Series Preface

Electromechanical systems permeate the engineering and technology fields in aerospace, automotive, mechanical, biomedical, civil/structural, electrical, environmental, and industrial systems. The Wiley Book Series on dynamics and control of electromechanical systems will cover a broad range of engineering and technology within these fields. As demand increases for innovation in these areas, feedback control of these systems is becoming essential for increased productivity, precision operation, load mitigation, and safe operation. Furthermore, new applications in these areas require a reevaluation of existing control methodologies to meet evolving technological requirements, for example the distributed control of energy systems. The basics of distributed control systems are well documented in several textbooks, but the nuances of its use for future applications in the evolving area of energy system applications, such as wind turbines and wind farm operations, solar energy systems, smart grids, and the generation, storage and distribution of energy, require an amelioration of existing distributed control theory to specific energy system needs. The book series serves two main purposes: 1) a delineation and explication of theoretical advancements in electromechanical system dynamics and control, and 2) a presentation of application-driven technologies in evolving electromechanical systems.

This book series will embrace the full spectrum of dynamics and control of electromechanical systems from theoretical foundations to real-world applications. The level of the presentation should be accessible to senior undergraduate and first-year graduate students, and should prove especially well-suited as a self-study guide for practicing professionals in the fields of mechanical, aerospace, automotive, biomedical, and civil/structural engineering. The aim is to provide an interdisciplinary series, ranging from high-level undergraduate/graduate texts, explanation and dissemination of science and technology and good practice, through to important research that is immediately relevant to industrial development and practical applications. It is hoped that this new and unique perspective will be of perennial interest to students, scholars, and employees inthe engineering disciplines mentioned. Suggestions for new topics and authors for the series are always welcome.

This book, Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, has the objective of providing a theoretical foundation as well as practical insights on the topic at hand. It is broken down into three parts: 1) sliding mode control (SMC) of Markovian jump singular systems, 2) SMC of switched state-delayed hybrid systems, and 3) SMC of switched stochastic hybrid systems. The book provides detailed derivations from first principles to allow the reader to thoroughly understand the particular topic. This is especially useful for Markovian jump singular systems with stochastic perturbations because a comprehensive knowledge of stochastic analysis is not required before understanding the material. Readers can simply dive into the material. It also provides several illustrative examples to bridge the gap between theory and practice. It is a welcome addition to the Wiley Electromechanical Systems Series because no other book is focused on the topic of SMC with a specific emphasis on uncertain parameter-switching hybrid systems.

Mark J. Balas
John L. Crassidis
Florian Holzapfel
Series Editors

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset