Bibliography

  [1]  H. Abdi and L. J. Williams, Jackknife, Encyclopedia of Research Design, Sage, 2010, pp. 655–660.

  [2]  D. Achlioptas, Database-friendly random projections: Johnson-Lindenstrauss with binary coins, Journal of Computer and Systems Sciences 66 (2003), 671–687.

  [3]  A. Adelfio, V. Volpato and G. Pollastri, SCLpredT: Ab initio and homology-based prediction of subcellular localization by N-to-1 neural networks, SpringerPlus 2 (2013), 1–11.

  [4]  B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular biology of the cell, 4, ch. 10-18, Garland Science, 2002.

  [5]  S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D. J. Lipman, Gapped BLAST and PSI-BLAST: A new generation of protein database search programs, Nucleic Acids Res. 25 (1997), 3389–3402.

  [6]  R. Apweiler, A. Bairoch, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Ntale, C. O’Donovan, N. Redaschi and L. S. Yeh, UniProt: the Universal Protein knowledgebase, Nucleic Acids Res 32 (2004), D115–D119.

  [7]  T. K. Attwood, M. D. R. Croning, D. R. Flower, A. P. Lewis, J. E. Mabey, P. Scordis, J. Selley and W. Wright, PRINTS-S: the database formerly known as PRINTS, Nucleic 28 (2000), 225–227.

  [8]  R. Auckenthaler, M. Carey and H. Lloyd-Thomas, Score normalization for text-independent speaker verification systems, Digital Signal Processing 10 (2000), 42–54.

  [9]  T. Bakheet and A. Doig, Properties and identification of human protein drug targets, Bioinformatics 25 (2009), 451–457.

[10]  D. Barrel, E. Dimmer, R. P. Huntley, D. Binns, C. O’Donovan and R. Apweiler, The GOA database in 2009 – an integrated Gene Ontology Annotation resource, Nucl. Acids Res. 37 (2009), D396–D403.

[11]  Z. Barutcuoglu, R. E. Schapire and O. G. Troyanskaya, Hierarchical multi-label prediction of gene function, Bioinformatics 22 (2006), 830–836.

[12]  A. Bateman, E. Birney, R. Durbin, S. Eddy, K. L. Howe and E. L. Sonnhammer, The Pfam Protein Families Database, Nucleic 28 (2000), 263–266.

[13]  J. D. Bendtsen, H. Nielsen, G. von Heijne and S. Brunak, Improved prediction of signal peptides: SignalP 3.0, J. Mol. Biol. 340 (2004), 783–795.

[14]  Y. Bengio, O. Delalleau and N. L. Roux, The curse of dimensionality for local kernel machines , Universite de Montreal, Report, 2005.

[15]  M. Bhasin and G. P. S. Raghava, ESLpred: SVM based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST, Nucleic Acids Res. 32 (2004), 414–419.

[16]  E. Bingham and H. Mannila, Random projection in dimension reduction: Applications to image and text data, in: the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’01), pp. 245–250, 2001.

[17]  D. Binns, E. Dimmer, R. Huntley, D. Barrell, C. O’Donovan and R. Apweiler, QuickGO: a web-based tool for Gene Ontology searching, Bioinformatics 25 (2009), 3045–3046.

[18]  T. Blum, S. Briesemeister and O. Kohlbacher, MultiLoc2: Integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction, BMC Bioinformatics 10 (2009), 274.

[19]  O. Bodenreider, M. Aubry and A. Burgun, Non-lexical approaches to identifying associative relations in the gene ontology, in: Pac. Symp. Biocomput., pp. 91–102, 2005. 178

[20]  B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher, E. Gasteiger, M. J. Martin, K. Michoud, C. O’Donovan, I. Phan, S. Pilbout and M. Schneider, The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003, Nucleic Acids Res. 31 (2003), 365–370.

[21]  M. Boutell, J. Luo, X. Shen and C. Brown, Learning multi-label scene classification, Pattern Recognition 37 (2004), 1757–1771.

[22]  S. Brady and H. Shatkay, EpiLoc: a (working) text-based system for predicting protein subcellular location, in: Pac. Symp. Biocomput., pp. 604–615, 2008.

[23]  C. L. Branden and J. Tooze, Introduction to protein structure, pp. 251–281, Garland Science, 1991.

[24]  S. Briesemeister, T. Blum, S. Brady, Y. Lam, O. Kohlbacher and H. Shatkay, SherLoc2: A high-accuracy hybrid method for predicting subcellular localization of proteins, Journal of Proteome Research 8 (2009), 5363–5366.

[25]  G. S. Butler and C. M. Overall, Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting, Nat. Rev. Drug Discov. 8 (2009), 935–948.

[26]  E. Camon, M. Magrane, D. Barrel, D. Binns, W. Fleischnann, P. Kersey, N. Mulder, T. Oinn, J. Maslen and A. Cox, The gene ontology annotation (GOA) project: Implementation of GO in SWISS-PROT, TrEMBL and InterPro, Genome Res. 13 (2003), 662–672.

[27]  E. J. Candes and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Transactions on Information Theory 52 (2006), 5406–5425.

[28]  J. Cedano, P. Aloy, J. A. Perez-Pons and E. Querol, Relation between amino acid composition and cellular location of proteins, J. Mol. Biol. 266 (1997), 594–600.

[29]  J. Chabalier, J. Mosser and A. Burgun, A trasversal approach to predict gene product networks from ontology-based similarity, BMC Bioinformatics 8 (2007), 235.

[30]  Y. Chen, C. F. Chen, D. J. Riley, D. C. Allred, P. L. Chen, D. V. Hoff, C. K. Osborne and W. H. Lee, Aberrant Subcellular Localization of BRCA1 in Breast Cancer, Science 270 (1995), 789–791.

[31]  J. Cheng, M. Cline, J. Martin, D. Finkelstein, T. Awad and et al., A knowledge-based clustering algorithm driven by gene ontology, Journal of Biopharmaceutical Statistics 14 (2004), 687–700.

[32]  S.-M. Chi and D. Nam, WegoLoc: accurate prediction of protein subcellular localization using weighted Gene Ontology terms, Bioinformatics 28 (2012), 1028–1030.

[33]  K. C. Chou, Prediction of protein structural classes and subcellular locations, Current Protein Peptide Science 1 (2000), 171–208.

[34]  K. C. Chou, Prediction of Protein Subcellular Locations by Incorporating Quasi-Sequence-Order Effect, Biochem. Biophys. Res. Commun. 278 (2000), 477–483.

[35]  K. C. Chou, Prediction of protein cellular attributes using pseudo amino acid composition, Proteins: Structure, Function, and Genetics 43 (2001), 246–255.

[36]  K. C. Chou, Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes, Bioinformatics 21 (2005), 10–19.

[37]  K. C. Chou, Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review), Journal of Theoretical Biology 273 (2011), 236–247.

[38]  K. C. Chou, Some remarks on predicting multi-label attributes in molecular biosystems, Molecular BioSystems 9 (2013), 1092–1100.

[39]  K. C. Chou and Y. D. Cai, Prediction and classification of protein subcellular location: sequence-order effect and pseudo amino acid composition, J. of Cell. Biochem. 90 (2003), 1250–1260.

 [40]  K. C. Chou and Y. D. Cai, Predicting subcellular localization of proteins by hybridizing functional domain composition and pseudo-amino acid composition, Journal of Cellular Biochemistry 91 (2004), 1197–1203. 179

[41]  K. C. Chou and Y. D. Cai, Prediction of protein subcellular locations by GO-FunD-PseAA predictor, Biochem. Biophys. Res. Commun. 320 (2004), 1236–1239.

[42]  K. C. Chou and Y. D. Cai, Predicting protein localization in budding yeast, Bioinformatics 21 (2005), 944–950.

[43]  K. C. Chou and D. W. Elord, Protein subcellular location prediction, Protein Eng. 12 (1999), 107–118.

[44]  K. C. Chou and H. B. Shen, Hum-PLoc: A novel ensemble classifier for predicting human protein subcellular localization, Biochem Biophys Res Commun 347 (2006), 150–157.

[45]  K. C. Chou and H. B. Shen, Large-scale predictions of gram-negative bacterial protein subcellular locations, Journal of Proteome Research 5 (2006), 3420–3428.

[46]  K. C. Chou and H. B. Shen, Predicting Eukaryotic Protein Subcellular Location by Fusing Optimized Evidence-Theoretic K-Nearest Neighbor Classifiers, J. of Proteome Research 5 (2006), 1888–1897.

[47]  K. C. Chou and H. B. Shen, Euk-mPLoc: A fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites, Journal of Proteome Research 6 (2007), 1728–1734.

[48]  K. C. Chou and H. B. Shen, Cell-PLoc: A package of web-servers for predicting subcellular localization of proteins in various organisms, Nature Protocols 3 (2008), 153–162.

[49]  K. C. Chou and H. B. Shen, A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple site: Euk-mPLoc 2.0, PLoS ONE 5 (2010), e9931.

[50]  K. C. Chou and H. B. Shen, Cell-PLoc 2.0: An improved package of web-servers for predicting subcellular localization of proteins in various organisms, Nat. Sci. 2 (2010), 1090–1103.

[51]  K. C. Chou and H. B. Shen, Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization, PLoS ONE 5 (2010), e11335.

[52]  K. C. Chou, Z. C. Wu and X. Xiao, iLoc-Euk: A multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins, PLoS ONE 6 (2011), e18258.

[53]  K. C. Chou, Z. C. Wu and X. Xiao, iLoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites, Molecular BioSystems 8 (2012), 629–641.

[54]  K. C. Chou and C. T. Zhang, Review: Prediction of protein structural classes, Critical Reviews in Biochemistry and Molecular Biology 30 (1995), 275–349.

[55]  A. Clare and R. D. King, Knowledge discovery in multi-label phenotype data, in: Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery, pp. 42–53, 2001.

[56]  T. I. Consortium, The InterPro database, an integrated documentation resource for protein families, domain and functional sites, Nucleic 29 (2001), 37–40.

[57]  F. Corpet, F. Servant, J. Gouzy and D. Kahn, ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons, Nucleic 28 (2000), 267–269.

[58]  F. M. Couto, M. J. Silva and P. M. Coutinho, Semantic similarity over the gene ontology: Family correlation and selecting disjunctive ancestors, in: Proceedings of 14-th International ACM Conference in Information and Knowledge Management, pp. 343–344, 2005.

[59]  S. Dasgupta, Learning mixtures of Gaussians, in: 40th Annual IEEE Symposium on Foundations of Computer Science,, pp. 634–644, 1999.

[60]  K. Dembczynski, W. Waegeman, W. Cheng and E. Hullermeier, On label dependence and loss minimization in multi-label classification, Machine Learning 88 (2012), 5–45.

[61]  T. G. Dietterich and g. Bakari, Solving multiclass learning problem via error-correcting output codes, Journal of Artificial Intelligence Research (1995), 263–286. 180

[62]  A. Elisseeff and J. Weston, Kernel methods for Multi-labelled classification and Categorical regression problems, in: In Advances in Neural Information Processing Systems 14, pp. 681–687, MIT Press, 2001.

[63]  O. Emanuelsson, Predicting protein subcellular localisation from amino acid sequence information, Briefings in Bioinformatics 3 (2002), 361–376.

[64]  O. Emanuelsson, S. Brunak, G. von Heijne and H. Nielsen, Locating proteins in the cell using TargetP, SignalP, and related tools, Nature Protocols 2 (2007), 953–971.

[65]  O. Emanuelsson, H. Nielsen, S. Brunak and G. von Heijne, Predicting subcellular localization of proteins based on their N-terminal amino acid sequence, J. Mol. Biol. 300 (2000), 1005–1016.

[66]  O. Emanuelsson, H. Nielsen and G. von Heijne, ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites, Protein Science 8 (1999), 978–984.

[67]  O. Emanuelsson, G. von Heijne and G. Schneider, Analysis and prediction of mitochondrial targeting peptides, Methods in Cell Biology 65 (2001), 175–187.

[68]  D. Faria, C. Pesquita, F. M. Couto and A. Falcão, ProtelnOn: A web tool for protein semantic similarity, 2007.

[69]  G. Forman, An extensive empirical study of feature selection metrics for text classification, The Journal of Machine Learning Research 3 (2003), 1289–1305.

[70]  L. J. Foster, C. L. D. Hoog, Y. Zhang, Y. Zhang, X. Xie, V. K. Mootha and M. Mann, A mammalian organelle map by protein correlation profiling, Cell 125 (2006), 187–199.

[71]  P. Frankl and H. Maehara., The Johnson-Lindenstrauss lemma and the sphericity of some graphs, Journal of Combinatorial Theory, Series Β 44 (1988), 355–362.

[72]  Y. Freund and R. Schapire, A short introduction to boosting, Journal of Japanese Society for Artificial Intelligence 14 (1999), 1612.

[73]  A. Fyshe, Y. Liu, D. Szafron, R. Greiner and P. Lu, Improving subcellular localization prediction using text classification and the gene ontology, Bioinformatics 24 (2008), 2512–2517.

[74]  W. Gao and Z.-H. Zhou, On the consistency of multi-label learning, Artificial Intelligence 199–200 (2013), 22–44.

[75]  A. Garg, M. Bhasin and G. P. S. Raghava, Support Vector Machine-based method for subcellular localization of human proteins using amino acid compositions, their order and similarity search, J. of Biol. Chem. 280 (2005), 14427–14432.

[76]  N. Ghamrawi and A. McCallum, Collective multi-label classification, in: Proceedings of the 2005 ACM Conference on Information and Knowledge Management (CIKM’05), pp. 195–200, 2005.

[77]  L. M. Gierasch, Signal sequences, Biochemistry 28 (1989), 923–930.

[78]  L. Gillick and S. J. Cox, Some statistical issues in the comparison of speech recognition algorithms, in: 1989 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’89), IEEE, pp. 532–535, 1989.

[79]  S. Godbole and S. Sarawagi, Discriminative Methods for Multi-Labeled Classification, in: Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 22–30, Springer, 2004.

[80]  T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri et al., Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science 286 (1999), 531–537.

[81]  B. M. Gumbiner, Cell adhesion: the molecular basis of tissue architecture and morphogenesis, Cell 84 (1996), 345–357. 181

[82]  X. Guo, R. Liu, C. D. Shriver, H. Hu and M. N. Liebman, Assessing semantic similarity measures for the characterization of human regulatory pathways, Bioinformatics 22 (2006), 967–973.

[83]  I. Guyon, J. Weston, S. Barnhill and V. Vapnik, Gene selection for cancer classification using support vector machines, Machine Learning 46 (2002), 389–422.

[84]  P. H. Guzzi, M. Mina, C. Guerra and M. Cannataro, Semantic similarity analysis of protein data: assessment with biological features and issues, Briefings in Bioinformatics 13 (2012), 569–585 (eng).

[85]  A. Hadgu, An application of ridge regression analysis in the study of syphilis data, Statistics in Medicine 3 (1984), 293–299.

[86]  T. Hastie, R. Tibshirani and J. Friedman, The element of statistical learning, Springer-Verlag, 2001.

[87]  A. Hayama, T. Rai, S. Sasaki and S. Uchida, Molecular mechanisms of Bartter syndrome caused by mutations in the BSND gene, Histochem. and Cell Biol. 119 (2003), 485–493.

[88]  J. He, H. Gu and W. Liu, Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites, PLoS ONE 7 (2011), e37155.

[89]  G. Heijne, J. Steppuhn and R. G. Herrmann, Domain structure of mitochondrial and chloroplast targeting peptides, European Journal of Biochemistry 180 (1989), 535–545.

[90]  K. Hiller, A. Grote, M. Scheer, R. Munch and D. Jahn, PrediSi: Prediction of signal peptides and their cleavage positions, Nucleic Acids Research 32 (2004), 375–379.

[91]  K. Hofmann, P. Bucher, L. Falquet and A. Bairoch, The PROSITE database, its status in 1999, Nucleic 27 (1999), 215–219.

[92]  A. Hoglund, P. Donnes, T. Blum, H. Adolph and O. Kohlbacher, MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition, Bioinformatics 22 (2006), 1158–1165.

[93]  T. P. Hopp and K. R. Woods, Prediction of protein antigenic determinants from amino acid sequences, Proceedings of the National Academy of Sciences 78 (1981), 3824–3828.

[94]  P. Horton, K. J. Park, T. Obayashi and K. Nakai, Protein subcellular localization prediction with WOLF PSORT, in: Proc. 4th Annual Asia Pacific Bioinformatics Conference (APBC06), pp. 39–48, 2006.

[95]  D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, second ed, Wiley, 2000.

[96]  D. Hsu, S. M. Kakade, J. Langford and T. Zhang, Multi-label prediction via compressed sensing, in: Advances in Neural Information Processing Systems 22, pp. 772–780, 2009.

[97]  Y. Hu, T. Li, J. Sun, S. Tang, W. Xiong, D. Li, G. Chen and P. Cong, Predicting Gram-positive bacterial protein subcellular localization based on localization motifs, Journal of Theoretical Biology 308 (2012), 135–140.

[98]  D. W. Huang, B. T. Sherman, Q. Tan, J. R. Collins, W. G. Alvord, J. Roayaei, R. Stephens, M. W. Baseler, H. C. Lane and R. A. Lempicki, The DAVID Gene Functional Classification Tool:a novel biological module-centric algorithm to functionally analyze large gene lists, Genome Biology 8 (2007).

[99]  W. L. Huang, C. W. Tung, S. W. Ho, S. F. Hwang and S. Y. Ho, ProLoc-GO: Utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization, BMC Bioinformatics 9 (2008), 80.

[100]  W. L. Huang, C. W. Tung, S. W. Ho, S. F. Hwang and S. Y. Ho, Predicting protein subnuclear localization using GO-amino-acid composition features, Biosystems 98 (2009), 73–79.

[101]  Y. Huang and Y. D. Li, Prediction of protein subcellular locations using fuzzy K-NN method, Bioinformatics 20 (2004), 21–28. 182

[102]  M. C. Hung and W. Link, Protein localization in disease and therapy, J. of Cell Sci. 124 (2011), 3381–3392.

[103]  J. J. Jiang and D. W. Conrath, Semantic similarity based on corpus statistics and lexical taxonomy, in: Proceedings of International Conference Research on Computational Linguistics (ROCLING X), pp. 19–33, 1997.

[104]  W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, in: Conference in Modern Analysis and Probability, pp. 599–608, 1984.

[105]  I. Katakis, G. Tsoumakas and I. Vlahavas, Multilabel text classification for automated tag suggestion, in: Proceedings of the ECML/PKDD 2008 Discovery Challenge, 2008.

[106]  M. D. Kaytor and S. T. Warren, Aberrant Protein Deposition and Neurological Disease, J. Biol. Chem. 274 (1999), 37507–37510.

[107]  J. K. Kim, G. P. S. Raghava, S. Y. Bang and S. Choi, Prediction of subcellular localization of proteins using pairwise sequence alignment and support vector machine, Pattern Recog. Lett. 27 (2006), 996–1001.

[108]  J. Kittler, M. Hatef, R. P. W. Duin and J. Matas, On combining classifiers, IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1998), 226–239.

[109]  T. Kleffmann, D. Russenberger, A. von Zychlinski, W. Christopher, K. Sjolander, W. Gruissem and S. Baginsky, The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions, Current Biology 14 (2004), 354–362.

[110]  U. Kressel, Pairwise classification and support vector machines, in: Advances in Kernel Methods: Support Vector Learning, Chap. 15. MIT Press, 1999.

[111]  V. Krutovskikh, G. Mazzoleni, N. Mironov, Y. Omori, A. M. Aguelon, M. Mesnil, F. Berger, C. Partensky and H. Yamasaki, Altered homologous and heterologous gap-junctional intercellular communication in primary human liver tumors associated with aberrant protein localization but not gene mutation of connexin 32, Int. J. Cancer 56 (1994), 87–94.

[112]  S. Y. Kung and M. W. Mak, On consistent fusion of multimodal biometrics, in: 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’06), 5, IEEE, pp. V1085–V1088, 2006.

[113]  S. Y. Kung, M. W. Mak and S. H. Lin, Biometric authentication: a machine learning approach, Prentice Hall Press, 2005.

[114]  M. Kurimo, Indexing audio documents by using latent semantic analysis and SOM, in: Kohonen Maps, pp. 363–374, Elsevier, 1999.

[115]  K. Y. Lee, H. Y. Chuang, A. Beyer, M. K. Sung, W. K. Huh, B. Lee and T. Ideker, Protein networks markedly improve prediction of subcellular localization in multiple eukaryotic species, Nucleic Acids Research 36 (2008), e136.

[116]  K. Y. Lee, D. W. Kim, D. K. Na, K. H. Lee and D. H. Lee, PLPD: Reliable protein localization prediction from imbalanced and overlapped datasets, Nucleic Acids Research 34 (2006), 4655–4666.

[117]  X. Lee, J. C. J. Keith, N. Stumm, I. Moutsatsos, J. M. McCoy, C. P. Crum, D. Genest, D. Chin, C. Ehrenfels, R. Pijnenborg, F. A. V. Assche and S. Mi, Downregulation of placental syncytin expression and abnormal protein localization in pre-eclampsia, Placenta 22 (2001), 808–812.

[118]  Z. Lei and Y. Dai, Assessing protein similarity with Gene Ontology and its use in subnuclear localization prediction, BMC Bioinformatics 7 (2006), 491.

[119]  F. M. Li and Q. Z. Li, Predicting protein subcellular location using Chou’s pseudo amino acid composition and improved hybrid approach, Protein and Peptide Letters 15 (2008), 612–616.

[120]  L. Q. Li, Y. Zhang, L. Y. Zou, C. Q. Li, B. Yu, X. Q. Zheng and Y. Zhou, An ensemble classifier for eukaryotic protein subcellular location prediction using Gene Ontology categories and amino acid hydrophobicity, PLoS ONE 7 (2012), e31057. 183

[121]  L. Q. Li, Y. Zhang, L. Y. Zou, Y. Zhou and X. Q. Zheng, Prediction of protein subcellular multi-localization based on the general form of Chou’s pseudo amino acid composition, Protein and Peptide Letters 19 (2012), 375–387.

[122]  T. Li and M. Ogihara, Toward intelligent music information retrieval, IEEE Transactions on Multimedia 8 (2006), 564–574.

[123]  D. Lin, An information-theoretic definition of similarity, in: Proceedings of the 15th International Conference on Machine Learning, pp. 296–304, 1998.

[124]  H. Lin, H. Ding, F. B. Guo, A. Y. Zhang and J. Huang, Predicting subcellular localization of mycobacterial proteins by using Chou’s pseudo amino acid composition, Protein and Peptide Letters 15 (2008), 739–744.

[125]  T. Liu, X. Geng, X. Zheng, R. Li and J.Wang, Accurate prediction of protein structural class using auto covariance transformation of PSI-BLAST profiles, Amino Acids 42 (2011), 2243–2249.

[126]  P. W. Lord, R. D. Stevens, A. Brass and C. A. Goble, Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation , Bioinformatics 19 (2003), 1275–1283.

[127]  R. Lotlikar and R. Kothari, Adaptive linear dimensionality reduction for classification, Pattern Recognition 33 (2000), 185–194.

[128]  Z. Lu and L. Hunter, GO molecular function terms are predictive of subcellular localization, in: In Proc. of Pac. Symp. Biocomput. (PSB’05), pp. 151–161, 2005.

[129]  Z. Lu, D. Szafron, R. Greiner, P. Lu, D. S. Wishart, B. Poulin, J. Anvik, C. Macdonell and R. Eisner, Predicting subcellular localization of proteins using machine-learned classifiers, Bioinformatics 20 (2004), 547–556.

[130]  G. Lubec, L. Afjehi-Sadat, J. W. Yang and J. P. John, Searching for hypothetical proteins: Theory and practice based upon original data and literature, Prog. Neurobiol 77 (2005), 90–127.

[131]  S. R. Maetschke, M. Towsey and M. B. Boden, BLOMAP: An encoding of amino acids which improves signal peptide cleavage site prediction, in: 3rd Asia Pacific Bioinformatics Conference (Y. P. P. Chen and L. Wong, eds.), pp. 141–150, Singapore, 17-21 Jan 2005.

[132]  M. W. Mak, J. Guo and S. Y. Kung, PairProSVM: Protein Subcellular Localization Based on Local Pairwise Profile Alignment and SVM, IEEE/ACM Trans. on Computational Biology and Bioinformatics 5 (2008), 416 – 422.

[133]  M. W. Mak and S. Y. Kung, Conditional random fields for the prediction of signal peptide cleavage sites, in: 2009 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’09), IEEE, pp. 1605–1608, 2009.

[134]  M. W. Mak, W. Wang and S. Y. Kung, Fast subcellular localization by cascaded fusion of signal-based and homology-based methods, Proteome science 9 (2011), S8.

[135]  W. Margolin, Green fluorescent protein as a reporter for macromolecular localization in bacterial cells, Methods 20 (2000), 62–72.

[136]  D. W. Marquardt and R. D. Snee, Ridge regression in practice, The American Statistician 29 (1975), 3–20.

[137]  B. Martoglio and B. Dobberstein, Signal sequences: more than just greasy peptides, Trends in cell biology 8 (1998), 410–415.

[138]  B. Matthews, Comparison of predicted and observed secondary structure of T4 phage lysozyme, Biochem. Biophys. Acta 405 (1975), 442–451.

[139]  T. M. Mayhew and J. M. Lucocq, Developments in cell biology for quantitative immunoelectron microscopy based on thin sections: a review, Histochemistry and Cell Biology 130 (2008), 299–313.

[140]  Q. McNemar, Note on the sampling error of the difference between correlated proportions or percentages, Psychometrika 12 (1947), 153–157. 184

[141]  S. Mei, Multi-label multi-kernel transfer learning for human protein subcellular localization, PLoS ONE 7 (2012), e37716.

[142]  S. Y. Mei, W. Fei and S. G. Zhou, Gene ontology based transfer learning for protein subcellular localization, BMC Bioinformatics 12 (2011), 44.

[143]  A. H. Millar, C. Carrie, B. Pogson and J. Whelan, Exploring the function-location nexus: using multiple lines of evidence in defining the subcellular location of plant proteins, Plant Cell 21 (2009), 1625–1631.

[144]  M. Mistry and P. Pavlidis, Gene ontology term overlap as a measure of gene functional similarity, BMC Bioinformatics 9 (2008), 327.

[145]  R. Moskovitch, S. Cohenkashi, U. Dror, I. Levy, A. Maimon and Y. Shahar, Multiple hierarchical classification of free-text clinical guidelines, Artificial Intelligence in Medicine 37 (2006), 177–190.

[146]  R. Mott, J. Schultz, P. Bork and C. Ponting, Predicting protein cellular localization using a domain projection method, Genome research 12 (2002), 1168–1174.

[147]  J. C. Mueller, C. Andreoli, H. Prokisch and T. Meitinger, Mechanisms for multiple intracellular localization of human mitochondrial proteins, Mitochondrion 3 (2004), 315–325.

[148]  N.J. Mulder and R. Apweiler, The InterPro database and tools for protein domain analysis, Current Protocols in Bioinformatics 2 (2008), 1–18.

[149]  N.J. Mulder, R. Apweiler, T. K. Attwood, A. Bairoch, D. Barrell, A. Bateman, D. Binns, M. Biswas, P. Bradley and P. Bork, The InterPro Database, 2003 brings increased coverage and new features, Nucleic Acids Res. 31 (2003), 315–318.

[150]  R. F. Murphy, Communicating subcellular distributions, Cytometry 77 (2010), 686–92.

[151]  R. Nair and B. Rost, Sequence conserved for subcellular localization, Protein Science 11 (2002), 2836–2847.

[152]  R. Nair and B. Rost, Protein subcellular localization prediction using artificial intelligence technology, Functional Proteomics, Springer, 2008, pp. 435–463.

[153]  K. Nakai, Protein sorting signals and prediction of subcellular localization, Advances in Protein Chemistry 54 (2000), 277–344.

[154]  K. Nakai and M. Kanehisa, Expert system for predicting protein localization sites in gram-negative bacteria, Proteins: Structure, Function, and Genetics 11 (1991), 95–110.

[155]  H. Nakashima and K. Nishikawa, Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies, J. Mol. Biol. 238 (1994), 54–61.

[156]  H. Nielsen, S. Brunak and G. von Heijne, Machine learning approaches for the prediction of signal peptides and other protein sorting signals, Protein Eng. 12 (1999), 3–9.

[157]  H. Nielsen, J. Engelbrecht, S. Brunak and G. von Heijne, A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites, Int. J. Neural Sys. 8 (1997), 581–599.

[158]  H. Nielsen and A. Krogh, Prediction of signal peptides and signal anchors by a hidden Markov model, in: Proc. Sixth Int. Conf. on Intelligent Systems for Molecular Biology (J. G. et al., ed.), pp. 122–130, AAAI Press, 1998.

[159]  J. Odell, Six different kinds of aggression, Advanced object-oriented analysis and design using UML, Cambridge University Press, 1998, pp. 139–149.

[160]  Y. X. Pan, Z. Z. Zhang, Z. M. Guo, G. Y. Feng, Z. D. Huang and L. He, Application of pseudo amino acid composition for predicting protein subcellular location: stochastic signal processing approach, J. of Protein Chem. 22 (2003), 395–402.

[161]  C. H. Papadimitriou, P. Raghavan, H. Tamaki and S. Vempala, Latent semantic indexing: A probabilistic analysis, in: Proceedings of the 17th ACM Symposium on the Principles of Database Systems, pp. 159–168, 1998.

[162]  K. J. Park and M. Kanehisa, Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs, Bioinformatics 19 (2003), 1656–1663.

[163]  G. R. Pasha and M. A. A. Shah, Application of ridge regression to multicollinear data, Journal of Research (Science) 15 (2004), 97–106.

[164]  C. Pesquita, D. Faria, A. O. Falcao, P. Lord and F. M. Counto, Metrics for GO based protein semantic similarity: a systematic evaluation, BMC Bioinformatics 9 (2008), S4.

[165]  C. Pesquita, D. Faria, A. O. Falcao, P. Lord and F. M. Counto, Semantic similarity in biomedical ontologies, PLoS Computational Biology 5 (2009), e1000443.

[166]  C. Pesquita, D. Pessoa, D. Faria and F. Couto, CESSM: Collaborative evaluation of semantic similarity measures, JB2009: Challenges in Bioinformatics 157 (2009).

[167]  A. Pierleoni, P. Luigi, P. Fariselli and R. Casadio, BaCelLo: a balanced subcellular localization predictor, Bioinformatics 22 (2006), e408–e416.

[168]  A. D. Pozo, F. Pazos and A. Valencia, Defining functional distances over gene ontology, BMC Bioinformatics 9 (2008), 50.

[169]  J. R. Quinlan, C4.5: programs for machine learning, 1, Morgan Kaufmann, 1993.

[170]  H. Rangwala and G. Karypis, Profile-based direct kernels for remote homology detection and fold recognition, Bioinformatics 21 (2005), 4239–4247.

[171]  S. Rea and D. James, moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles, Diabetes 46 (1997), 1667–1677.

[172]  J. Read, B. Pfahringer, G. Holmes and E. Frank, Classifier chains for multi-label classification, in: Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, pp. 254–269, 2009.

[173]  A. Reinhardt and T. Hubbard, Using neural networks for prediction of the subcellular location of proteins, Nucleic Acids Res. 26 (1998), 2230–2236.

[174]  P. Resnik, Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language, Journal of Artificial Intelligence Research 11 (1999), 95–130.

[175]  R. M. Riensche, B. L. Baddeley, A. P. Sanfilippo, C. Posse and B. Gopalan, XOA: Web-enabled cross-ontological analytics, in: 2007 IEEE Congress on Services, pp. 99–105, 2007.

[176]  B. Rost, J. Liu, R. Nair, K. O. Wrzeszczynski and Y. Ofran, Automatic prediction of protein function, Cellular and Molecular Life Sciences 60 (2003), 2637–2650.

[177]  J. Rousu, C. Saunders, S. Szedmak and J. Shawe-Taylor, Kernel-based learning of hierarchical multilabel classification methods, Journal of Machine Learning Research 7 (2006), 1601–1626.

[178]  R. Russell, R. Bergeron, G. Shulman and H. Young, Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR, American Journal of Physiology 277 (1997), H643–649.

[179]  R. E. Schapire and Y. Singer, Boostexter: A boosting-based system for text categorization, Machine Learning 39 (2000), 135–168.

[180]  G. Schatz and B. Dobberstein, Common principles of protein translocation acrossmembranes, Science 271 (1996), 1519–1526.

[181]  A. Schlicker, F. S. Domingues, J. Rahnenfuhrer and T. Lengauer, A new measure for functional similarity of gene products based on Gene Ontology, BMC Bioinformatics 7 (2006), 302.

[182]  B. Scholkopf and A. J. Smola, Learning with kernels, in: MIT Press, 2002.

[183]  J. Schultz, R. R. Copley, T. Doerks, C. Ponting and P. Bork, SMART: A Web-based tool for the study of genetically mobile domains, Nucleic Acids Research 28 (2000), 231–234.

[184]  M. Scott, D. Thomas and M. Hallett, Predicting subcellular localization via protein motif cooccurrence, Genome research 14 (2004), 1957–1966. 186

[185]  J. L. Sevilla, V. Segura, A. Podhorski, E. Guruceaga, J. M. Mato, L. A. Martinez-Cruz, F. J. Corrales and A. Rubio, Correlation between gene expression and GO semantic similarity, IEEE/ACM Transactions on Computational Biology and Bioinformatics 2 (2005), 330–338.

[186]  B. Sheehan, A. Quigley, B. Gaudin and S. Dobson, A relation based measure of semantic similarity for Gene Ontology annotations, BMC Bioinformatics 9 (2008), 468.

[187]  H. B. Shen and K. C. Chou, Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells, Biopolymers 85 (2006), 233–240.

[188]  H. B. Shen and K. C. Chou, PseAAC: A flexible web-server for generating various kinds of protein pseudo amino acid composition, Analytical Biochemistry 373 (2008), 386–388.

[189]  H. B. Shen and K. C. Chou, Virus-mPLoc: A fusion classifier for viral protein subcellular location prediction by incorporating multiple sites, J. Biomol. Struct. Dyn. 26 (2010), 175–186.

[190]  H. B. Shen and K. Chou, Gpos-PLoc: An ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins, Protein Engineering, Design and Selection 20 (2007), 39–46.

[191]  S. K. Shevade and S. S. Keerthi, A simple and efficient algorithm for gen selection using sparse logistic regression, Bioinformatics 19 (2003), 2246–2253.

[192]  J. Y. Shi, S. W. Zhang, Q. Pan, Y. M. Cheng and J. Xie, Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition, Amino Acids 33 (2007), 69–74.

[193]  I. Small, N. Peeters, F. Legeai and C. Lurin, Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences, Proteomics 4 (2004), 1581–1590.

[194]  T. F. Smith and M. S. Waterman, Comparison of biosequences, Adv. Appl. Math. 2 (1981), 482–489.

[195]  C. G. M. Snoek, M. Worring, J. C. van Gemert, J. M. Geusebroek and A. W. M. Smeulders, The challenge problem for automated detection of 101 semantic concepts in multimedia, in: Proceedings of the 14th annual ACM International Conference on Multimedia, pp. 421–430, 2006.

[196]  O. Stepanenko, V. V. Verkhusha, I. M. Kuznetsova, V. N. Uversky and K. K. Turoverov, Fluorescent Proteins as Biomarkers and Biosensors: Throwing Color Lights on Molecular and Cellular Processes, Current Protein and Peptide Science 9 (2008), 338–369.

[197]  D. L. Swets and J.J. Weng, Efficient content-based image retrieval using automatic feature selection, in: Proceedings of International Symposium on Computer Vision, IEEE, pp. 85–90, 1995.

[198]  C. Tanford, Contribution of hydrophobic interactions to the stability of the globular conformation of proteins, Journal of the American Chemical Society 84 (1962), 4240–4247.

[199]  Y. Tao, L. Sam, J. Li, C. Friedman and Y. A. Lussier, Information theory applied to the sparse gene ontology annotation network to predict novel gene function, Bioinformatics 23 (2007), i529–i538.

[200]  The Gene Ontology Consortium, The Gene Ontology in 2010: extensions and refinements, Nucleic Acids Res. 38 (2010), D331–D335.

[201]  The Gene Ontology Consortium, The Gene Ontology: enhancements for 2011, Nucleic Acids Res. 40 (2012), D559–D564.

[202]  K. Trohidis, G. Tsoumakas, G. Kalliris and I. Vlahavas, Multilabel classification of music into emotions, in: Proceedings of the 9th International Conference on Music Information Retrieval, pp. 325–330, 2006.

[203]  G. Tsoumakas and I. Katakis, Multi-label classification: An overview, International Journal of Data Warehousing and Mining 3 (2007), 1–13. 187

[204]  G. Tsoumakas, I. Katakis and I. Vlahavas, Mining multi-label data, in: Data Mining and Knowledge Discovery Handbook, O. Maimon, l. Rokach (Ed.). Springer, 2nd edition, pp. 667–685, 2010.

[205]  V. N. Vapnik, Statistical Learning Theory, in: John Wiley and Sons, 1998.

[206]  V. N. Vapnik, The nature of statistical learning theory, in: Springer Verlag, 2000.

[207]  C. Vens, J. Struyf, L. Schietgat, S. Dzeroski and H. Blockeel, Decision trees for hierarchical multi-label classification, Machine Learning 2 (2008), 185–214.

[208]  G. von Heijine, The signal peptides, Journal of Membrane Biology 115 (1990), 195–201.

[209]  G.von Heijne, Patterns of amino acids near signal-sequence cleavage sites, Eur J Biochem. 133 (1983), 17–21.

[210]  G. von Heijne, A new method for predicting signal sequence cleavage sites, Nucleic Acids Research 14 (1986), 4683–4690.

[211]  S. Wan, M. W. Mak and S. Y. Kung, Protein subcellular localization prediction based on profile alignment and Gene Ontology, in: 2011 IEEE International Workshop on Machine Learning for Signal Processing (MLSP’11), pp. 1–6, Sept 2011.

[212]  S. Wan, M. W. Mak and S. Y. Kung, GOASVM: Protein subcellular localization prediction based on gene ontology annotation and SVM, in: 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’12), pp. 2229–2232, 2012.

[213]  S. Wan, M. W. Mak and S. Y. Kung, mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines, BMC Bioinformatics 13 (2012), 290.

[214]  S. Wan, M. W. Mak and S. Y. Kung, Adaptive thresholding for multi-label SVM classification with application to protein subcellular localization prediction, in: 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’13), pp. 3547–3551, 2013.

[215]  S. Wan, M. W. Mak and S. Y. Kung, GOASVM: A subcellular location predictor by incorporating term-frequency gene ontology into the general form of Chou’s pseudo-amino acid composition, Journal of Theoretical Biology 323 (2013), 40–48.

[216]  S. Wan, M. W. Mak and S. Y. Kung, Semantic similarity over gene ontology for multi-label protein subcellular localization, Engineering 5 (2013), 68–72.

[217]  S. Wan, M. W. Mak and S. Y. Kung, HybridGO-Loc: Mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins, PLoS ONE 9 (2014), e89545.

[218]  S. Wan, M. W. Mak, B. Zhang, Y. Wang and S. Y. Kung, An ensemble classifier with random projection for predicting multi-label protein subcellular localization, in:2013 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 35–42, 2013.

[219]  G. L. Wang, J. Dunbrack and R. L. PISCES, A protein sequence culling server, Bioinformatics 19 (2003), 1589–1591.

[220]  J. Z. Wang, Z. Du, R. Payattakool, P. S. Yu and C. F. Chen, A new method to measure the semantic similarity of GO terms, Bioinformatics 23 (2007), 1274–1281.

[221]  W. Wang, M. W. Mak and S. Y. Kung, Speeding up Subcellular Localization by Extracting Informative Regions of Protein Sequences for Profile Alignment, in: Proc. Computational Intelligence in Bioinformatics and Computational Biology (CIBCB’10), pp. 147–154, 2010.

[222]  X. Wang and G. Z. Li, A multi-label predictor for identifying the subcellular locations of singleplex and multiplex eukaryotic proteins, PLoS ONE 7 (2012), e36317.

[223]  X. Wang and G. Z. Li, Multilabel Learning via Random Label Selection for Protein Subcellular Multilocations Prediction, IEEE/ACM Transactions on Computational Biology and Bioinformatics 10 (2013), 436–446.

[224]  Y. Wang and K. N. Plataniotis, An Analysis of Random Projection for Changeable and Privacy-Preserving Biometric Verification, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 40 (2010), 1280–1293. 188

[225]  M. Winston, R. Chaffin and D. Herrmann, A taxonomy of part-whole relations, Cognitive Science 11 (1987), 417–444.

[226]  C. H. Wu, H. Huang, L. S. Yeh and W. C. Barker, Protein family classification and functional annotation, Comput. Biol. Chem. 27 (2003), 37–47.

[227]  C. H. Wu and J. M. McLarty, Neural Networks and Genome Informatics, Elsevier Science, 2000.

[228]  H. Wu, Z. Su, F. Mao, V. Olman and Y. Xu, Prediction of functional modules based on comparative genome analysis and gene ontology application, Nucleic Acids Res. 33 (2005), 2822–2837.

[229]  X. Wu, L. Zhu, J. Guo, D. Y. Zhang and K. Lin, Prediction of yeast protein-protein interaction network: insights from the gene ontology and annotations, Nucleic Acids Res. 34 (2006), 2137–2150.

[230]  Z. C. Wu, X. Xiao and K. C. Chou, iLoc-Plant: A multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites, Molecular BioSystems 7 (2011), 3287–3297.

[231]  Z. C. Wu, X. Xiao and K. C. Chou, iLoc-Gpos: A multi-layer classifier for predicting the subcellular localization of singleplex and multiplex gram-positive bacterial proteins, Protein & Peptide Letters 19 (2012), 4–14.

[232]  X. Xiao, Z. C. Wu and K. C. Chou, A multi-label learning classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites, PLoS ONE 6 (2011), e20592.

[233]  X. Xiao, Z. C. Wu and K. C. Chou, iLoc-Virus: A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites, Journal of Theoretical Biology 284 (2011), 42–51.

[234]  T. Xu, L. Du and Y. Zhou, Evaluation of GO-based functional similarity measures using S. cerevisiae protein interaction and expression profile data, BMC Bioinformatics 9 (2008), 472.

[235]  B. Yang, D. Hartung, K. Simoens and C. Busch, Dynamic random projection for biometric template protection, in: 2010 Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), pp. 1–7, 2010.

[236]  D. Yang, Y. Li, H. Xiao, Q. Liu, M. Zhang, J. Zhu, W. Ma, C. Yao, J. Wang, D. Wang, Z. Guo and B.Yang, Gaining confidence in biological interpretation of the microarray data: the functional consistence of the significant GO categories, Bioinformatics 24 (2008), 265–271.

[237]  G. Yu, F. Li, Y. Qin, X. Bo, Y. Wu and S. Wang, GOSemSim: An R package for measuring semantic similarity among GO terms and gene products, Bioinformatics 26 (2010), 976–978.

[238]  H. Yu, L. Gao, K. Tu and Z. Guo, Broadly predicting specific gene function with expression similarity and taxonomy similarity, Gene 352 (2005), 75–81.

[239]  R. Yuste, Fluorescence microscopy today, Nature Methods 2 (2005), 902–904.

[240]  E. M. Zdobnov and R. Apweiler, InterProScan – an integration platform for the signature-recognition methods in InterPro, Bioinformatics 17 (2001), 847–848.

[241]  M. L. Zhang and Z. H. Zhou, A k-nearest neighbor based algorithm for multi-label classification, in: IEEE International Conference on Granular Computing, pp. 718–721, 2005.

[242]  S. Zhang, X. F. Xia, J. C. Shen, Y. Zhou and Z. Sun, DBMLoc: A database of proteins with multiple subcellular localizations, BMC Bioinformatics 9 (2008), 127.

[243]  S. W.Zhang, Y. L.Zhang, H. F.Yang, C. H. Zhao and Q. Pan, Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies, Amino Acids 34 (2008), 565–572.

[244]  J. Zhu, Classification of gene microarrays by penalized logistic regression, Biostatistics 5 (2004), 427–443. 189

[245]  J. Zhu and T. Hastie, Kernel logistic regression and the import vector machine, in: Journal of Computational and Graphical Statistics, pp. 1081–1088, MIT Press, 2001.

[246]  M. Zhu, L. Gao, Z. Guo, Y. Li, D. Wang, J. Wang and C. Wang, Globally predicting protein functions based on co-expressed protein-protein interaction networks and ontology taxonomy similarities, Gene 391 (2007), 113–119.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset