63
References
[1] Petrovskaya, A. and run, S. Model based vehicle detection and tracking for
autonomous urban driving, Autonomous Robots 26, 2–3:123–139, 2009. DOI:
10.1007/s10514-009-9115-1. 1
[2] González, D., Pérez, J., et al. A review of motion planning techniques for automated
vehicles, IEEE Transactions on Intelligent Transportation Systems, 17(4):1135–1145, 2016.
DOI: 10.1109/tits.2015.2498841. 1
[3] Lv, C., Hu, X., Sangiovanni-Vincentelli, A., Li, Y., Martinez, C. M., and Cao, D.
Driving-style-based codesign optimization of an automated electric vehicle: A cyber-
physical system approach, IEEE Transactions on Industrial Electronics, 66(4):2965–2975,
2018. DOI: 10.1109/tie.2018.2850031.
[4] Lv, C., Cao, D., et al. Analysis of autopilot disengagements occurring during au-
tonomous vehicle testing, IEEE/CAA Journal of Automatica Sinica, 5:58–68, 2018. DOI:
10.1109/jas.2017.7510745.
[5] Shen, C., Shi, Y., and Buckham, B. Integrated path planning and tracking control of an
AUV: A unified receding horizon optimization approach, IEEE/ASME Transactions on
Mechatronics 22, 3:1163–1173, 2017. DOI: 10.1109/tmech.2016.2612689. 1
[6] Lv, C., Wang, H., Cao, D., Zhao, Y., Auger, D. J., Sullman, M., et al. Characterization of
driver neuromuscular dynamics for human-automation collaboration design of automated
vehicles, IEEE/ASME Transactions on Mechatronics, 23(6), pp. 2558–2567, 2018. DOI:
10.1109/tmech.2018.2812643. 1
[7] Ji, X., Liu, Y., et al. Interactive control paradigm-based robust lateral stability controller
design for autonomous automobile path tracking with uncertain disturbance: A dynamic
game approach, IEEE Transactions on Vehicular Technology, 67(8), pp. 6906–6920, 2018.
DOI: 10.1109/tvt.2018.2834381.
[8] Li, H., Shi, Y., and Yan, W. Distributed receding horizon control of constrained nonlin-
ear vehicle formations with guaranteed -gain stability, Automatica, 68:148–154, 2016.
DOI: 10.1016/j.automatica.2016.01.057.
[9] Zhao, W., Qin, X., and Wang, C. Yaw and lateral stability control of automotive four-
wheel steer-by-wire system, IEEE/ASME Transactions on Mechatronics, 23(6), pp. 2628–
2637, 2018. DOI: 10.1109/tmech.2018.2812220. 1
64 REFERENCES
[10] Katzourakis, D. I., Abbink, D. A., et al. Steering force feedback for human-machine-
interface automotive experiments, IEEE Transactions on Instrumentation and Measure-
ment, 60:32–43, 2011. DOI: 10.1109/tim.2010.2065550. 1
[11] Miedl, F. and Tille, T. 3D surface-integrated touch-sensor system for automotive
HMI applications, IEEE/ASME Transactions on Mechatronics, 21:787–794, 2016. DOI:
10.1109/tmech.2015.2466455. 1
[12] Kapania, N. R. and Gerdes, J. C. Design of a feedback-feedforward steering controller
for accurate path tracking and stability at the limits of handling, Vehicle System Dynamics,
53:1687–1704, 2015. DOI: 10.1080/00423114.2015.1055279. 1
[13] Wang, R. and Lukic, S. Review of driving conditions prediction and driving style recog-
nition based control algorithms for hybrid electric vehicles, Vehicle Power and Propulsion
Converence, pages 1–7, 2011. DOI: 10.1109/vppc.2011.6043061. 1
[14] Kesting, A., Treiber, M., and Helbing, D. Enhanced intelligent driver model to access the
impact of driving strategies on traffic capacity, Philosophical Transactions of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, 368:4585–4605, 2010. DOI:
10.1098/rsta.2010.0084. 1
[15] Kesting, A., Treiber, M., Schönhof, M., and Helbing, D. Extending adaptive cruise con-
trol to adaptive driving strategies, Transportation Research Record: Journal of the Trans-
portation Research Board, 2000:16–24, 2007. DOI: 10.3141/2000-03. 1
[16] Lv, C., Xing, Y., et al. Hybrid-learning-based classification and quantitative inference of
driver braking intensity of an electrified vehicle, IEEE Transactions on Vehicular Technol-
ogy, 67(7), pp. 5718–5729, 2018. DOI: 10.1109/tvt.2018.2808359. 1
[17] Zhang, J., Lv, C., Gou, J., and Kong, D. Cooperative control of regenerative braking
and hydraulic braking of an electrified passenger car, Proc. of the Institution of Mechan-
ical Engineers, Part D: Journal of Automobile Engineering, 226:1289–1302, 2012. DOI:
10.1177/0954407012441884. 7, 10, 11, 12, 13, 44
[18] Zhao, W., Zhang, H., and Li, Y. Displacement and force coupling control design for
automotive active front steering system, Mechanical Systems and Signal Processing, 106:76–
93, 2018. DOI: 10.1016/j.ymssp.2017.12.037. 1, 10
[19] Neubauer, J. and Wood, E. Accounting for the variation of driver aggression in the simu-
lation of conventional and advanced vehicles, SAE Technical Paper, 01:1453, 2013. DOI:
10.4271/2013-01-1453. 1
[20] Li, L., You, S., Yang, C., Yan, B., Song, J., and Chen, Z. Driving-behavior-aware stochas-
tic model predictive control for plug-in hybrid electric buses, Applied Energy, 162:868–
897, 2016. DOI: 10.1016/j.apenergy.2015.10.152. 1
REFERENCES 65
[21] Derler, P., Lee, E. A., et al. Modeling cyber-physical systems, Proc. of the IEEE,
100(1):13–28, January 2012. DOI: 10.1109/jproc.2011.2160929. 5
[22] Sangiovanni-Vincentelli, A., Damm, W., and Passerone, R. Taming Dr. Frankenstein:
Contract-based design for cyber-physical systems, European Journal of Control, 18:217–
238, 2012. DOI: 10.3166/ejc.18.217-238.
[23] Lv, C., Xing, Y., et al. Levenberg-Marquardt backpropagation training of multi-
layer neural networks for state estimation of a safety critical cyber-physical sys-
tem, IEEE Transactions on Industrial Informatics, 14(8), pp. 3436–3446, 2017. DOI:
10.1109/tii.2017.2777460.
[24] Nuzzo, P., Sangiovanni-Vincentelli, A., et al. A platform-based design methodology
with contracts and related tools for the design of cyber-physical systems, Proc. IEEE,
103(11):2104–2132, 2015. DOI: 10.1109/jproc.2015.2453253. 2
[25] Lv, C., Liu, Y., et al. Simultaneous observation of hybrid states for cyber-physical sys-
tems: A case study of electric vehicle powertrain, IEEE Transactions on Cybernetics, 48(8),
pp. 2357–2367, 2018. DOI: 10.1109/TCYB.2017.2738003. 2, 11, 13
[26] Bradley, J. M. and Atkins, E. M. Cyber-physical optimization for unmanned air-
craft systems, Journal of Aerospace Information Systems, 11(1):48–60, 2014. DOI:
10.2514/1.i010105. 2
[27] Hu, X., Wang, H., and Tang, X. Cyber-physical control for energy-saving vehicle
following with connectivity, IEEE Transactions on Industrial Electronics, 2017. DOI:
10.1109/tie.2017.2703673. 2
[28] Li, Y., Lv, C., et al. High-precision modulation of a safety-critical cyber-physical system:
Control synthesis and experimental validation, IEEE/ASME Transactions on Mechatron-
ics, 23(6), pp. 2599–2608, 2018. DOI: 10.1109/tmech.2018.2833542. 2, 7
[29] Lv, C., Wang, H., et al. Cyber-physical system based optimization framework for intel-
ligent powertrain control, SAE International Journal of Commercial Vehicles, 10:254–264,
2017. DOI: 10.4271/2017-01-0426. 3, 7, 8, 10
[30] Finn, J., Nuzzo, P., and Sangiovanni-Vincentelli, A. A mixed discrete-continuous
optimization scheme for cyber-physical system architecture exploration. Proc. of the
IEEE/ACM International Conference on Computer-Aided Design, pages 216–223, 2015.
DOI: 10.1109/iccad.2015.7372573.
[31] Lv, C., Zhang, J., Nuzzo, P., Sangiovanni-Vincentelli, A., et al. Design optimization
of the control system for the powertrain of an electric vehicle: A cyber-physical system
approach, Mechatronics and Automation, IEEE International Conference on, pages 814–
819, 2015. DOI: 10.1109/icma.2015.7237590. 3
66 REFERENCES
[32] Gilman, E., Keskinarkaus, A., Tamminen, S., et al. Personalised assistance for fuel-
efficient driving, Transportation Research Part C: Emerging Technologies, 58:681–705,
2015. DOI: 10.1016/j.trc.2015.02.007. 7
[33] Martinez, C. M., Heucke, M., Wang, F. Y., et al. Driving style recognition for intelligent
vehicle control and advanced driver assistance: A survey, IEEE Transactions on Intelligent
Transportation Systems, 2017. DOI: 10.1109/tits.2017.2706978. 7
[34] Martínez, C. M. iHorizon-enabled energy management for plug-in hybrid electric vehi-
cles, Ph.D. dissertation, Dept. Auto. Eng., Cranfield University, Bedford, UK, 2017. 7,
8, 9
[35] Mitschke, M. and Wallentowitz, H. Dynamik der Kraftfahrzeuge, 4th ed., Springer Ver-
lag, Berlin, 2004. DOI: 10.1007/978-3-662-11585-5. 11, 15
[36] Gao, Y. and Ehsani, M. Electronic braking system of EV and HEV—Integration of
regenerative braking, automatic braking force control and ABS, SAE Technical Paper,
01:2478, 2001. DOI: 10.4271/2001-01-2478. 10, 11
[37] Pacejka, H. B. and Bakker, E. e magic formula tyre model, Vehicle System Dynamics,
21(S):1–18, 1992. DOI: 10.1080/00423119208969994. 12
[38] Song, B. and Hedrick, J. K. Dynamic Surface Control of Uncertain Nonlinear Systems: An
LMI Approach, Springer, 2011. DOI: 10.1007/978-0-85729-632-0. 14
[39] Fazeli, A., Zeinali, M., and Khajepour, A. Application of adaptive sliding mode con-
trol for regenerative braking torque control, IEEE/ASME Transactions on Mechatronics,
17:745–755, 2012. DOI: 10.1109/tmech.2011.2129525. 15
[40] Alam, B., Wu, J., Wang, G., and Cao, J. Sensing and decision making in cyber-physical
systems: e case of structural event monitoring, IEEE Transactions on Industrial Infor-
matics, 2016. DOI: 10.1109/tii.2016.2518642. 23
[41] Wang, F.-Y. e emergence of intelligent enterprises: From CPS to CPSS, IEEE Intel-
ligent Systems, 25(4):85–88, 2010. DOI: 10.1109/mis.2010.104.
[42] Gong, H., Li, R., An, J., Chen, W., and Li, K. Scheduling algorithms of flat semi-
dormant multi-controllers for a cyber-physical system, IEEE Transactions on Industrial
Informatics, 13(4), pp. 1665–1680, 2017. DOI: 10.1109/tii.2017.2690939.
[43] Wang, F.-Y. Control 5.0: From Newton to Merton in poppers cyber-social-
physical spaces, IEEE/CAA Journal of Automatica Sinica, 3(3):233–234, 2016. DOI:
10.1109/jas.2016.7508796. 23
REFERENCES 67
[44] Zhou, Q., Zhang, W., Cash, S., Olatunbosun, O., Xu, H., and Lu, G. Intelli-
gent sizing of a series hybrid electric power-train system based on chaos-enhanced
accelerated particle swarm optimization, Applied Energy, 189:588–601, 2017. DOI:
10.1016/j.apenergy.2016.12.074. 23
[45] Lv, C., Wang, H., and Cao, D. High-precision hydraulic pressure control based on lin-
ear pressure-drop modulation in valve critical equilibrium state, IEEE Transactions on
Industrial Electronics, 2017. DOI: 10.1109/tie.2017.2694414. 49, 51, 52, 53
[46] Kisacikoglu, M., Erden, F., and Erdogan, N. Distributed control of PEV charging based
on energy demand forecast, IEEE Transactions on Industrial Informatics, 14(1), pp. 332–
341, 2017. DOI: 10.1109/tii.2017.2705075.
[47] Qin, Y., Langari, R., Wang, Z., Xiang, C., and Dong, M. Road excitation classification
for semi-active suspension system with deep neural networks, Journal of Intelligent and
Fuzzy Systems Preprint, pages 1–12, 2017. DOI: 10.3233/jifs-161860.
[48] Wang, S., Dong, Z. Y., et al. Stochastic collaborative planning of electric vehicle charging
stations and power distribution system, IEEE Transactions on Industrial Informatics, 14(1),
pp. 321–331, 2017. DOI: 10.1109/pesgm.2016.7741442.
[49] Xing, Y. and Lv, C. Dynamic state estimation for the advanced brake system of electric
vehicles by using deep recurrent neural networks, IEEE Transactions on Industrial Elec-
tronics, 2019. DOI: 10.1109/tie.2019.2952807.
[50] Mirzaei, M. J., Kazemi, A., and Homaee, O. A probabilistic approach to deter-
mine optimal capacity and location of electric vehicles parking lots in distribution
networks, IEEE Transactions on Industrial Informatics, 12(5):1963–1972, 2016. DOI:
10.1109/tii.2015.2482919. 23
[51] Lv, C., Zhang, J., and Li, Y. Extended-Kalman-filter-based regenerative and friction
blended braking control for electric vehicle equipped with axle motor considering damp-
ing and elastic properties of electric powertrain, Vehicle System Dynamics, 52(11):1372–
1388, 2014. DOI: 10.1080/00423114.2014.938663. 23
[52] Zhao, B., Lv, C., and Hofman, T. Automotive Innovations, 2(2):146–156, 2019. https:
//doi.org/10.1007/s42154--019-00059-z 23
[53] Xing, Y., Lv, C., et al. Driver lane change intention inference for intelligent vehi-
cles: Framework, survey, and challenges, IEEE Transactions on Vehicular Technology,
68(5):4377–4390, 2019. DOI: 10.1109/tvt.2019.2903299. 23
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset