Bibliography

  1. Adams, R.N., Electrochemistry at Solid Surfaces, Marcel Dekker, Inc, New York, 1969.
  2. Adamson, A.W., Physical Chemistry of Surfaces, John Wiley & Sons, New York, 1982.
  3. Aderyani, S., Flouda, P., Lutkenhaus, J., Ardebili, H., The Effect of Nanoscale Architecture on Ionic Diffusion in rGO/Aramid Nanofiber Structural Electrodes. J. Appl. Phys., 125, 185106, 2019.
  4. Appleby, A.J., Fuel cell electrolytes: Evolution, properties and future prospects. J. Power Sources, 49.1-3, 15–34, 1994.
  5. Ardebili, H. and Pecht, M., Encapsulation Technologies for Electronic Applications, Elsevier, New York, 2009.
  6. Barsukov, V. and Beck, F. (Eds.), New Promising Electrochemical Systems for Rechargeable Batteries, Kluwer Academic Publishers, Boston, 1996.
  7. Berg, S., Akturk, A., Kammoun, M., Ardebili, H., Flexible batteries under extreme bending: Interfacial contact pressure and conductance. Extreme Mech. Lett., 13, 108–115, 2017.
  8. Berg, S., Kelly, T., Porat, I., Moradi-Ghadi, B., Ardebili., H., Mechanical deformation effects on ion conduction in stretchable polymer electrolytes. Appl. Phys. Lett., 113, 8, 083903, 2018.
  9. Brey, W.S., Jr., Principles of Physical Chemistry, Appleton-Century-Crofts, Inc, New York, 1958.
  10. Cansiz, A., Faydaci, C., Qureshi, M.T., Usta, O., McGuiness, D.T., Integration of a SMES–battery-based hybrid energy storage system into microgrids. J. Supercond. Novel Magn., 31, 5, 1449–1457, 2018.
  11. Champion and Davy, Properties of Matter, Blackie and Son, 210–221, Glasgow, 1959.
  12. Cheng, X.B., Zhang, R., Zhao, C.Z., Zhang, Q., Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev., 117, 15, 10403–10473, 2017.
  13. Conway, B.E., Electrochemical Data, Amsterdam, Elsevier Publishing Co., London, 1952.
  14. Daniels and Alberty, Physical Chemistry, John Wiley & Sons, New York, 1959.
  15. Dewulf, J., Van der Vorst, G., Denturck, K., Van Langenhove, H., Ghyoot, W., Tytgat, J., Vandeputte, K., Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings. Resour. Conserv. Recycl., 54, 4, 229–234, 2010.
  16. Dole, M., Experimental and Theoretical Electrochemistry, McGraw-Hill Book Co., New York, 1935.
  17. Doughty, D.H. (Ed.), Materials for Electrochemical Energy Storage and Conversion: Batteries, Capacitors, and Fuel Cells, San Francisco, Materials Research Society, symposium held April 1995.
  18. Drake, J.A.G. (Ed.), Electrochemistry and Clean Energy, Royal Society of Chemistry, Cambridge, 1994.
  19. Faraji, F., Majazi, A., Al-Haddad, K., A comprehensive review of flywheel energy storage system technology. Renewable Sustainable Energy Rev., 67, 477–490, 2017.
  20. Frank, H.A. and Seo, E.T. (Eds.), The Twelfth Annual Battery Conference on Applications and Advances, proceedings of the conference at California State University, Long Beach, Institute of Electrical and Electronics Engineers, 1997.
  21. Fujimura, K., Seko, A., Koyama, Y., Kuwabara, A., Kishida, I., Shitara, K., Fisher, C.A., Moriwake, H., Tanaka, I., Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms. Adv. Energy Mater., 3, 8, 980–985, 2013.
  22. Gabriel-Buenaventura, A. and Azzopardi, B., Energy recovery systems for retrofitting in internal combustion engine vehicles: A review of techniques. Renewable Sustainable Energy Rev., 41, 955–964, 2015.
  23. Gardiner, W.C., Jr., Rates and Mechanisms of Chemical Reactions, W.A. Benjamin, Inc., Menlo Park, 1969.
  24. Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H., Rutz, M., Development of a recycling process for Li-ion batteries. J. Power Sources, 207, 173–182, 2012.
  25. Gileadi, Electrosorption, Plenum Press, New York, 1967.
  26. Giner, J., Swette, L., Cahill, K., Screening of Redox Couples and Electrode Materials, NASA-Lewis Research Center, Waltham, Massachusetts, Sept. 1976,
  27. Hauch, A., Georg, A., Krašovec, U.O., Orel, B., Photovoltaically self-charging battery. J. Electrochem. Soc., 149, 9, A1208–A1211, 2002.
  28. Heise, G.W. and Corey Cahoon, N., The Primary Battery, vol. 1, John Wiley & Sons, New York, 1971.
  29. Huang, B., Pan, Z., Su, X., An, L., Recycling of lithium-ion batteries: Recent advances and perspectives. J. Power Sources, 399, 274–286, 2018.
  30. Huang, X., Jia, L., Fan, J.A., Su, Y., Su, J., Zhang, H., Cheng, H., Lu, B., Yu, C., Chuang, C., Kim, T., Song, T., Shigeta, K., Kang, S., Dagdeviren, C., Petrov, I., Braun, P.V., Huang, Y., Pai, U., Rogers, R.A., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun., 4, 1543, 2013.
  31. Huggins, R.A., Advanced Batteries: Materials Science Aspects by R.A. Huggins, Springer, 2008.
  32. Ioffe, A. F., Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch Limited, London, 1957.
  33. Jammer, M., Concepts of Force, Dover Publications, Mineola, New York, 1999.
  34. Jammer, M., Concepts of Mass, Dover Publications, Mineola, New York, 1997.
  35. Johnson, J., The origin of the elements in the solar system, Science Blog from the Sloan Digital Sky Survey (SDSS), Jan. 9, 2017.
  36. Kammoun, M., Berg, S., Ardebili, H., Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale, 7, 17516–17522, 2015.
  37. Kammoun, M., Berg, S., Ardebili, H., Stretchable spiral thin-film battery capable of out-of-plane deformation. J. Power Sources, 332, 406–412, 2016.
  38. Kammoun, M., Lundquist, L., Ardebili, H., High proton conductivity membrane with coconut shell activated carbon. Ionics, 21, 1665–1674, 2015.
  39. Kelly, T., Moradi Ghadi, B., Berg, S., Ardebili, H., In situ study of strain-dependent ion conductivity of stretchable polyethylene oxide electrolyte. Sci. Rep., 6, 20128, 2016.
  40. Kim, D.J., Jo, M.J., Nam, S.Y., A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J. Ind. Eng. Chem., 21, 36–52, 2015.
  41. Klotz, Chemical Thermodynamics, Prentice-Hall, Inc., Englewood Cliffs, 1960.
  42. Knauth, P., Inorganic solid Li ion conductors: An overview. Solid State Ionics, 180, 14–16, 911–916, 2009.
  43. Koo, M., Park, K.I., Lee, S.H., Suh, M., Jeon, D.Y., Choi, J.W., Kang, K., Lee, K.J., Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Letters, 12, 9, 4810–4816, 2012.
  44. Koryta, Dvorak Bohackova, Electrochemistry, Methuen & Co. Ltd., London, 1970.
  45. Kwon, Y.H., Woo, S.W., Jung, H.R., Yu, H.K., Kim, K., Oh, B.H., Ahn, S., Lee, S.Y., Song, S.W., Cho, J., Shin, H.C., Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater., 24, 38, 5192–5197, 2012.
  46. Landgrebe, A.R. and Takehara, Z., Proceedings of the Symposium on Batteries and Fuel Cells for Stationary and Electric & Vehicle Applications, Electrochemical Society, 1993.
  47. Latimer, Oxidation Potentials, Prentice-Hall, New Jersey, 1959.
  48. Lee, J. Zito, R. and D’Agostino, V., Ion Exchange Membranes as the Separator for Iron-Redox Battery. Proceedings at the Symposium on Ion Exchange, Transport and Interfacial Properties, The Electrochemical Society, Inc., vol. 81-2, 1980.
  49. Lewandowski, A. and Świderska-Mocek, A., Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. J. Power Sources, 194.2, 601–609, 2009.
  50. Li, Q. and Ardebili, H., Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte. J. Power Sources, 303, 17–21, 2016.
  51. Li, Q., Wood, E., Ardebili, H., Elucidating the mechanisms of ion conductivity enhancement in polymer nanocomposite electrolytes for lithium ion batteries. Appl. Phys. Lett., 102, 243903, 2013.
  52. Li, W., Dahn, J.R., Wainwright, D.S., Rechargeable lithium batteries with aqueous electrolytes. Science, 264.5162, 1115–1118, 1994.
  53. Linden, D, Handbook of Batteries, McGraw-Hill Book & Co., New York, 1995.
  54. Lindsay, R.B. and Margenau, H., Foundations of Physics, John Wiley & Sons, New York, 1936.
  55. Liu, X.H. and Huang, J.Y., In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ. Sci., 4, 10, 3844–3860, 2011.
  56. Luo, J.Y., Cui, W.J., He, P., Xia, Y.Y., Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem., 2, 9, 760–765, 2010.
  57. MacInnes, D.A., The Principles of Electrochemistry, Reinhold Publishing Corporation, New York, 1939.
  58. Mattson, J.S. and Mark, H.B., Jr., Activated Carbon, Surface Chemistry and Adsorption from Solution, Marcel Dekker, Inc, New York, 1971.
  59. Mayyas, A., Steward, D., Mann, M., The case for recycling: Overview and challenges in the material supply chain for automotive li-ion batteries. Sustainable Mater. Technol., 19, e00087, 2019.
  60. Millard, Physical Chemistry for Colleges, McGraw-Hill Book Co., New York, 1946.
  61. Miyazaki, Y., Mizuno, K., Yamashita, T., Ogata, M., Hasegawa, H., Nagashima, K., Mukoyama, S., Matsuoka, T., Nakao, K., Horiuch, S., Maeda, T., Development of superconducting magnetic bearing for flywheel energy storage system. Cryogenics, 80, 234–237, 2016.
  62. Moelwyn-Hughes, Physical Chemistry, Pergamon Press, New York, 1957.
  63. Mukoyama, S., Nakao, K., Sakamoto, H., Matsuoka, T., Nagashima, K., Ogata, M., Yamashita, T., Miyazaki, Y., Miyazaki, K., Maeda, T., Shimizu, H., Development of superconducting magnetic bearing for 300 kW flywheel energy storage system. IEEE Trans. Appl. Supercond. 27, 4, 1–4, 2017.
  64. Nazri, G.A. and Pistoia, G. (Eds.), Lithium batteries: Science and technology, Springer Science & Business Media, New York, 2008.
  65. Nyman, A., Zavalis, T.G., Elger, R., Behm, M., Lindbergh, G., Analysis of the polarization in a Li-ion battery cell by numerical simulations. J. Electrochem. Soc., 157, 11, A1236–A1246, 2010.
  66. O’Hayre, R., Suk-Won, C., Prinz, F.B., Colella, W., Fuel cell fundamentals, John Wiley & Sons Inc., Hoboken, New Jersey, 2016.
  67. Orr, B., Akbarzadeh, A., Mochizuki, M., Singh, R., A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Appl. Therm. Eng., 101, 490–495, 2016.
  68. Park, M., Zhang, X., Chung, M., Less, G.B., Sastry, A.M., A review of conduction phenomena in Li-ion batteries. J. Power Sources, 195, 24, 7904–7929, 2010.
  69. Pu, X., Li, L., Song, H., Du, C., Zhao, Z., Jiang, C., Cao, G., Hu, W., Wang, Z.L., A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater., 27, 15, 2472–2478, 2015.
  70. Qu, H., Semenikhin, O., Skorobogatiy, M., Flexible fiber batteries for applications in smart textiles. Smart Mater. Struct., 24, 2, 025012, 2014.
  71. Ramadoss, A., Saravanakumar, B., Lee, S.W., Kim, Y.S., Kim, S.J., Wang, Z.L., Piezoelectric-driven self-charging supercapacitor power cell. Acs Nano, 9, 4, 4337–4345, 2015.
  72. Rossi, F., Castellani, B., Nicolini, A., Benefits and challenges of mechanical spring systems for energy storage applications. Energy Procedia, 82, 805–810, 2015.
  73. Schiffer, M.B., Taking Charge, The Electric Automobile in America, Smithsonian Institution Press, Washington & London, 1991.
  74. Sears, F.W., Mechanics Heat and Sound, Addison-Wesley Press, Inc, Glasgow, 1944.
  75. Sendek, A.D., Cubuk, E.D., Antoniuk, E.R., Cheon, G., Cui, Y., Reed, E.J., Machine learning-assisted discovery of solid Li-ion conducting materials. Chem. Mater., 31, 2, 342–352, 2018.
  76. Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D., Review on thermal energy storage with phase change materials and applications. Renewable Sustainable Energy Rev., 13, 318–345, 2009.
  77. Shepard, M.L., Chaddock, J.B., Cocks, F.H., Harman, C.M., Introduction to Energy Technology, Ann Arbor Science, Ann Arbor, 1977.
  78. Slater, J.C., Introduction to Chemical Physics, McGraw-Hill Book Co., New York, 1939.
  79. Slater, J.C. and Frank, N.H., Introduction to Theoretical Physics, McGraw-Hill Book Co., New York, 1933.
  80. Smythe, W.D., Static and Dynamic Electricity, McGraw-Hill Book Co., New York, 1950.
  81. Song, Z., Wang, X., Lv, C., An, Y., Liang, M., Ma, T., He, D., Zheng, Y.J., Huang, S.Q., Yu, H., Jiang, H., Kirigami-based stretchable lithium-ion batteries. Sci. Rep., 5, 10988, 2015.
  82. Srinivasan, S., Macdonald, D.D., Khandkar, A.C., Proceedings of the Symposium on Electrode Materials and Processes for Energy Storage and Conversion, Electrochemical Society, Pennington, NJ, 1994.
  83. Tang, C., Hackenberg, K., Fu, Q., Ajayan, P.M., Ardebili, H., High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett., 12, 1152–1156, 2012.
  84. Vinal, G.W., Storage Batteries, John Wiley & Sons, New York, 1955.
  85. Walker, W. and Ardebili, H., Thermo-electrochemical analysis of lithium ion batteries for space applications using Thermal Desktop. Journal of Power Sources, 269, pp.486–497, 2014.
  86. Walker, W., Yayathi, S., Alvarez-Hernandez, A., Shaw, J., Ardebili, H., Thermo-electrochemical testing and simulation of lithium-ion batteries operating in radiation driven space environments. J. Power Sources, 298, 217–227, 2015.
  87. Walker, W., Yayathi, S., Shaw, J., Ardebili, H., Thermo-electrochemical evaluation of lithium-ion batteries for space applications. J. Power Sources, 298, 217–227, 2015.
  88. Walsh, F., Electrochemical Engineering, The Electrochemical Consultancy, Portsmouth, 1993.
  89. Wang, A., et al., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Comput. Mater., 4.1, 15, 2018.
  90. Wang, C.M., Li, X., Wang, Z., Xu, W., Liu, J., Gao, F., Kovarik, L., Zhang, J.G., Howe, J., Burton, D.J., Liu, Z., In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett., 12, 3, 1624–1632, 2012.
  91. Weber, W.J., Jr., Advances In Chemistry Series, American Chemical Society, Washington, D.C, 1968.
  92. Wilkinson Microwave Anisotropy Probe, Content of the Universe-Pie Chart, National Aeronautics and Space Administration, 2018, Retrieved January 9.
  93. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev., 104.10, 4303–4418, 2004.
  94. Xu, S., Zhang, Y., Cho, J., Lee, J., Huang, X., Jia, L., Fan, J.A., Su, Y., Su, J., Zhang, H., Cheng, H., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun., 4, 1543, 2013.
  95. Yayathi, S., Walker, W., Doughty, D., Ardebili, H., Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications. J. Power Sources, 329, 197–206, 2016.
  96. Yuan, M., Erdman, J., Tang, C., Ardebili, H., High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv., 4, 59637, 2014.
  97. Yuan, Y., Amine, K., Lu, J., Shahbazian-Yassar, R., Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun., 8, 15806, 2017.
  98. Zhao, H., Wu, Q., Hu, S., Xu, H., Rasmussen, C.N., Review of energy storage system for wind power integration support. Appl. Energy, 137, 545–553, 2015.
  99. Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., Zhang, J., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev., 44, 21, 7484–7539, 2015.
  100. Zhou, J., Danilov, D., Notten, P.H., A Novel Method for the In Situ Determination of Concentration Gradients in the Electrolyte of Li-Ion Batteries. Chem. Eur. J., 12, 27, 7125–7132, 2006.
  101. Zito, R. and Harman, C.M., The Iron-Redox Battery in Large Solar-Photovoltaic Application. Second Annual Battery Development and Electrochemical Technology Conference, 1978.
  102. Zito, R., Energy Storage (Redox Systems) and Photovoltaic Generation, paper delivered as guest speaker at Princeton University, 1978.
  103. Zito, R., The Iron-Redox Battery. DOE Battery Conference, 1979.
  104. Zito, R., Thermo-galvanic Energy Conversion. AIAA J., 1, 9, 2133–2138, 1963.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset