References

[1] IEC. 61400–3 Wind Turbines – Part 3: Design Requirements for Offshore Wind Turbines. 2009.

[2] European Committee for Standardisation. Eurocode 3: Design of Steel Structures—Part 1–6: General Rules—Supplementary Rules for the Shell Structures. 1993.

[3] Lloyd Germanischer. Guideline for the Certification of Offshore Wind Turbines. 2005.

[4] Tegen S, Lantz E, Hand M, Maples B, Smith A, Schwabe P. 2011 Cost of Wind Energy Review Technical Report NREL/TP-5000–56266. Golden, Colorado: National Renewable Energy Laboratory; March 2013 Contract No. DE-AC36-08GO28308.

[5] Vionis P, Lekou D, Gonzalez F, Mieres J, Kossivas T, Soria E, Gutierrez E, Galiotis C, Philippidis T, Voutsinas S, Hofmann D. Development of a mw scale wind turbine for high wind complex terrain sites; the MEGAWIND project. In: EWEC 2006. Athens, Greece: EWEA; 2006.

[6] Lim S, Kong C, Park H. A study on optimal design of filament winding composite tower for 2 mw class horizontal axis wind turbine systems. Int. J. Compos. Mater. 2013;3(1):15–23. doi: 10.5923/j.cmaterials.20130301.03.

[7] UDRI exploring composite towers for wind turbines. Compos. Technol. 2010;16(2):14 Trade publication.

[8] Kayaran A, Ibrahimoglu C.S. Preliminary study on the applicability of semi-geodesic winding in the design and manufacturing of composite towers. In: The Science of Making Torque from Wind 2012. 2012 doi: 10.1088/1742-6596/555/1/012059.

[9] Cotrell J, Stehly T, Johnson J, Roberts J, Parker Z, Scott G, Heimille D. Analysis of Transportation and Logistics Challenges Affecting the Deployment of Larger Wind Turbines: Summary of Results Technical Report NREL/TP 5000–61063 TP 5000-61063. National Renewable Energy Laboratory; 2014.

[10] Bromage A, Triclebank A.H, Halberstadt P.H, Magee B.J. Concrete Towers for Onshore and Offshore Wind Farms Tech. rep. UK: The Concrete Center and Gifford; 2007.

[11] DNV. Design of Offshore Wind Turbine Structures. 2013.

[12] Skaare B, Nielsen F.G, Hanson T.D, Yttervik R, Havmller O, Rekdal A. Analysis of measurements and simulations from the hywind demo floating wind turbine. Wind Energy. June 2015;18(6):1105–1122.

[13] Roddier D, Cermelli C, Aubault A, Weinstein A. WindFWind: a floating foundation for offhore wind turbines. J. Renew. Sustain. Energy. 2010;2(3).

[14] Dalhaug O, Berthelsen P, Kvamsdal T, Froyd L, Gjerde S, Zhang Z.Z, Cox K, Van Buren E, Zwick D. Specification of the NOWITECH 10 Mw Reference Wind Turbine Technical report. Trondheim, Norway: Norwegian Research Centre for Offshore Wind Technology; 2012.

[15] Lloyd Germanischer. Guideline for the Certification of Offshore Wind Turbines. 2012.

[16] EN 10025. 2004-European Structural Steel Standard. April 2004.

[17] EN 14399. High-Strength Structural Bolting Assemblies for Preloading. 2005.

[18] AWEA. Offshore Compliance Recommended Practices Recommended Practices for Design, Deployment and Operation of Offshore Wind Turbines in the United States. 2012.

[19] API. Planning, Designing and Constructing Fixed Offshore Platforms – Working Stress Design aPI RECOMMENDED PRACTICE 2A-WSD. November 2014.

[20] ISO. 19901-3:2014-Petroleum and Natural Gas Industries – Specific Requirements for Offshore Structures – Part 3: Topsides Structure. 2014.

[21] ISO. 19902:2007-Petroleum and Natural Gas Industries – Fixed Steel Offshore Structures. 2007.

[22] ISO. 19903:2006-Petroleum and Natural Gas Industries – Fixed Concrete Offshore Structures, Revised in 2010. 2006.

[23] IEC. 61400–1. Wind Turbines – Part 1: Design Requirements. 2005.

[24] NORSOK. M-501: Surface Preparation and Protective Coating. June 2004.

[25] ISO. 12944-2:1998 Paints and Varnishes – Corrosion Protection of Steel Structures by Protective Paint Systems – Part 2: Classification of Environments. 1998.

[26] ISO. 20340:2009 Paints and Varnishes – Performance Requirements for Protective Paint Systems for Offshore and Related Structures. 2009. https://www.iso.org/obp/ui/#iso:std:iso:20340:ed-2:v1:en.

[27] API. ANSI/API Recommended Practice 2met – Derivation of Metocean Design and Operating Conditions. November 2014.

[28] ISO. 19901-1:2005 (modified) – Petroleum and Natural Gas Industries – Specific Requirements for Offshore Structures – Part 1: Metocean Design and Operating Considerations, aNSI/API Recommended Practice 2MET. November 2014.

[29] DNV-Risø. Guidelines for Design of Wind Turbines. 2002.

[30] European Committee for Standardisation. Eurocode 3: Design of Steel Structures—Part 1–9: Fatigue. 2005.

[31] AISC. ANSI/AISC 360-10-Specification for Structural Steel Buildings, Supersedes the 2005 Edition. 2010.

[32] ACI. 318-14-Building Code Requirements for Structural Concrete and Commentary. 2014.

[33] ACI. 357R-84-Guide for the Design and Construction of Fixed Offshore Concrete Structures Reapproved 1997. 1984.

[34] European Committee for Standardisation. Eurocode 4: Design of Composite Steel and Concrete Structures Re-Approved 2004. 1994.

[35] European Committee for Standardisation. Eurocode 2: Design of Concrete Structures. December 2004.

[36] Model Code for Concrete Structures 2010. November 2013 434 p.

[37] NS 3473-Concrete Structures- Design Rules.

[38] ABS. Guide for Building and Classing – Floating Offshore Wind Turbine Installations Revised July 2014. January 2013.

[39] AWS. AWS 01.1:2000-Structural Welding Code- Steel. 2000.

[40] VDI-Fachbereich Produktentwicklung und Mechatronik. Vdi 2230 Systematic Calculation of Highly Stressed Bolted Joints -Part I. December 2014.

[41] DNV. Fatigue Design of Offhore Steel Structures. October 2012.

[42] ABS. Guide for Building and Classing – Bottom-founded Offshore Wind Turbine Installations Revised July 2014. January 2013.

[43] ABS. Guide for Buckling and Ultimate Strength Assessment for Offshore Structures. February 2014.

[44] ABS. Guide for Fatigue Assessment of Offshore Structures. February 2014.

[45] API. ANSI/API Recommended Practice 2sim – Structural Integrity Management of Fixed Offshore Structures. November 2014.

[46] API. ANSI/API Recommended Practice 2geo – Geotechnical and Foundation Design Considerations, Also ISO 19901-4:2003 (Modified), Petroleum and Natural Gas IndustriesSpecific Requirements for Offshore Structures, Part4Geotechnical and Foundation Design Considerations. November 2011.

[47] NORSOK. DNV NO304: Foundations. February 1992.

[48] IEC. 60364-Electrical Installations of Buildings -part 5-54: Selection and Erection of Electrical Equipment Earthing Arrangements, Protective Conductors and Protective Bonding Conductors. June 2002.

[49] ISO. 12944-1:1998 Paints and Varnishes – Corrosion Protection of Steel Structures by Protective Paint Systems – Part 1: General Introduction. 1998.

[50] ISO. 12944-8:1998 paints and Varnishes – Corrosion Protection of Steel Structures by Protective Paint Systems – Part 8: Development of Specifications for New Work and Maintenance. 1998.

[51] ISO. 19900:2013-Petroleum and Natural Gas Industries – General Requirements for Offshore Structures Revision to 2002 edition. 2013.

[52] Damiani R, Musial W. Factors affecting design and reliability of offshore wind turbines and supports for the vowtap project. In: AWEA OffshoreWind- Power 2013. Providence, RI: American Wind Energy Association; 2013 Poster.

[53] Damiani R, Musial W. Hurricane design guidance for us waters: engineering offshore wind systems to survive hurricanes. In: AWEA Offshore Wind- Power. Atlantic City, NJ: American Wind Energy Association; 2014 Invited Talk.

[54] Moses F, Russell L. Applicability of Reliability Analysis in Offshore Design Practice: Api-prac Project 79–22 Final report, Tech. rep. 1220 L Street, NW, Washington, DC 20005: American Petroleum Institute, API Publishing Services; 1980.

[55] DNV. Guideline for Offshore Structural Reliability Analysisapplications to Jackets Tech. Rep. 95–3203. Veritasveien 1-N-1322 HVIK, Norway: Det Norske Veritas AS; November 1996 Joint Industry Project.

[56] Stewart G, Efthymiou M, Vughts J. Ultimate strength and integrity assessment of fixed offhore platforms. In: Moan T, Janbu N, Faltinsen O, eds. International Conference on Behaviour of Offshore Structures (BOSS1988). Trondheim, Norway: Tapir Publishers; 1988:1205–1221.

[57] Kübler O, Faber M. Optimality and acceptance criteria in offshore design. J. Offshore Mech. Arct. Eng. 2004;3(126):258–264. doi: 10.1115/1.1782641.

[58] Ersdal G, Kübler O, Faber M.H, Sørensen J.D, Haver S, Langen I. Economic optimal reserve strength for a jacket structure. In: ASRANet International Colloquium 2004, Barcelona, Spain. 2004.

[59] I. Energo Engineering. Reliability vs. Consequence of Failure for API RP2A Platforms Using RP2MET Final Report 609. 381 Elden St., Herndon, VA 20170: US DOI – MMS; March 2009.

[60] Efthymiou M, van de Graaf J.W. Reliability and (re)assessment of fixed steel structures. In: ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2011). vol. 3. Rotterdam, The Netherlands: ASME; 2011:745–754. doi: 10.1115/OMAE2011-50253.

[61] Din 1055-4 (2005-03). Action on Structures – Part 4: Wind Loads. March 2005.

[62] European Committee for Standardisation. Eurocode 1: Actions on Structures—Part 1-4: General Actions—wind Actions. April 2010.

[63] SEI. Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers. 2005 aSCE Standard, ASCE/SEI 7–05.

[64] SEI. Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7–10). third ed. 1801 Alexander Bell Drive, Reston, Virginia 20191: American Society of Civil Engineers; 2010 ASCE Standard, ASCE/SEI 7–10.

[65] Burton T, Sharpe D, Jenkins N, Bossanyi E. Wind Energy Handbook. first ed. 111 River St., Hoboken, NJ 07030, USA: JohnWiley and Sons, Inc.; 2005.

[66] Peters D.A, He C.J. Correlation of measured induced velocities with a finite-state wake model. J. Am. Helicopter Soc. 1991;36(3):59–70.

[67] Damiani R. Algorithmic Outline of Unsteady Aerodynamics (Aerodyn) Modules RRD Engineering, LLC Final Report Subcontract No. AFT-1-11326-01. Golden, CO: NREL; September 2011.

[68] Manwell J.F, Mcgowan J.G, Rogers A.L. Wind Energy Explained: Theory, Design and Application. second ed. Chichester, West Sussex, PO19 8SQ, United Kingdom: John Wiley & Sons, Ltd.; 2010 705 p.

[69] Adhikari S, Bhattacharya S. Vibrations of wind-turbines considering soilstructure interaction. Wind Struct. 2011;14(2):85–112.

[70] Fischer T, de Vries W. Final Report Task 4.1-Deliverable d 4.1.5-(wp4: Offshore Foundations and Support Structures), Upwind Project 4.1. Allmandring 5B, 70569 Suttgart, Germany: Universit at Stuttgart; 2011 Contract No.:019945 (SES6).

[71] Prowell I, Elgamal A, Uang C.-M, Luci J.E, Romanowitz H, Duggan E. Shake table testing and numerical simulation of a utility-scale wind turbine including operational effects. Wind Energy. 2013;17(7):997–1016. doi: 10.1002/we.1615.

[72] Murtagh P.J, Basu B, Broderick B.M. Gust response factor methodology for wind turbine tower assemblies. J. Struct. Eng. 2007;133(1):139–144. doi: 10.1061/(ASCE)0733-9445(2007)133:1(139).

[73] Wheeler J.D. Method for calculating forces produced by irregular waves. J. Pterol. Eng. 1970;249:359–367.

[74] Chakrabarti S.K. Hydrodynamics of Offhore Structures. Southampton, UK: WIT Press; 1987 440 p.

[75] Lloyd Germanischer. Guideline for the Construction of Fixed Offhore Installations in Ice Infested Waters. 2005.

[76] European Committee for Standardisation. Eurocode 8: Design of Structures for Earthquake Resistance Part 1: General Rules, Seismic Actions and Rules for Buildings. December 2004.

[77] Kjörlaug R.E, Kaynia A, Elgamal A. Seismic response of wind turbines due to earthquake and wind loading. In: Cuhna A, E. Caetano, Ribeiro P, Müller G, eds. 9th International Conference on Structural Dynamics, EURODYN2014, Porto, Portugal. 2014.

[78] Huang H, Ma J, Xu R, Wu X. Seismic consideration for high rise concrete wind turbine towers. In: 14th World Conference on Earthquake Engineering, Bejiing, China. 2008.

[79] Passon P, Khn M, Butterfield S, Jonkman J, Camp T, Larsen T. OC3 benchmark exercise of aero-elastic offshore wind turbine codes. J. Phys. Conf. Ser. 2007;75(012071) doi: 10.1088/1742-6596/75/1/012071 The Science of Making Torque from Wind.

[80] Popko W, Vorpahl F, Zuga A, Kohlmeier M, Jonkman J, Robertson A. Offshore code comparison collaboration continuation (OC4), phase i results of coupled simulation of offshore wind turbine with jacket support structure. In: 22nd International Offshore and Polar Engineering Conference (ISOPE). vol. 1. Rhodes, Greece: ISOPE; 2012:337–346.

[81] Popko W, Vorpahl F, Jonkman J, Robertson A. OC3 and OC4 projects verification benchmark of the state-of-the-art coupled simulation tools for offshore wind turbines. In: 7th European Seminar Offshore Wind and Other Marine Renewable Energies in Mediterranean and European Seas (OWEMES), Rome, Italy. 2012:403–407.

[82] ANSI. Specification for Structural Steel Buildings 3rd printing: 2013. June 2010.

[83] European Committee for Standardisation. Eurocode 3: Design of Steel Structures—Part 1–1: Genstructures and Rules for Buildings. 2005.

[84] DNV. Offshore Standard DNV-OS-C501-composite Components. October 2010.

[85] Palmgren A.Z. Die lebensdauer von kugellagcrn. Z. Ver. Deutsch. Ing. 1924;68:339–341.

[86] Miner M. Cumulative damage in fatigue. J. Appl. Mech. 1945;12:A159–A164.

[87] Downing S.D, Socie D.F. Simple rainflow counting algorithms. Int. J. Fatigue. 1982;4(1):31–40.

[88] Veljkovic M, Heistermann C, Husson W, Limam M, Feldmann M, Naumes J, Pak D, Faber T, Klose M, Fruhner K, Krutschinna L, Baniotopoulos C, Lavasas I, Pontes A, Ribeiro E, Hadden M, Sousa R, da Silva L, Rebelo C, Simoes R, Henriques J, Matos R, Nuutinen J, Kinnunen H. High-Strength Tower in Steel for Wind Turbines (Histwin) Final Report EUR 25127 EN. Luxembourg, Europe: Directorate-General for Research and Innovation – European Commission; 2012 Contract No RFSR-CT-2006–00031.

[89] C. Petersen, Grundlagen der berechnung und baulichen ausbildung von stahlbauten, Stahlbau 66, Vieweg-Verlag, Braunschweig, Germany.

[90] Schaumann P, Seidel M. Failure analysis of bolted steel flanges. In: Zhao X, Grzebieta R, eds. Proceedings of the 7th International Symposium on- Structural Failure and Plasticity (IMPLAST 2000), Melbourne, Australia. 2000.

[91] Juvinall R, Marshek K. Fundamentals of Machine Component Design. fifth ed. 111 River Street, Hoboken, NJ: John Wiley & Sons, Inc.; 2012.

[92] Brown K, Morrow C, Durbin S, Baca A. Guideline for Bolted Joint Design and Analysis: Version 1.0 SANDIA REPORT SAND2008–0371. Albuquerque, New Mexico: Sandia National Laboratories; January 2008.

[93] Schmidt H, Neuper M. Zum elastostatischen tragverhalten exzentrisch gezogener l-ste mit vorgespannten schrauben. Stahlbau. 1997;66(3):163–168.

[94] Seidel M. Zur bemessung geschraubter ringflanschverbindungen von windenergieanlagen (Ph.D. thesis). Hannover, Germany: Hannover University; 2001.

[95] Brodersen M, Hgsberg J. Damping of offshore wind turbine tower vibrations by a stroke amplifying brace. In: Energy Procedia. ERA Deep-Wind 2014, 11th Deep Sea Offshore Wind R&D Conference, Trondheim, Norway. vol. 53. 2014:258–267.

[96] Tsouroukdissian A, Carcangiu C, Pineda I, Fischer T, Kuhnle B, Scheu M, Martin M. Wind turbine tower load reduction using passive and semi-active dampers. In: EWEA 2011. 2011.

[97] Sigaher A, Constantinou M. Scissor-jack-damper energy dissipation system. Earthq. Spectra. 2003;19(1):133–158 eERI.

[98] Constantinou M, Tsopelas P, Hammel W, Sigaher A. Toggle-brace-damper seismic energy dissipation systems. J. Struct. Eng. 2001;127(2):105–112 aSCE.

[99] Gao H, Kwok K, Samali B. Optimization of tuned liquid column dampers. Eng. Struct. 1997;19(6):476–486.

[100] Colwell S, Basu B. Tuned liquid column dampers in offshore wind turbines for structural control. Eng. Struct. 2008;31(2):358–368. doi: 10.1016/j.engstruct.2008.09.001.

[101] Roderick C. Vibration Reduction of Offshore Wind Turbines Using Tuned Liquid Column Dampers, Mechanical Engineering. Amherst, MA: University of Massachusetts Amherst; September 2012.

[102] Wilmink A, Hengeveld J. Application of tuned liquid column dampers in wind turbines. In: EWEC 2006. Athens, Greece: EWEA; 2006.

[103] Li J, Zhang Z, Chen J. Experimental study on vibration control of offshore wind turbines using a ball vibration absorber. Energy Power Eng. 2012;4:153–157. doi: 10.4236/epe.2012.43021.

[104] Pirner M. Acutal behavior of a ball vibration absorber. Wind Eng. Ind. Aerod. 2002;90(8):987–1005.

[105] Fitzgerald B, Basu B. Active tuned mass damper control of wind turbine nacelle/tower vibrations with damaged foundations. Key Eng. Mater. 2013;569–570:660–667. doi: 10.4028/www.scientific.net/KEM.569-570.660.

[106] Stewart G.M. Load Reduction of Floating Wind Turbines Using Tuned Mass Dampers, Mechanical Engineering. Amherst, Amherst, MA: University of Massachusetts; February 2012.

[107] Dowling N.E. Mechanical Behavior of Materials – Engineering Methods for Deformation, Fracture, and Fatigue. fourth ed. Prentice Hall; 2012:960.

[108] Barsom J, Rolfe S.T. Fracture and Fatigue Control in Structures third ed. third ed. Applications of Fracture Mechanics. 100 Barr Harbor Dr., West Conshohocken, PA 19428-2959: ASTM; 1999:548.

[109] Suresh S. Fatigue of Materials. second ed. Cambridge University Press; 1998 doi: 10.1017/CBO9780511806575.

[110] Gangloff R.P. Corrosion Tests and Standards No. MNL 20 in ASTM Manual Series. second ed. West Conshohocken, PA: ASTM; 2005:302–322 Astm Manudal Series 26- Environmental Cracking – Corrosion Fatigue.

[111] Lee H.H, Uhlig H.H. Corrosion fatigue of type 4140 high strength steel. Metall. Trans. 1972;3(11):2949–2957.

[112] Momber A. Corrosion and corrosion protection of support structures for offshore wind energy devices (owea). Mater. Corros. 2011;62(5):391–404. doi: 10.1002/maco.201005691.

[113] Sheppard R, Puskar F.J. MMS TA&R Project 627 Inspection Methodologies for Offshore Wind Turbine Facilities Final Report Energo Report Energo Project No.: E08147. Houston, TX: Minerals Management Service (MMS); January 2009.

[114] Mühlberg K. Corrosion protection on offshore wind turbines a challenge for the steel builder and paint manufacturer. J. Prot. Coat. Linings. 2010;27(3):20–32.

[115] Sheppard R.E, Puskar F.J, Waldhart C. Inspection guidance for offshore wind turbine facilities. In: OTC, ed. Offshore Wind Energy Special Session- Offshore Technology Conference. Houston, TX: OTC; 2010 doi: 10.4043/20656-MS.

[116] Hogg P. Durability of wind turbine materials in offshore environments. In: SUPERGEN Wind Phase 2–4th Training Seminar. Manchester, UK: SUPERGEN Wind; 2012.

[117] de Jong M. Adaptations to a Marine Climate, Salt and Water OWEZr11120101020. Results Corrosion Inspections Offshore Wind Farm Egmond aan Zee, 2007–2009 Tech. Rep. 50863231 – TÜS/NRI10-2242. Arnhem; The Netherlands: KEMA Nederland B.V; October 2010.

[118] Hilbert L.R, Black A.R, Andersen F, Mathiesen T. Inspection and monitoring of corrosion inside monopile foundations for offshore wind turbines. In: E. Conference, ed. Eurocorr 2011, no. 4730. Stockholm, Sweden: EFC; 2011.

[119] Black A.R. Hi, Corrosion monitoring of offshore wind foundation structures. In: EWEA Offshore 2013. EWEA; 2013.

[120] Van der Tempel J. Design of Support Structures for Offhore Wind Turbines (Ph.D. thesis). Stevinweg 1, 2628 CN Delft, The Netherlands: TU Delft; April 2006 209 p.

[121] Muskulus M, Schafhirt S. Design optimization of wind turbine support structures-a review. J. Ocean Wind Energy. 2014;1(1):12–22.

[122] Dykes K, Meadows R, Felker F, Graf P, Hand M, Lunacek M, Michalakes J, Moriarty P, Musial W, Veers P. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems Tech. Rep. TP-5000–52616. 1617 Cole Boulevard, Golden, Colorado: NREL; December 2011 Contract No. DE-AC36-08GO28308.

[123] AWEAWindPower 2012. Atlanta, GA: AWEA; 2012:1 Poster NREL/PO-5000-54717.

[124] Dixon K, Mayda E. Blade design at siemens wind power. In: NREL 2nd Wind Energy Systems Engineering Workshop. NREL; 2013 Presentation.

[125] S.A. Ning, R. Damiani, P.J. Moriarty, Objectives and constraints for wind turbine optimization, J. Solar Energy Eng. 136(4), 12.

[126] http://www.fusedwind.org/.

[127] Christensen P.W, Klarbring A. An Introduction to Structural Optimization. Solid Mechanics and Its Applications. vol. 153. Springer; 2009.

[128] Arora J. Introduction to Optimum Design. third ed. 225 Wyman St., Waltham, MA 02451, USA: Academic Press – Elsevier; 2011 896 p.

[129] Burns S.A. Recent Advances in Optimal Structural Dlesign. SEI-ASCE; 2002 312 p.

[130] Levy R, Lev O. Recent developments in structural optimization. J. Struct. Eng. ASCE. 1987;113(9):1939–1962.

[131] Kamat M.P. Structural Optimization: Status and Promise. Progress in Astronautics and Aeronautics. vol. 150. AIAA; 1993.

[132] Cherkaev A. Variational Methods for Structural Optimization. Applied Mathematical Sciences. vol. 140. New York, Berlin, Heidelberg: Springer-Verlag; 2000 627 p. http://www.math.utah.edu/books/vmso/.

[133] Damiani R, Song H. A jacket sizing tool for offshore wind turbines within the systems engineering initiative. In: Offshore Technology Conference, Houston, Texas, USA. 2013 doi: 10.4043/24140- MS.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset