed gas, 93–94
    • electrostatic capacitor, 95–96
    • osmosis, 94–95
  • Electrochemical cells, 77, 289
    • new chemistry for, 300–301
  • Electrochemical energy, 1
  • Electrochemical energy storage, 6
  • Electrochemical secondary batteries, 71
  • Electrochemical supercapacitors (ESs), 274
  • Electrode behavior analysis, 198–206
  • Electrode electronic resistance, 176
  • Electrode “porosity,” 179
  • Electrode processes, 167
  • Electrode surface potentials, 119–120
  • Electrode surface structure, 225
  • Electrolyte interconnectivity losses, 326–329
  • Electrolyte ionic resistance, 176
  • Electrolytes, separators, and membranes (ESMs), 245–282
    • electrolyte classifications, 246–247
    • fillers and additives, 282
    • fuel cells, 276, 279–282
    • ion conduction theory, 251–262
    • ionic conductivity, 247–251
    • lithium ion batteries, 264–272
    • supercapacitors, 272–276
    • transference number, 263–264
  • Electrosorption, 119
  • Encapsulated laboratory cells, 286
  • Energy, 15–19
    • definition, 22
  • Energy bank deposit, 6
  • Energy challenges, 1
  • Energy consumption, 2–3, 296, 297
  • Energy conversion efficiency, 75
  • Energy density, 9, 74, 76, 304, 305
    • data, 75–77
  • Energy efficiency, 330–333
  • Energy fundamentals, 15–42
    • chemical energy, 31–38
    • classical mechanics, 15–28
    • electrical energy, 28–31
    • mechanical energy, 15–28
    • thermal energy, 39–42
  • Energy loss mechanisms, 331
  • Energy portability, 4–5
  • Energy problem, 1–5
    • energy portability, 4–5
    • greenhouse effect, 3–4
    • population and energy consumption, 2–3
  • Energy recovery methods, 297
  • Energy services, 295
  • Energy sources, 10–12
  • Energy storage devices, recycling, 298–299
  • Enhanced concentration cell operation, 78
  • Enthalpy of reaction, 36
  • Equation of state, 163
  • Equivalent series resistance (ESR), 276
  • Eutectics, 42
  • Fick’s first law, 185, 252
  • Fick’s second law, 252
  • “Fish bone” diagram, 262
  • Fixed electrolyte redox cell, 55
  • Fixed load discharge, 142
  • Flash light, 68
  • Flat surface electrode, 190
  • Flexible energy storage devices, 290, 292
  • Flexible thin film energy storage device, 290
  • Flywheel, 25, 26
  • Foldable energy storage devices, 290
  • Forces, 21, 24
    • unit of, 24
  • Fossil fuels, 10, 43, 64
  • Free energy, 166
  • Free volume (FV) model, 259, 260
  • Frenkel defect, 261
  • Fuel cells, 6, 276, 279–282
  • Fugacity, 165
  • Full flow electrolyte redox battery system, 56
  • Full redox couples, 83–85
  • Fused salt electrolytes, 77
  • Gel polymer electrolytes (GPEs), 271
  • Geothermal energy, 10
  • Gibbs free energy, 36
  • Gibbs function, 163, 165
  • Gibbs-Helmholtz equation, 53
  • Glass transition temperature, 259
  • Graphite particles, 233
  • Gravitational field, 23
  • Gravitational potential energy, 26
  • Greenhouse Effect, 3–4
  • Guoy-Chapman point charge model, 274
  • Half-cell potentials, 190, 211, 224
  • Half-cell representation, 108
  • Heat energy, 22
  • Helium-3, 32
  • Helium-4, 32, 33
  • Helmholtz layer, 100, 104
  • Helmholtz model, 274
  • Homogeneous membranes properties, 323–325
  • Hydrocarbon fuel, 75–77
  • Hydro-electric generation, 68
  • Hydrogen fuel, 302
  • Hydrogen/oxygen fuel cells, 64
  • Hydrogen reference electrode cell, 105
  • Hydropower, 10
  • Inertia, 22
  • Inorganic PHMs, 42
  • Ion conduction theory, 251–262
    • in ceramic electrolytes, 260–262
    • in liquid electrolytes, 252–256
    • in polymer electrolytes, 256–260
  • Ionic conductivity, 247–251
    • factors affecting, 262–263
    • measurement techniques, 247–249
    • Nyquist plot circuit fitting, 249–251
  • Ionic species, 225
  • Iron concentration cell, 106
  • Iron/ferric couple, 88
  • Iron/iron concentration cell properties, 126–127
  • Iron redox cell, energy level diagram, 80
  • Land vehicle propulsion requirements, 69–70
  • Large-scale energy storage, 44
  • Latent heat storage, 40
  • Latimer’s “Oxidation Potentials,” 172
  • Laws of motion, 21
  • Lead-acid battery, 87, 229
  • LeClanche (dry) cell, 78
  • Length, 20
  • Light elements, 32
  • Linear concentration gradient, 255
  • Liquid electrolytes, 247
    • aqueous electrolytes, 268–270
    • non-aqueous electrolytes, 264–268
  • Lithium-7, 32, 33
  • Lithium ion batteries (LIBs), 264–272, 291
    • liquid electrolytes, 264–270
    • metal recovery process for, 299
    • recycling of, 298, 299
    • solid and quasi-solid electrolytes, 270–272
  • Lithium lanthanum titanate (LLTO), 262
  • Lithium thionyl chloride cell, 72
  • Machine learning, 300
  • Magnetic field, 18
  • Mass, 20
  • Maxwell-Stefan equation, 256
  • Mechanical energy, 15–28
  • Mechanical energy storage, 6, 7
  • Mechanical force, 21
  • Mechanically flexible energy storage devices, 290
  • Metal-halogen and half-redox couples, 78–83
  • Multiple themoelectric junctions, 51
  • Nafion membrane, 279, 281, 282
  • Nernst-Einstein equation, 254, 259
  • Nernst equation, 97, 105, 114, 131, 167, 224
  • Nernst-Plank equation, 255
  • Nernst potentials, performance calculations, 156–160
    • constant current discharge, 157–158
    • constant power discharge, 158–160
  • Non-electrochemical energy storage, 301–302
  • Nuclear energy, 10
    • sources, 5
  • Nuclear reactor systems, 10
  • Observable quantity, 17
  • On-the-road vehicles, 69–70
  • Open-air osmosis compression system, 94
  • Open top disassemblable test cell, 286
  • Organic PHMs, 42
  • Peltier effects, 49–50
  • Phase change materials, 42
  • Physical spacing, cell design, 229–232
    • electrode structures, 229–232
  • Physical storage, hydrogen, 37–38
  • Point defects, 260, 261
  • Polymer electrolytes, 270–272
  • Polysulfide, diffusion analysis, 175–225
    • cell and negative electrode performance analysis, 219–225
    • cell dynamics, 186–198
    • differential equations, solving, 207–219
    • diffusion and supply, reagents, 184–186
    • diffusion and transport processes, electrode surface, 177–179
    • electric (ionic) current density, 183–184
    • electrode behavior analysis, 198–206
    • electrode surface properties, holes, and pores, 179–183
    • flat electrode with storage properties, 198–206
    • polarization voltages, 176–177
    • reagent concentrations values, 206–207
    • thermodynamics, 176–177
  • Porous surface electrode, 190
  • Power densities, 9, 87
  • Power source, 309–311
  • Primary energy sources, 10, 46
  • Proton exchange membrane fuel cell (PEMFC), 279, 302
  • Purposes, energy storage, 5–6
  • Ragone plot, 8, 9, 82, 83
  • Rate of adsorption, 122
  • Redox batteries, 5
  • Redox cell reactants, 84
  • Redox systems, 13
  • Rejected energy, 295, 297
  • Rocket propulsion energy, 70
  • Room temperature ionic liquids (RTILs), 266–267
  • Rotational kinetic energy, 26
  • Schottky defect, 261
  • Schwarz transformation, 180
  • Secondary cell reactions, 71
  • Secondary energy systems, need, 62–64
    • comparisons and background information, 63–64
  • Secondary sources of energy, 46
  • Seebeck effects, 49–50
  • Self-charging energy storage devices, 294–295
  • Sensible heat storage, 40
  • Silver iodide, 54
  • Simple electrochemical cell, 98
  • Single cell empirical data, 283–288
    • design and construction, cells and materials, 283–287
    • experimental data, 287–288
  • Sizing power requirements, familiar activities, 64–69
    • Archer’s bow and arrow, mechanical storage, 67–69
    • arm throwing, 66
    • human manual power, mechanically unaided, 66–69
    • vehicle propulsion, human powered leg muscles, 66–67
  • Sloping voltages, 303
  • Small laboratory cells, 122–126
  • Solar cells, 4
  • Solar energy, 10
    • availability, 46–48
  • Solid and quasi-solid electrolytes, 270–272
    • ceramic or glassy electrolytes, 272
    • polymer electrolytes, 270–272
  • Solid electrolyte interphase (SEI), 265, 282
  • Solid electrolytes, 247
  • Solid polymer electrolytes (SPEs), 270
  • Solids precipitation, 109–112
  • Species balance, 118–119
  • Specific capacity, 31
  • Specific gravity, 333
    • of FeCl3 solutions, 334
    • sodium monosulfide solution, 334
  • Specific resistivity, NaOH solutions, 333
  • Spring constant, 68
  • Standard reference electrode potentials, 102
  • State-of-charge, SOC, 222
  • Stern model, 274
  • Storage, need, 59–62
  • Storage methods, competing, 71–88
  • Storage processes
    • full flow and static electrolyte system comparisons, 55–58
    • redox full-flow electrolyte systems, 54–55
  • Strain energy density, 28
  • Stretchable energy storage devices, 290, 293
  • “Structural energy storage” devices, 292
  • Sulfur/bromine couple, 88
  • Supercapacitors, 4, 7, 272–276, 290
  • Superconductive magnetic energy storage system (SMES), 302
  • Supernova, 32
  • Test cells, resistance measurements, 237–239
  • Thermal energy, 39–42
    • phase change materials, 42
    • storage types, 40–42
    • temperature, 39–40
  • Thermal energy storage, 6, 7
  • Thermochemical energy storage, 40
  • Time, 20
  • Total energy efficiency, 332
  • Transference number, 263–264
  • Tritium, 32
  • Vanadium redox cell, 58, 170
  • Van der Waals equation, 325–326
  • Vis viva concept, 16
  • Vogel–Tammann–Fulcher (VTF) model, 260
  • Volt, 31
  • Voltage efficiency factor, 331
  • Voltage losses, 330
  • Voltages vs. amp-hour, 100
  • Volt-amp data, 144
  • Warburg diffusion impedance, 249
  • Wasted energy, recovering, 295–298
  • Water, 11
  • Watt.Hour, 31
  • Wilkinson Microwave Anisotropy Probe (WMAP), 35
  • Williams-Landel-Ferry (WLF) equation, 259
  • Wind and tidal energy, 10
  • Work, 19
  • Zinc/bromine couple, 88
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset