Chapter 9. Kernel Synchronization Methods

The previous chapter discussed the sources of and solutions to race conditions. Thankfully, the Linux kernel implements a large family of synchronization methods. This chapter discusses these methods and their interface, behavior, and use. These methods enable kernel developers to write efficient race-free code.

Atomic Operations

Atomic operations provide instructions that execute atomically—without interruption. Just as the atom was originally thought to be an indivisible particle, atomic operators are indivisible instructions. For example, as discussed in the previous chapter, an atomic increment can read and increment a variable by one in a single indivisible and uninterruptible step. Instead of the race discussed in the previous chapter, the outcome is always similar to the following (assume i is initially seven):

Thread 1

Thread 2

atomic increment i (7 -> 8)

-

-

atomic increment i (8 -> 9)

The resulting value, nine, is correct. It is never possible for the two atomic operations to occur on the same variable concurrently. Therefore, it is not possible for the increments to race.

The kernel provides two sets of interfaces for atomic operations—one that operates on integers and another that operates on individual bits. These interfaces are implemented on every architecture that Linux supports. Most architectures either directly support simple atomic operations or provide an operation to lock the memory bus for a single operation (and thus ensure another operation cannot occur simultaneously). Architectures that cannot easily support primitive atomic operations, such as SPARC, somehow cope. (The only atomic instruction that is guaranteed to exist on all SPARC machines is ldstub.)

Atomic Integer Operations

The atomic integer methods operate on a special data type, atomic_t. This special type is used, as opposed to having the functions work directly on the C int type, for a couple of reasons. First, having the atomic functions accept only the atomic_t type ensures that the atomic operations are used only with these special types. Likewise, it also ensures that the data types are not passed to any other nonatomic functions. Indeed, what good would atomic operations be if they were not consistently used on the data? Next, the use of atomic_t ensures the compiler does not (erroneously but cleverly) optimize access to the value—it is important the atomic operations receive the correct memory address and not an alias. Finally, use of atomic_t can hide any architecture-specific differences in its implementation.

Despite being an integer, and thus 32 bits on all of the machines that Linux supports, developers and their code once had to assume that an atomic_t was no larger than 24 bits in size. The SPARC port in Linux has an odd implementation of atomic operations: A lock was embedded in the lower 8 bits of the 32-bit int (it looked like Figure 9.1). The lock was used to protect concurrent access to the atomic type because the SPARC architecture lacks appropriate support at the instruction level. Consequently, only 24 usable bits were available on SPARC machines. Although code that assumed that the full 32-bit range existed would work on other machines, it would have failed in strange and subtle ways on SPARC machines—and that is just rude. Recently, clever hacks have allowed SPARC to provide a fully usable 32-bit atomic_t, and this limitation is no more. The old 24-bit implementation is still used by some internal SPARC code, however, and lives in SPARC's <asm/atomic.h>.

Old layout of the 32-bit atomic_t on SPARC.

Figure 9.1. Old layout of the 32-bit atomic_t on SPARC.

The declarations needed to use the atomic integer operations are in <asm/atomic.h>. Some architectures provide additional methods that are unique to that architecture, but all architectures provide at least a minimum set of operations that are used throughout the kernel. When you write kernel code, you can ensure that these operations are correctly implemented on all architectures.

Defining an atomic_t is done in the usual manner. Optionally, you can set it to an initial value:

atomic_t v;                   /* define v */
atomic_t u = ATOMIC_INIT(0);     /* define u and initialize it to zero */

Operations are all simple:

atomic_set(&v, 4);     /* v = 4 (atomically) */
atomic_add(2, &v);     /* v = v + 2 = 6 (atomically) */
atomic_inc(&v);        /* v = v + 1 = 7 (atomically) */

If you ever need to convert an atomic_t to an int, use atomic_read():

printk("%d
", atomic_read(&v)); /* will print "7" */

A common use of the atomic integer operations is to implement counters. Protecting a sole counter with a complex locking scheme is silly, so instead developers use atomic_inc() and atomic_dec(), which are much lighter in weight.

Another use of the atomic integer operators is atomically performing an operation and testing the result. A common example is the atomic decrement and test:

int atomic_dec_and_test(atomic_t *v)

This function decrements by one the given atomic value. If the result is zero, it returns true; otherwise, it returns false. A full listing of the standard atomic integer operations (those found on all architectures) is in Table 9.1. All the operations implemented on a specific architecture can be found in <asm/atomic.h>.

Table 9.1. Full Listing of Atomic Integer Operations

Atomic Integer Operation

Description

ATOMIC_INIT(int i)

At declaration, initialize an atomic_t to i

int atomic_read(atomic_t *v)

Atomically read the integer value of v

void atomic_set(atomic_t *v, int i)

Atomically set v equal to i

void atomic_add(int i, atomic_t *v)

Atomically add i to v

void atomic_sub(int i, atomic_t *v)

Atomically subtract i from v

void atomic_inc(atomic_t *v)

Atomically add one to v

void atomic_dec(atomic_t *v)

Atomically subtract one from v

int atomic_sub_and_test(int i, atomic_t *v)

Atomically subtract i from v and return true if the result is zero; otherwise false

int atomic_add_negative(int i, atomic_t *v)

Atomically add i to v and return true if the result is negative; otherwise false

int atomic_dec_and_test(atomic_t *v)

Atomically decrement v by one and return true if zero; false otherwise

int atomic_inc_and_test(atomic_t *v)

Atomically increment v by one and return true if the result is zero; false otherwise

The atomic operations are typically implemented as inline functions with inline assembly (apparently, kernel developers like inlines). In the case where a specific function is inherently atomic, the given function is usually just a macro. For example, on most sane architectures, a word-sized read is always atomic. That is, a read of a single word cannot complete in the middle of a write to that word. The read will always return the word in a consistent state, either before or after the write completes, but never in the middle. Consequently, atomic_read() is usually just a macro returning the integer value of the atomic_t.

In your code, it is usually preferred to choose atomic operations over more complicated locking mechanisms. On most architectures, one or two atomic operations incur less overhead and less cache-line thrashing than a more complicated synchronization method. As with any performance-sensitive code, however, testing multiple approaches is always smart.

Atomic Bitwise Operations

In addition to atomic integer operations, the kernel also provides a family of functions that operate at the bit level. Not surprisingly, they are architecture specific and defined in <asm/bitops.h>.

What may be surprising is that the bitwise functions operate on generic memory addresses. The arguments are a pointer and a bit number. Bit zero is the least significant bit of the given address. On 32-bit machines, bit 31 is the most significant bit and bit 32 is the least significant bit of the following word. There are no limitations on the bit number supplied, although most uses of the functions provide a word and, consequently, a bit number between 0 and 31 (or 63, on 64-bit machines).

Because the functions operate on a generic pointer, there is no equivalent of the atomic integer's atomic_t type. Instead, you can work with a pointer to whatever data you desire. Consider an example:

unsigned long word = 0;

set_bit(0, &word);       /* bit zero is now set (atomically) */
set_bit(1, &word);       /* bit one is now set (atomically) */
printk("%ul
", word);   /* will print "3" */
clear_bit(1, &word);     /* bit one is now unset (atomically) */
change_bit(0, &word);    /* bit zero is flipped; now it is unset (atomically) */

/* atomically sets bit zero and returns the previous value (zero) */
if (test_and_set_bit(0, &word)) {
        /* never true     */
}

/* the following is legal; you can mix atomic bit instructions with normal C */
word = 7;

A listing of the standard atomic bit operations is in Table 9.2.

Table 9.2. Listing of Atomic Bitwise Operations

Atomic Bitwise Operation

Description

void set_bit(int nr, void *addr)

Atomically set the nr-th bit starting from addr

void clear_bit(int nr, void *addr)

Atomically clear the nr-th bit starting from addr

void change_bit(int nr, void *addr)

Atomically flip the value of the nr-th bit starting from addr

int test_and_set_bit(int nr, void *addr)

Atomically set the nr-th bit starting from addr and return the previous value

int test_and_clear_bit(int nr, void *addr)

Atomically clear the nr-th bit starting from addr and return the previous value

int test_and_change_bit(int nr, void *addr)

Atomically flip the nr-th bit starting from addr and return the previous value

int test_bit(int nr, void *addr)

Atomically return the value of the nr-th bit starting from addr

Conveniently, nonatomic versions of all the bitwise functions are also provided. They behave identically to their atomic siblings, except they do not guarantee atomicity and their names are prefixed with double underscores. For example, the nonatomic form of test_bit() is __test_bit(). If you do not require atomicity (say, for example, because a lock already protects your data), these variants of the bitwise functions might be faster.

The kernel also provides routines to find the first set (or unset) bit starting at a given address:

int find_first_bit(unsigned long *addr, unsigned int size)
int find_first_zero_bit(unsigned long *addr, unsigned int size)

Both functions take a pointer as their first argument and the number of bits in total to search as their second. They return the bit number of the first set or first unset bit, respectively. If your code is searching only a word, the routines __ffs() and ffz(), which take a single parameter of the word in which to search, are optimal.

Unlike the atomic integer operations, code typically has no choice whether to use the bitwise operations—they are the only portable way to set a specific bit. The only question is whether to use the atomic or nonatomic variants. If your code is inherently safe from race conditions, you can use the nonatomic versions, which might be faster depending on the architecture.

Spin Locks

Although it would be nice if every critical region consisted of code that did nothing more complicated than incrementing a variable, reality is much crueler. In real life, critical regions can span multiple functions. For example, it is often the case that data must be removed from one structure, formatted and parsed, and added to another structure. This entire operation must occur atomically; it must not be possible for other code to read from or write to either structure before its update is done. Because simple atomic operations are clearly incapable of providing the needed protection in such a complex scenario, a more general method of synchronization is needed—locks.

The most common lock in the Linux kernel is the spin lock. A spin lock is a lock that can be held by at most one thread of execution. If a thread of execution attempts to acquire a spin lock while it is contended (already held), the thread busy loops—spins—waiting for the lock to become available. If the lock is not contended, the thread can immediately acquire the lock and continue. The spinning prevents more than one thread of execution from entering the critical region at any one time. Note that the same lock can be used in multiple locations—so all access to a given data structure, for example, can be protected and synchronized.

Going back to the door and key analogy from last chapter, spin locks are akin to sitting outside the door, waiting for the fellow inside to come out and hand you the key. If you reach the door and no one is inside, you can grab the key and enter the room. If you reach the door and someone is currently inside, you must wait outside for the key, effectively checking for its presence repeatedly. When the room is vacated, you can grab the key and go inside. Thanks to the key (read: spin lock), only one person (read: thread of execution) is allowed inside the room (read: critical region) at the same time.

The fact that a contended spin lock causes threads to spin (essentially wasting processor time) while waiting for the lock to become available is important. This behavior is the point of the spin lock. It is not wise to hold a spin lock for a long time. This is the nature of the spin lock: a lightweight single-holder lock that should be held for short durations. An alternative behavior when the lock is contended is to put the current thread to sleep and wake it up when it becomes available. Then the processor can go off and execute other code. This incurs a bit of overhead—most notably the two context switches required to switch out of and back into the blocking thread, which is certainly a lot more code than the handful of lines used to implement a spin lock. Therefore, it is wise to hold spin locks for less than the duration of two context switches. Because most of us have better things to do than measure context switches, just try to hold the lock as little time as possible[1]. The next section covers semaphores, which provide a lock that makes the waiting thread sleep, rather than spin, when contended.

Spin locks are architecture dependent and implemented in assembly. The architecture-dependent code is defined in <asm/spinlock.h>. The actual usable interfaces are defined in <linux/spinlock.h>. The basic use of a spin lock is

spinlock_t mr_lock = SPIN_LOCK_UNLOCKED;

spin_lock(&mr_lock);
/* critical region ... */
spin_unlock(&mr_lock);

The lock can be held simultaneously by at most only one thread of execution. Consequently, only one thread is allowed in the critical region at a time. This provides the needed protection from concurrency on multiprocessing machines. On uniprocessor machines, the locks compile away and do not exist. They simply act as markers to disable and enable kernel preemption. If kernel preempt is turned off, the locks compile away entirely.

Spin locks can be used in interrupt handlers, whereas semaphores cannot be used because they sleep. If a lock is used in an interrupt handler, you must also disable local interrupts (interrupt requests on the current processor) before obtaining the lock. Otherwise, it is possible for an interrupt handler to interrupt kernel code while the lock is held and attempt to reacquire the lock. The interrupt handler spins, waiting for the lock to become available. The lock holder, however, does not run until the interrupt handler completes. This is an example of the double-acquire deadlock discussed in the previous chapter. Note that you need to disable interrupts only on the current processor. If an interrupt occurs on a different processor, and it spins on the same lock, it does not prevent the lock holder (which is on a different processor) from eventually releasing the lock.

The kernel provides an interface that conveniently disables interrupts and acquires the lock. Usage is

spinlock_t mr_lock = SPIN_LOCK_UNLOCKED;
unsigned long flags;

spin_lock_irqsave(&mr_lock, flags);
/* critical region ... */
spin_unlock_irqrestore(&mr_lock, flags);

The routine spin_lock_irqsave() saves the current state of interrupts, disables them locally, and then obtains the given lock. Conversely, spin_unlock_irqrestore() unlocks the given lock and returns interrupts to their previous state. This way, if interrupts were initially disabled, your code would not erroneously enable them, but instead keep them disabled. Note that the flags variable is seemingly passed by value. This is because the lock routines are implemented partially as macros.

On uniprocessor systems, the previous example must still disable interrupts to prevent an interrupt handler from accessing the shared data, but the lock mechanism is compiled away. The lock and unlock also disable and enable kernel preemption, respectively.

If you always know before the fact that interrupts are initially enabled, there is no need to restore their previous state. You can unconditionally enable them on unlock. In those cases, spin_lock_irq() and spin_unlock_irq() are optimal:

spinlock_t mr_lock = SPIN_LOCK_UNLOCKED;

spin_lock_irq(&mr_lock);
/* critical section ... */
spin_unlock_irq(&mr_lock);

As the kernel grows in size and complexity, it is increasingly hard to ensure that interrupts are always enabled in any given code path in the kernel. Use of spin_lock_irq() therefore is not recommended. If you do use it, you had better be positive that interrupts were originally on or people will be upset when they expect interrupts to be off but find them on!

Other Spin Lock Methods

The method spin_lock_init() can be used to initialize a dynamically created spin lock (a spinlock_t that you do not have a direct reference to, just a pointer).

The method spin_trylock() attempts to obtain the given spin lock. If the lock is contended, rather than spin and wait for the lock to be released, the function immediately returns zero. If it succeeds in obtaining the lock, it returns nonzero. Similarly, spin_is_locked() returns nonzero if the given lock is currently acquired. Otherwise, it returns zero. In neither case does this function actually obtain the lock[2].

See Table 9.3 for a complete list of the standard spin lock methods.

Table 9.3. Listing of Spin Lock Methods

Method

Description

spin_lock()

Acquires given lock

spin_lock_irq()

Disables local interrupts and acquires given lock

spin_lock_irqsave()

Saves current state of local interrupts, disables local interrupts, and acquires given lock

spin_unlock()

Releases given lock

spin_unlock_irq()

Releases given lock and enables local interrupts

spin_unlock_irqrestore()

Releases given lock and restores local interrupts to given previous state

spin_lock_init()

Dynamically initializes given spinlock_t

spin_trylock()

Tries to acquire given lock; if unavailable, returns nonzero

spin_is_locked()

Returns nonzero if the given lock is currently acquired, otherwise it returns zero

Spin Locks and Bottom Halves

As mentioned in Chapter 7, “Bottom Halves and Deferring Work,” certain locking precautions must be taken when working with bottom halves. The function spin_lock_bh() obtains the given lock and disables all bottom halves. The function spin_unlock_bh() performs the inverse.

Because a bottom half may preempt process context code, if data is shared between a bottom half and process context, you must protect the data in process context with both a lock and the disabling of bottom halves. Likewise, because an interrupt handler may preempt a bottom half, if data is shared between an interrupt handler and a bottom half, you must both obtain the appropriate lock and disable interrupts.

Recall that two tasklets of the same type do not ever run simultaneously. Thus, there is no need to protect data used only within a single type of tasklet. If the data is shared between two different tasklets, however, you must obtain a normal spin lock before accessing the data in the bottom half. You do not need to disable bottom halves because a tasklet never preempts another running tasklet on the same processor.

With softirqs, regardless of whether it is the same softirq type or not, if data is shared by softirqs it must be protected with a lock. Recall that softirqs, even two of the same type, may run simultaneously on multiple processors in the system. A softirq will never preempt another softirq running on the same processor, however, so disabling bottom halves is not needed.

Reader-Writer Spin Locks

Sometimes, lock usage can be clearly divided into readers and writers. For example, consider a list that is both updated and searched. When the list is updated (written to), it is important that no other threads of execution concurrently write to or read from the list. Writing demands mutual exclusion. On the other hand, when the list is searched (read from), it is only important that nothing else write to the list. Multiple concurrent readers are safe so long as there are no writers. The task list's access patterns (discussed in Chapter 3, “Process Management”) fit this description. Not surprisingly, the task list is protected by a reader-writer spin lock.

When a data structure is neatly split into reader/writer paths like this, it makes sense to use a locking mechanism that provides similar semantics. In this case, Linux provides reader-writer spin locks. Reader-writer spin locks provide separate reader and writer variants of the lock. One or more readers can concurrently hold the reader lock. The writer lock, conversely, can be held by at most one writer with no concurrent readers. Reader/writer locks are sometimes called shared/exclusive or concurrent/exclusive locks because the lock is available in a shared (for readers) and an exclusive (for writers) form.

Usage is similar to spin locks. The reader-writer spin lock is initialized via

rwlock_t mr_rwlock = RW_LOCK_UNLOCKED;

Then, in the reader code path:

read_lock(&mr_rwlock);
/* critical section (read only) ... */
read_unlock(&mr_rwlock);

Finally, in the writer code path:

write_lock(&mr_rwlock);
/* critical section (read and write) ... */
write_unlock(&mr_rwlock);

Normally, the readers and writers are in entirely separate code paths, such as in this example.

Note that you cannot “upgrade” a read lock to a write lock. This code

read_lock(&mr_rwlock);
write_lock(&mr_rwlock);

deadlocks as the write lock spins, waiting for all readers to release the lock—including yourself. If you ever need to write, obtain the write lock from the very start. If the line between your readers and writers is muddled, it might be an indication that you do not need to use reader-writer locks. In that case, a normal spin lock is optimal.

It is safe for multiple readers to obtain the same lock. In fact, it is safe for the same thread to recursively obtain the same read lock. This lends itself to a useful and common optimization. If you have only readers in interrupt handlers but no writers, you can mix use of the “interrupt disabling” locks. You can use read_lock() instead of read_lock_irqsave() for reader protection. You still need to disable interrupts for write access, a la write_lock_irqsave(), otherwise a reader in an interrupt could deadlock on the held write lock. See Table 9.4 for a full listing of the reader-writer spin lock methods.

Table 9.4. Listing of Reader-Writer Spin Lock Methods

Method

Description

read_lock()

Acquires given lock for reading

read_lock_irq()

Disables local interrupts and acquires given lock for reading

read_lock_irqsave()

Saves the current state of local interrupts, disables local interrupts, and acquires the given lock for reading

read_unlock()

Releases given lock for reading

read_unlock_irq()

Releases given lock and enables local interrupts

read_unlock_irqrestore()

Releases given lock and restores local interrupts to the given previous state

write_lock()

Acquires given lock for writing

write_lock_irq()

Disables local interrupts and acquires the given lock for writing

write_lock_irqsave()

Saves current state of local interrupts, disables local interrupts, and acquires the given lock for writing

write_unlock()

Releases given lock

write_unlock_irq()

Releases given lock and enables local interrupts

write_unlock_irqrestore()

Releases given lock and restores local interrupts to given previous state

write_trylock()

Tries to acquire given lock for writing; if unavailable, returns nonzero

rw_lock_init()

Initializes given rwlock_t

rw_is_locked()

Returns nonzero if the given lock is currently acquired, or else it returns zero

A final important consideration in using the Linux reader-writer spin locks is that they favor readers over writers. If the read lock is held and a writer is waiting for exclusive access, readers that attempt to acquire the lock will continue to succeed. The spinning writer does not acquire the lock until all readers release the lock. Therefore, a sufficient number of readers can starve pending writers. This is important to keep in mind when designing your locking.

Spin locks provide a very quick and simple lock. The spinning behavior is optimal for short hold times and code that cannot sleep (interrupt handlers, for example). In cases where the sleep time might be long or you potentially need to sleep while holding the lock, the semaphore is a solution.

Semaphores

Semaphores in Linux are sleeping locks. When a task attempts to acquire a semaphore that is already held, the semaphore places the task onto a wait queue and puts the task to sleep. The processor is then free to execute other code. When the processes[3] holding the semaphore release the lock, one of the tasks on the wait queue is awakened so that it can then acquire the semaphore.

Let's jump back to the door and key analogy. When a person reaches the door, he can grab the key and enter the room. The big difference lies in what happens when another dude reaches the door and the key is not available. In this case, instead of spinning, the fellow puts his name on a list and takes a nap. When the person inside the room leaves, he checks the list at the door. If anyone's name is on the list, he goes over to the first name and gives him a playful jab in the chest, waking him up and allowing him to enter the room. In this manner, the key (read: semaphore) continues to ensure that there is only one person (read: thread of execution) inside the room (read: critical region) at one time. If the room is occupied, instead of spinning, the person puts his name on a list (read: wait queue) and takes a nap (read: blocks on the wait queue and goes to sleep), allowing the processor to go off and execute other code. This provides better processor utilization than spin locks because there is no time spent busy looping, but semaphores have much greater overhead than spin locks. Life is always a trade-off.

You can draw some interesting conclusions from the sleeping behavior of semaphores:

  • Because the contending tasks sleep while waiting for the lock to become available, semaphores are well suited to locks that are held for a long time.

  • Conversely, semaphores are not optimal for locks that are held for very short periods because the overhead of sleeping, maintaining the wait queue, and waking back up can easily outweigh the total lock hold time.

  • Because a thread of execution sleeps on lock contention, semaphores can be obtained only in process context because interrupt context is not schedulable.

  • You can (although you may not want to) sleep while holding a semaphore because you will not deadlock when another process acquires the same semaphore. (It will just go to sleep and eventually let you continue.)

  • You cannot hold a spin lock while you acquire a semaphore, because you might have to sleep while waiting for the semaphore, and you cannot sleep while holding a spin lock.

These facts highlight the uses of semaphores versus spin locks. In most uses of semaphores, there is little choice as to what lock to use. If your code needs to sleep, which is often the case when synchronizing with user-space, semaphores are the sole solution. It is often easier, if not necessary, to use semaphores because they allow you the flexibility of sleeping. When you do have a choice, the decision between semaphore and spin lock should be based on lock hold time. Ideally, all your locks should be held as briefly as possible. With semaphores, however, longer lock hold times are more acceptable. Additionally, unlike spin locks, semaphores do not disable kernel preemption and, consequently, code holding a semaphore can be preempted. This means semaphores do not adversely affect scheduling latency.

A final useful feature of semaphores is that they can allow for an arbitrary number of simultaneous lock holders. Whereas spin locks permit at most one task to hold the lock at a time, the number of permissible simultaneous holders of semaphores can be set at declaration time. This value is called the usage count or simply the count. The most common value is to allow, like spin locks, only one lock holder at a time. In this case, the count is equal to one and the semaphore is called either a binary semaphore (because it is either held by one task or not held at all) or a mutex (because it enforces mutual exclusion). Alternatively, the count can be initialized to a nonzero value greater than one. In this case, the semaphore is called a counting semaphore, and it allows at most count holders of the lock at a time. Counting semaphores are not used to enforce mutual exclusion because they allow multiple threads of execution in the critical region at once. Instead, they are used to enforce limits in certain code. They are not used much in the kernel. If you use a semaphore, you almost assuredly want to use a mutex (a semaphore with a count of one).

Semaphores were formalized by Edsger Wybe Dijkstra[4] in 1968 as a generalized locking mechanism. A semaphore supports two atomic operations, P() and V(), named after the Dutch word Proberen, to test (literally, to probe), and the Dutch word Verhogen, to increment. Later systems called these methods down() and up(), respectively, and so does Linux. The down() method is used to acquire a semaphore by decrementing the count by one. If the new count is zero or greater, the lock is acquired and the task can enter the critical region. If the count is negative, the task is placed on a wait queue and the processor moves on to something else. These names are used as verbs: You down a semaphore to acquire it. The up() method is used to release a semaphore upon completion of a critical region. This is called upping the semaphore. The method increments the count value; if the semaphore's wait queue is not empty, one of the waiting tasks is awakened and allowed to acquire the semaphore.

Creating and Initializing Semaphores

The semaphore implementation is architecture dependent and defined in <asm/semaphore.h>. The struct semaphore type represents semaphores. Statically declared semaphores are created via

static DECLARE_SEMAPHORE_GENERIC(name, count)

where name is the variable's name and count is the usage count of the semaphore. As a shortcut to create the more common mutex, use

static DECLARE_MUTEX(name);

where, again, name is the variable name of the semaphore. More frequently, semaphores are created dynamically, often as part of a larger structure. In this case, to initialize a dynamically created semaphore to which you have only an indirect pointer reference, use

sema_init(sem, count);

where sem is a pointer and count is the usage count of the semaphore. Similarly, to initialize a dynamically created mutex, you can use

init_MUTEX(sem);

I do not know why the “mutex” in init_MUTEX() is capitilized or why the “init” comes first here but second in sema_init(). I do know, however, that it looks dumb and I apologize for the inconsistency. I hope, however, that after you've read Chapter 7, the kernel's symbol naming does not shock anyone.

Using Semaphores

The function down_interruptible() attempts to acquire the given semaphore. If it fails, it sleeps in the TASK_INTERRUPTIBLE state. Recall from Chapter 3 that this process state implies that a task can be awakened with a signal, which is generally a good thing. If the task receives a signal while waiting for the semaphore, it is awakened and down_interruptible() returns -EINTR. Alternatively, the function down() places the task in the TASK_UNINTERRUPTIBLE state if it sleeps. You most likely do not want this because the process waiting for the semaphore does not respond to signals. Therefore, use of down_interruptible() is much more common than down(). Yes, again, the naming is not ideal.

You can use down_trylock() to try to acquire the given semaphore without blocking. If the semaphore is already held, the function immediately returns nonzero. Otherwise, it returns zero and you successfully hold the lock.

To release a given semaphore, call up(). Consider an example:

/* define and declare a semaphore, named mr_sem, with a count of one */
static DECLARE_MUTEX(mr_sem);

/* attempt to acquire the semaphore ... */
if (down_interruptible(&mr_sem)) {
        /* signal received, semaphore not acquired ... */
}

/* critical region ... */

/* release the given semaphore */
up(&mr_sem);

A complete listing of the semaphore methods is in Table 9.5.

Table 9.5. Listing of Semaphore Methods

Method

Description

sema_init(struct semaphore *, int)

Initializes the dynamically created semaphore to the given count

init_MUTEX(struct semaphore *)

Initializes the dynamically created semaphore with a count of one

init_MUTEX_LOCKED(struct semaphore *)

Initializes the dynamically created semaphore with a count of zero (so it is initially locked)

down_interruptible(struct semaphore *)

Tries to acquire the given semaphore and enter interruptible sleep if it is contended

down(struct semaphore *)

Tries to acquire the given semaphore and enter uninterruptible sleep if it is contended

down_trylock(struct semaphore *)

Tries to acquire the given semaphore and immediately return nonzero if it is contended

up(struct semaphore *)

Releases the given semaphore and wakes a waiting task, if any

Reader-Writer Semaphores

Semaphores, like spin locks, also come in a reader-writer flavor. The situations where reader-writer semaphores are preferred over standard semaphores are the same as with reader-writer spin locks versus standard spin locks.

Reader-writer semaphores are represented by the struct rw_semaphore type, which is declared in <linux/rwsem.h>. Statically declared reader-writer semaphores are created via

static DECLARE_RWSEM(name);

where name is the declared name of the new semaphore.

Reader-writer semaphores that are created dynamically are initialized via

init_rwsem(struct rw_semaphore *sem)

All reader-writer semaphores are mutexes (that is, their usage count is one). Any number of readers can concurrently hold the read lock, so long as there are no writers. Conversely, only a sole writer (with no readers) can acquire the write variant of the lock. All reader-writer locks use uninterruptible sleep, so there is only one version of each down(). For example:

static DECLARE_RWSEM(mr_rwsem);

/* attempt to acquire the semaphore for reading ... */
down_read(&mr_rwsem);

/* critical region (read only) ... */

/* release the semaphore */
up_read(&mr_rwsem);

/* ... */

/* attempt to acquire the semaphore for writing ... */
down_write(&mr_rwsem);

/* critical region (read and write) ... */

/* release the semaphore */
up_write(&mr_rwsem);

As with semaphores, implementations of down_read_trylock() and down_write_trylock() are provided. Each has one parameter: a pointer to a reader-writer semaphore. They both return nonzero if the lock is successfully acquired and zero if it is currently contended. Be careful: For admittedly no good reason, this is the opposite of normal semaphore behavior!

Reader-writer semaphores have a unique method that their reader-writer spin lock cousins do not have: downgrade_writer(). This function atomically converts an acquired write lock to a read lock.

Reader-writer semaphores, as spin locks of the same nature, should not be used unless there is a clear separation between write paths and read paths in your code. Supporting the reader-writer mechanisms has a cost, and it is worthwhile only if your code naturally splits along a reader/writer boundary.

Spin Locks Versus Semaphores

Knowing when to use a spin lock versus a semaphore is important to writing optimal code. In many cases, however, there is little choice. Only a spin lock can be used in interrupt context, whereas only a semaphore can be held while a task sleeps. Table 9.6 reviews the requirements that dictate which lock to use.

Table 9.6. What to Use: Spin Locks Versus Semaphores

Requirement

Recommended Lock

Low overhead locking

Spin lock is preferred

Short lock hold time

Spin lock is preferred

Long lock hold time

Semaphore is preferred

Need to lock from interrupt context

Spin lock is required

Need to sleep while holding lock

Semaphore is required

Completion Variables

Using completion variables is an easy way to synchronize between two tasks in the kernel when one task needs to signal to the other that an event has occurred. One task waits on the completion variable while another task performs some work. When the other task has completed the work, it uses the completion variable to wake up any waiting tasks. If this sounds like a semaphore, you are right—the idea is much the same. In fact, completion variables merely provide a simple solution to a problem whose answer is otherwise semaphores. For example, the vfork() system call uses completion variables to wake up the parent process when the child process execs or exits.

Completion variables are represented by the struct completion type, which is defined in <linux/completion.h>. A statically created completion variable is created and initialized via

DECLARE_COMPLETION(mr_comp);

A dynamically created completion variable is initialized via init_completion().

On a given completion variable, the tasks that want to wait call wait_for_completion(). After the event has occurred, calling complete() signals all waiting tasks to wake up. Table 9.7 has a listing of the completion variable methods.

Table 9.7. Completion Variables Methods

Method

Description

init_completion(struct completion *)

Initializes the given dynamically created completion variable

wait_for_completion(struct completion *)

Waits for the given completion variable to be signaled

complete(struct completion *)

Signals any waiting tasks to wake up

For sample usages of completion variables, see kernel/sched.c and kernel/fork.c. A common usage is to have a completion variable dynamically created as a member of a data structure. Kernel code waiting for the initialization of the data structure calls wait_for_completion(). When the initialization is complete, the waiting tasks are awakened via a call to completion().

BKL: The Big Kernel Lock

Welcome to the redheaded stepchild of the kernel. The Big Kernel Lock (BKL) is a global spin lock that was created to ease the transition from Linux's original SMP implementation to fine-grained locking. The BKL has some interesting properties:

  • You can sleep while holding the BKL. The lock is automatically dropped when the task is unscheduled and reacquired when the task is rescheduled. Of course, this does not mean it is always safe to sleep while holding the BKL, merely that you can and you will not deadlock.

  • The BKL is a recursive lock. A single process can acquire the lock multiple times and not deadlock, as it would with a spin lock.

  • You can use the BKL only in process context.

  • It is evil.

These features helped ease the transition from kernel version 2.0 to 2.2. When SMP support was introduced in kernel version 2.0, only one task could be in the kernel at a time. (Of course, now the kernel is quite finely threaded—we have come a long way.) A goal of 2.2 was to allow multiple processors to execute in the kernel concurrently. The BKL was introduced to help ease the transition to finer grained locking. It was a great aide then; now it is a scalability burden[5].

Use of the BKL is discouraged. In fact, new code should never introduce locking that uses the BKL. The lock is still fairly well used in parts of the kernel, however. Therefore, understanding the BKL and its interfaces is important. The BKL behaves like a spin lock, with the additions previously discussed. The function lock_kernel() acquires the lock and the function unlock_kernel() releases the lock. A single thread of execution may acquire the lock recursively, but must then call unlock_kernel() an equal number of times to release the lock. On the last unlock call the lock will be released. The function kernel_locked() returns nonzero if the lock is currently held; otherwise, it returns zero. These interfaces are declared in <linux/smp_lock.h>. Here is sample usage:

lock_kernel();

/*
 * Critical section, synchronized against all other BKL users...
 * Note, you can safely sleep here and the lock will be transparently
 * released. When you reschedule, the lock will be transparently
 * reacquired. This implies you will not deadlock, but you still do
 * not want to sleep if you need the lock to protect data here!
 */

unlock_kernel();

The BKL also disables kernel preemption while it is held. On UP kernels, the BKL code does not actually perform any physical locking. Table 9.8 has a complete list of the BKL functions.

Table 9.8. List of BKL functions

Function

Description

lock_kernel()

Acquires the BKL

unlock_kernel()

Releases the BKL

kernel_locked()

Returns nonzero if the lock is held and zero otherwise (UP always returns nonzero)

One of the major issues concerning the BKL is determining what the lock is protecting. Too often, the BKL is seemingly associated with code (for example, “it synchronizes callers to foo()”) instead of data (“it protects the foo structure”). This makes replacing BKL uses with a spin lock difficult because it is not easy to determine just what is being locked. The replacement is made even harder in that the relationship between all BKL users needs to be determined.

Seq Locks

The seq lock is a new type of lock introduced in the 2.6 kernel. It provides a very simple mechanism for reading and writing shared data. It works by maintaining a sequence counter. Whenever the data in question is written to, a lock is obtained and a sequence number is incremented. Prior to and after reading the data, the sequence number is read. If the values are the same, then a write did not begin in the middle of the read. Further, if the values are even then a write is not underway (grabbing the write lock makes the value odd, whereas releasing it makes it even because the lock starts at zero).

To define a seq lock:

seqlock_t mr_seq_lock = SEQLOCK_UNLOCKED;

The write path is then

write_seqlock(&mr_seq_lock);
/* write lock is obtained... */
write_sequnlock(&mr_seq_lock);

This looks like normal spin lock code. The oddness comes in with the read path, which is quite a bit different:

unsigned long seq;

do {
        seq = read_seqbegin(&mr_seq_lock);
        /* read data here ... */
} while (read_seqretry(&mr_seq_lock, seq));

Seq locks are useful to provide a very lightweight and scalable lock for use with many readers and a few writers. Seq locks, however, favor writers over readers. The write lock always succeeds in being obtained so long as there are no other writers. Readers do not affect the write lock, as is the case with reader-writer spin locks and semaphores. Furthermore, pending writers continually cause the read loop (the previous example) to repeat, until there are no longer any writers holding the lock.

Preemption Disabling

Because the kernel is preemptive, a process in the kernel can stop running at any instant to allow a process of higher priority to run. This means a task can begin running in the same critical region as a task that was preempted. To prevent this, the kernel preemption code uses spin locks as markers of nonpreemptive regions. If a spin lock is held, the kernel is not preemptive. Because the concurrency issues with kernel preemption and SMP are the same, and the kernel is already SMP-safe, this simple change makes the kernel preempt-safe, too.

Or so we hope. In reality, some situations do not require a spin lock, but do need kernel preemption disabled. The most frequent of these situations is per-processor data. If the data is unique to each processor, there may be no need to protect it with a lock because only that one processor can access the data. If no spin locks are held, the kernel is preemptive, and it would be possible for a newly scheduled task to access this same variable, as shown here:

task A manipulates per-procesor variable foo, which is not protected by a lock
task A is preempted
task B is scheduled
task B manipulates variable foo
task B completes
task A is rescheduled
task A continues manipulating variable foo

Consequently, even if this were a uniprocessor computer, the variable could be accessed pseudo-concurrently by multiple processes. Normally, this variable would require a spin lock (to prevent true concurrency on multiprocessing machines). If this were a per-processor variable, however, it might not require a lock.

To solve this, kernel preemption can be disabled via preempt_disable(). The call is nestable; you may call it any number of times. For each call, a corresponding call to preempt_enable() is required. The final corresponding call to preempt_enable()re-enables preemption. For example:

preempt_disable();
/* preemption is disabled ... */
preempt_enable();

The preemption count stores the number of held locks and preempt_disable() calls. If the number is zero, the kernel is preemptive. If the value is one or greater, the kernel is not preemptive. This count is incredibly useful—it is a great way to do atomicity and sleep debugging. The function preempt_count() returns this value. See Table 9.9 for a listing of kernel preemption–related functions.

Table 9.9. Kernel Preemption–Related Functions

Function

Description

preempt_disable()

Disables kernel preemption by incrementing the preemption counter

preempt_enable()

Decrement the preemption counter and check and service any pending reschedules if the count is now zero

preempt_enable_no_resched()

Enables kernel preemption but do not check for any pending reschedules

preempt_count()

Returns the preemption count

As a cleaner solution to per-processor data issues, you can obtain the processor number (which presumably is used to index into the per-processor data) via get_cpu(). This function disables kernel preemption prior to returning the current processor number:

int cpu;

/* disable kernel preemption and set "cpu" to the current processor */
cpu = get_cpu();
/* manipulate per-processor data ... */

/* reenable kernel preemption, "cpu" can change and so is no longer valid */
put_cpu();

Ordering and Barriers

When dealing with synchronization between multiple processors or with hardware devices, it is sometimes a requirement that memory-reads (loads) and memory-writes (stores) issue in the order specified in your program code. When talking with hardware, you often need to ensure that a given read occurs before another read or write. Additionally, on symmetrical multiprocessing systems, it may be important for writes to appear in the order that your code issues them (usually to ensure subsequent reads see the data in the same order). Complicating these issues is the fact that both the compiler and the processor can reorder reads and writes[6] for performance reasons. Thankfully, all processors that do reorder reads or writes provide machine instructions to enforce ordering requirements. It is also possible to instruct the compiler not to reorder instructions around a given point. These instructions are called barriers.

Essentially, on some processors the code

a = 1;
b = 2;

may allow the processor to store the new value in b before it stores the new value in a. Both the compiler and processor see no relation between a and b. The compiler would perform this reordering at compile time; the reordering would be static, and the resulting object code would simply set b before a. The processor, however, could perform the reordering dynamically during execution by fetching and dispatching seemingly unrelated instructions in whatever order it feels is best. The vast majority of the time, such reordering is optimal because there is no apparent relation between a and b. Sometimes the programmer knows best, though.

Although the previous example might be reordered, the processor would never reorder writes such as

a = 1;
b = a;

where a and b are global, because there is clearly a data dependency between a and b. Neither the compiler nor the processor, however, know about code in other contexts. Occasionally, it is important that writes are seen by other code and the outside world in the specific order you intend. This is often the case with hardware devices, but is also common on multiprocessing machines.

The rmb() method provides a read memory barrier. It ensures that no loads are reordered across the rmb() call. That is, no loads prior to the call will be reordered to after the call and no loads after the call will be reordered to before the call.

The wmb() method provides a write barrier. It functions in the same manner as rmb(), but with respect to stores instead of loads—it ensures no stores are reordered across the barrier.

The mb() call provides both a read barrier and a write barrier. No loads or stores will be reordered across a call to mb(). It is provided because a single instruction (often the same instruction used by rmb()) can provide both the load and store barrier.

A variant of rmb(), read_barrier_depends(), provides a read barrier, but only for loads on which subsequent loads depend. All reads prior to the barrier are guaranteed to complete before any reads after the barrier that depend on the reads prior to the barrier. Got it? Basically, it enforces a read barrier, like rmb(), but only for certain reads—those that depend on each other. On some architectures, read_barrier_depends() is much quicker than rmb() because it is not needed and is, thus, a noop.

Let's consider an example using mb() and rmb(). The initial value of a is one and the initial value of b is two.

Thread 1

Thread 2

a = 3;

-

mb();

-

b = 4;

c = b;

-

rmb();

-

d = a;

Without using the memory barriers, on some processors it is possible that c receives the new value of b, whereas d receives the old value of a. For example, c could equal four (what you'd expect), yet d could equal one (not what you'd expect). Using the mb() ensured that a and b were written in the intended order, whereas the rmb() insured c and d were read in the intended order.

This sort of reordering occurs because modern processors dispatch and commit instructions out of order, to optimize use of their pipelines. What can end up happening in the previous example is that the instructions associated with the loads of b and a occur out of order. The rmb() and wmb() functions correspond to instructions that tell the processor to commit any pending load or store instructions, respectively, before continuing.

Let's look at a similar example, but one that uses read_barrier_depends() instead of rmb(). In this example, initially a is one, b is two, and p is &b.

Thread 1

Thread 2

a = 3;

-

mb();

-

p = &a;

pp = p;

-

read_barrier_depends();

-

b = *pp;

Again, without memory barriers, it would be possible for b to be set to pp before pp was set to p. The read_barrier_depends(), however, provides a sufficient barrier because the load of *pp depends on the load of p. It would also be sufficient to use rmb() here, but because the reads are data dependent, we can use the potentially faster read_barrier_depends(). Note that in either case, the mb() is required to enforce the intended load/store ordering in the left thread.

The macros smp_rmb(), smp_wmb(), smp_mb(), and smp_read_barrier_depends() provide a useful optimization. On SMP kernels they are defined as the usual memory barriers, whereas on UP kernels they are defined only as a compiler barrier. You can use these SMP variants when the ordering constraints are specific to SMP systems.

The barrier() method prevents the compiler from optimizing loads or stores across the call. The compiler knows not to rearrange stores and loads in ways that would change the effect of the C code and existing data dependencies. It does not have knowledge, however, of events that can occur outside the current context. For example, the compiler cannot know about interrupts that might read the same data you are writing. For this reason, you might want to ensure a store is issued before a load, for example. The previous memory barriers also function as compiler barriers, but a compiler barrier is much lighter in weight than a memory barrier. Indeed, a compiler barrier is practically free, because it simply prevents the compiler from possibly rearranging things.

Table 9.10 has a full listing of the memory and compiler barrier methods provided by all architectures in the Linux kernel.

Table 9.10. Memory and Compiler Barrier Methods

Barrier

Description

rmb()

Prevents loads from being reordered across the barrier

read_barrier_depends()

Prevents data-dependent loads from being reordered across the barrier

wmb()

Prevents stores from being reordered across the barrier

mb()

Prevents load or stores from being reordered across the barrier

smp_rmb()

Provides an rmb() on SMP, and on UP provides a barrier()

smp_read_barrier_depends()

Provides a read_barrier_depends() on SMP, and provides a barrier() on UP

smp_wmb()

Provides a wmb() on SMP, and provides a barrier() on UP

smp_mb()

Provides an mb() on SMP, and provides a barrier() on UP

barrier()

Prevents the compiler from optimizing stores or loads across the barrier

Note that the actual effects of the barriers vary for each architecture. For example, if a machine does not perform out-of-order stores (for example, Intel x86 chips do not) then wmb() does nothing. You can use the appropriate memory barrier for the worst case (that is, the weakest ordering processor) and your code will compile optimally for your architecture.

Synchronization Summarization

This chapter applied the concepts and theories of the last chapter to help you understand the actual methods provided by the Linux kernel for enforcing synchronization and concurrency. We started with the simplest method of ensuring synchronization, atomic operations. We then looked at spin locks, the most common lock in the kernel, which provide a lightweight single-holder lock that busy waits while contended. We also discussed semaphores, a sleeping lock, and less common more specialized locking primitives such as completion variables and seq locks. We poked fun at the BKL, looked at preemption disabling, and tackled barriers. It has been a wild ride.

Armed with this chapter's arsenal of synchronization methods, you can now write kernel code that prevents race conditions and ensures the desired synchronization, with luck picking the best tool for the job.



[1] This is especially important now that the kernel is preemptive. The duration that locks are held is equivalent to the scheduling latency of the system.

[2] Use of these two functions can lead to gross code. You should not frequently have to check the values of spin locks—your code should either always acquire the lock itself or always be called while the lock is already held. Some legitimate uses do exist, however, so these interfaces are provided.

[3] As you will see, multiple processes can simultaneously hold a semaphore, if desired.

[4] Dr. Dijkstra (1930-2002) is one of the most accomplished computer scientists in the (admittedly brief) history of computer scientists. His numerous contributions include work in OS design, algorithm theory, and the concept of semaphores. He was born in Rotterdam, The Netherlands, and taught at the University of Texas for 15 years. He is probably not happy with the large number of GOTO statements in the Linux kernel, however.

[5] It may not be as terrible as some make it out to be—some people believe it to be the kernel incarnation of the devil.

[6] Intel x86 processors do not ever reorder writes. That is, they do not do out-of-order stores. But other processors do.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset