Bibliography

[1] Phadke A.G., Thorp J.S. Synchronized Phasor Measurements and Their Applications. New York: Springer; 2008.

[2] Li H., Li F., Xu Y., Rizy D.T., Kueck J.D. Adaptive voltage control with distributed energy resources: algorithm, theoretical analysis, simulation, and field test verification. IEEE Trans. Power Syst. 2010;25(3).

[3] Lee E.A. Cyber physical systems: design challenges. In: Proceedings of the IEEE International Symposium on Object Oriented Real-Time Distributed Computing (ISORC). 2008.

[4] Kundur P. Power System Stability and Control. McGraw-Hill; 1994.

[5] Bullo F., Cortés J., Martínez S. Distributed Control of Robotic Networks. Princeton University Press; 2009.

[6] Arnold V.I., Weinstein A. Mathematical Methods of Classical Mechanics. New York: Springer; 2007.

[7] Cassandras C.G., Lafortune S. Introduction to Discrete Event Systems. Cambridge, UK: Cambridge University Press; 2009.

[8] Kunkel P., Mehrmann V. Differential-Algebraic Equations: Analysis and Numerical Solutions. European Mathematical Society; 2006.

[9] Lind D., Marcus B. An Introduction to Symbolic Dynamics and Coding. Cambridge, UK: Cambridge University Press; 1995.

[10] Katok A., Hasselblatt B. Introduction to Modern Theory of Dynamical Systems. Cambridge, UK: Cambridge University Press; 1995.

[11] Matveev A.S., Savkin A.V. Estimation and Control Over Communication Networks. Birkhäuser; 2008.

[12] Downarowicz T. Entropy in Dynamical Systems. Cambridge, UK: Cambridge University Press; 2011.

[13] Sahai A., Mitter S. The necessity and sufficiency of anytime capacity for control over a noisy communication channel. IEEE Trans. Inform. Theory. 2006;52(8):3369–3395.

[14] Tatikonda S., Sahai A., Mitter S. Stochastic linear control over a communication channel. IEEE Trans. Inform. Theory. 2004;49(9):1549–1561.

[15] Li H. Entropy reduction via communications in cyber physical systems: how to feed Maxwell’s Demon? In: Proceedings of the IEEE International Symposium of Information Theory. 2015.

[16] Branicky M.S., Phillips S.M., Zhang W. Stability of networked control systems: explicit analysis of delay. In: Proceedings of the American Control Conference (ACC). 2000.

[17] Seiler P., Sengupta R. Analysis of communication losses in vehicle control problems. In: Proceedings of the American Control Conference (ACC). 2001.

[18] Montestruque L.A., Antsakilis P.J. Quantization in model based networked control systems. In: Proceedings of the 16th IFAC World Congress. 2005.

[19] Hespanha J.P., Naghshtabrizi P., Xu Y. A survey of recent results in NCS. Proc. IEEE. 2007;95:138–162.

[20] Liu X., Goldsmith A. Wireless medium access control in distributed control systems. In: Proceedings of the Annual Allerton Conference on Communications, Control and Computing, Monticello, IL; 2003.

[21] Liu X., Goldsmith A. Wireless network design for distributed control. In: Proceedings of the IEEE Conference on Decision and Control (CDC), Paradise Island, Bahamas; 2004.

[22] Xiao L., Johansson M., Hindi H., Boyd S., Goldsmith A. Joint optimization of communication rates and linear systems. IEEE Trans. Automat. Control. 2003;48:148–153.

[23] Bai J., Eyisi E.P., Xue Y., Koutsoukos X.D. Dynamic tuning retransmission limit of IEEE 802.11 MAC protocol for networked control systems. In: Proceedings of the First International Workshop on Cyber-Physical Networking Systems (CPNS). 2011.

[24] Gupta V. On an estimation oriented routing protocol. In: Proceedings of the American Control Conference (ACC), Baltimore; 2010:580–585.

[25] Langbort C., Gupta V. Minimal interconnection topology in distributed control design. In: Proceedings of the American Control Conference (ACC), Minneapolis; 2006.

[26] Liu X., Zhang H., Xiang Q., Che X., Ju X. Taming uncertainties in real-time routing for wireless networked sensing and control. In: Proceedings of the 13th ACM International Symposium on Mobiel Ad Hoc Networking and Computing (MobiHoc), Head Island, USA; 2012.

[27] Thompson L.M. Industrial Data Communications. fourth ed. Instrumentation Systems; 2002.

[28] Galloway B., Hancke G. Introduction to industrial control networks. IEEE Commun. Surv. Tut. 2012;99:1–21.

[29] National Instruments, Fieldbus: Foundation Fieldbus Overview, 2003.

[30] Boyer S.A. SCADA: Supervisory Control and Data Acquisition. fourth ed. The Instrumentation, Systems and Automation Society; 2009.

[31] Mynam M.V., Harikrishna A., Singh V. Synchrophasors Redefining SCADA Systems. Schweitzer Engineering Laboratories, Inc.; 2013.

[32] Shannon C.E. A mathematical theory of communications. Bell Syst. Tech. J. 1948;27:379–423 623-656.

[33] Cover T.M., Thomas J.A. Elements of Information Theory. second ed. Wiley; 2006.

[34] Lloyd S.P. Least squares quantization in PCM. IEEE Trans. Inform. Theory. 1982;28(2):129–137.

[35] Berrou C., Glavieux A., Thitimajshima P. Near Shannon limit error-correcting coding and decoding: tubro-codes. In: IEEE International Conference on Communications. 1993.

[36] Tanenbaum A.S., Wetherall D.J. Computer Networks. fifth ed. 2010.

[37] Palomar D.P., Chiang M. A tutorial on decomposition methods for network utility maximization. IEEE J. Sel. Areas Commun. 2006;24(8):1439–1451.

[38] Chiang M., Low S.H., Calderbank A.R., Doyle J.C. Layering as optimization decomposition: a mathematical theory of network architectures. Proc. IEEE. 2007;95(1):255–312.

[39] Knopp R., Humblet P. Information capacity and power control in single-cell multiuser communications. In: Proceeidngs of IEEE Internatinoal Conference on Communications (ICC). 1995.

[40] Tassiulas L., Emphremides A. Stability properties of constrained queuing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Automat. Control. 1992;37:1936–1948.

[41] Goldsmith A. Wireless Communications. Cambridge, UK: Cambridge University Press; 2005.

[42] Tse D., Viswanash P. Fundamentals of Wireless Communications. Cambridge, UK: Cambridge University Press; 2005.

[43] Nucci A., Papagiannaki K. Design, Measurement and Management of Large-Scale IP Networks: Bridging the Gap Between Theory and Practice. Cambridge, UK: Cambridge University Press; 2009.

[44] Rappaport T.S. Wireless Communications: Principles and Practice. second ed. Prentice Hall; 2002.

[45] Gersho A., Gray R.M. Vector Quantization and Signal Compression. New York: Springer; 1991.

[46] Berger T. Rate Distortion Theory: Mathematical Basis for Data Compression. Prentice Hall; 1971.

[47] Lin S., Costello D.J. Error Control Coding. Prentice Hall; 2004.

[48] Blahut R.E. Algebraic Codes for Data Transmission. Cambridge, UK: Cambridge University Press; 2003.

[49] Proakis J., Salehi M. Digital Communications. fifth ed. McGraw-Hill Education; 2007.

[50] Srikant R., Ying L. Communication Networks: An Optimization, Control and Stochastic Networks. Cambridge, UK: Cambridge University Press; 2014.

[51] Li J., Wu X., Larioia R. OFDMA Mobile Broadband Communications: A Systems Approach. Cambridge, UK: Cambridge University Press; 2013.

[52] Hespanha J.P. Linear Systems Theory. Princeton University Press; 2009.

[53] Doyle J.C., Francis B.A., Tannebaum A.R. Feedback Control Theory. Dover; 1992.

[54] Caines P.E. Linear Stochastic Systems. Wiley; 1988.

[55] Asmussen S. Applied Probability and Queues. second ed. New York: Springer; 2000.

[56] Thorp J.S., Seyler C.E., Phadke A.G. Electromechanical wave propagation in large electric power systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 1998;45:614–622.

[57] Lin H., Sambamoorthy S., Shukla S., Thorp J., Mili L. Ad hoc vs. supervisory wide area backup relay protection validated on power/network co-simulation platform. In: Proceedings of the 17th Power Systems Computation Conference, Stockholm, Sweden; 2011.

[58] Zhang Z., Li H. Wireless communication aided differential protection in smart grids: a concerted Blizkrieg. In: IEEE Symposium on Smart Grid Communications (SmartGridComm), Vancouver, Canada; 2013.

[59] Jiang J., Yang J., Lin Y., Liu C., Ma J. An adaptive PMU based fault detection/location technique for transmission lines—Part I: theory and algorithms. IEEE Trans. Power Deliv. 2000;15(2):486–493.

[60] Bennett C., Wicker S. Decreased time delay and security enhancement recommendations for AMI smart meter networks. In: Proceedings of the Innovative Smart Grid Technologies Conference, Gothenburg, Sweden; 2010.

[61] ISO New England, Inc. Overview of the Smart Grid: Policies, Initiatives and Needs. 2009.

[62] Borenstein S., Jaske M., Rosenfeld A. Dynamic Pricing, Advanced Metering, and Demand Response in Electricity Markets. Berkeley, CA: Center for the Study of Energy Markets, University of California; 2010.

[63] Balijepalli M., Pradhan K. Review of demand response under smart grid paradigm. In: Proceedings of the IEEE PES Innovative Smart Grid Technologies, Anaheim, CA, USA; 2011.

[64] Sharma G., Xie L., Kumar P. Large population optimal demand response for thermostatically controlled inertial loads. In: Proceedings of the IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver, Canada; 2013.

[65] Tang W., Bi S., Zhang Y.J. Online speeding optimal charging algorithm for electric vehicles without future information. In: Proceedings of the IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver, Canada; 2013.

[66] Roozbehani M., Dahleh M., Mitter S. Dynamic pricing and stabilization of supply and demand in modern electric power grids. In: Proceedings of the First IEEE Conference on Smart Grid Communications, DC, USA; 2010.

[67] Stoft S. Power System Economics—Designing Markets for Electricity. IEEE/Wiley; 2002.

[68] Li H., Gong S., Lai L., Han Z., Qui R.C., Yang D. Efficient and secure wireless communications for advanced metering infrastructure in smart grids. IEEE Trans. Smart Grid. 2012;3(3):1540–1551.

[69] Thrun S., Burgard W., Fox D. Probabilistic Robotics. MIT Press; 2005.

[70] Wong W.S. Control communication complexity of distributed control systems. SIAM J. Control Optim. 2009;48(3):1722–1742.

[71] Sagawa T., Ueda M. Nonequilibrium thermodynamics of feedback control. Phys. Rev. E. 2012;95:2.

[72] Anderson B.D.O., Moore J.B. Optimal Control: Linear Quadratic Methods. Dover Books; 2007.

[73] Baldwin S.L., Slaminka E.E. Calculating topological entropy. J. Stat. Phys. 1997;89(5/6):1017–1033.

[74] Froyland G., Junge O., Ochs G. Rigorous computation of topological entropy with respect to a finite partition. Physica D. 2001;154:68–84.

[75] Gallager R.G. Information Theory and Reliable Communication. Wiley; 1968.

[76] Gastpar M., Rimoldi B., Vetterli M. To code, or not to code: lossy source-channel communication revisited. IEEE Trans. Inform. Theory. 2003;49(5):1147–1158.

[77] Ashby W.R. An Introduction to Cybernetics. Filiquarian Legacy Publishing; 2012.

[78] Wiener N. Cybernetics: The Control and Communication in the Animal and the Machine. second ed. MIT Press; 1965.

[79] Connant R.C. Information transfer required in regulatory processes. IEEE Trans. Syst. Sci. Cybernet. 1969;5(4):334–338.

[80] Weidemann H.L. Entropy analysis of feedback control systems. In: Advances in Control Systems: Theory and Applications. Academic Press; 1969:225–255.

[81] Kailath T., Sayed A.H., Hassibi B. Linear Estimation. Prentice Hall; 2000.

[82] Wang H. Minimum entropy control of non-Gaussian dynamic stochastic systems. IEEE Trans. Automat. Control. 2002;47(2):398–403.

[83] Brown B.M., Harris C.J. Neurofuzzy Adaptive Modeling and Control. Prentice Hall; 1994.

[84] Kickert W.J.M., Bertrand J.M., Praagaman J. Some comments on cybernetics and control. IEEE Trans. Syst. Man Cybernet. 1978;8(11):805–809.

[85] Li H., Song J.B. Does feedback control reduce entropy/communications in smart grids? In: Proceedings of the IEEE International Conference on Smart Grid Communications (SmartGridComm). 2015.

[86] Fermi E. Thermodynamcis. Dover; 1956.

[87] Truesdell C.A., Bharatha S. The Concepts and Logic of Classical Thermodynamics as a Theory of Heat Engines: Rigorously Constructed Upon the Foundation Laid by S. Carnot and F. Reech. New York: Springer; 1977.

[88] Feder M., Merhav N. Relations between entropy and error probability. IEEE Trans. Inform. Theory. 1994;40(1):259–266.

[89] Martins N.C., Dahleh M.A. Feedback control in the presence of noisy channels: ‘bode-like’ fundamental limitations of performance. IEEE Trans. Automat. Control. 2008;53(7):1604–1615.

[90] Koch I. Analysis of Multivariate and High-Dimensional Data. Cambridge, UK: Cambridge University Press; 2013.

[91] Lee J.A., Verleysen M. Nonlinear Dimensionality Reduction. New York: Springer; 2007.

[92] Evans L.C. Partial Differential Equations. second ed. AMS; 2010.

[93] He D., Shi D., Sharma R. Consensus based distributed cooperative control for microgrid voltage regulation and reactive power sharing. In: Proceedings of the IEEE Innovative Smart Grid Technologies (ISGT Europe). 2014.

[94] Yao A.C. Some complexity questions related to distributed computing. In: Proceedings of the 11th ACM Symposium on Theory of Computing (STOC). 1979.

[95] Kushlevitz E., Nisan N. Communication Complexity. Cambridge, UK: Cambridge University Press; 2006.

[96] Leff H.S., Rex A.F. Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing. Institute of Physics Publishing; 2003.

[97] Brillouin L. Negentropy principle of information. J. Appl. Phys. 1953;24(9):1152–1163.

[98] Penrose O. Foundations of Statistical Mechanics: A Deductive Treatment. Dover Publications; 2005.

[99] Toyabe S., Sagawa T., Ueda A., Muneyuki E., Sano M. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 2010;6:988–992.

[100] Li H., Djouadi S., Tomsvic K. Flocking generators: a PdE framework for stability of smart grids with communications. In: Proceedings of the IEEE Conference on Smart Grid Communications. 2012.

[101] Chuang F.R.K. Spectral Graph Theory. American Mathematical Society; 2007.

[102] Ferrari-Trecate G., Buffa A., Gati M. Analysis of coordination in multi-agent systems through partial difference equations. IEEE Trans. Automat. Control. 2006;51:1058–1063.

[103] Jilg M., Stursberg O. Optimized distributed control and topology design for hierarchically interconnected systems. In: Proceedings of European Control Conference (ECC). 2013.

[104] Fardad M., Lin F., Jovanovic M.R. Design of optimal sparse interconnection graphs for synchronization of oscillator networks. IEEE Trans. Automat. Control. 2014;59(9):2457–2462.

[105] Ghosh A., Das S.K. Coverage and connectivity issues in wireless sensor networks. Mobile, Wireless and Sensor Networks: Technology, Applications and Future Directions. John Wiley amp; Sons, Inc.; 2006.

[106] Kim Y., Mesbahi M. On maximizing the second smallest eigenvalue of a state-dependent graph Laplacian. IEEE Trans. Automat. Control. 2006;51(1):116–120.

[107] Marschak J., Radner R. Economic Theory of Teams. Yale University Press; 1962.

[108] Ho Y.C., Chu K.C. Team decision theory and information structures in optimal control problems—Part I. IEEE Trans. Automat. Control. 1972;17:15–22.

[109] Radner R. Team decision problems. Ann. Math. Stat. 1962;33(3):857–881.

[110] Terzija V., Valverde G., Cai D., Regulski P., Madani V., Fitch J., Skok S., Begovic M.M., Phadke A. Wide-area monitoring, protection, and control of future electric power networks. Proc. IEEE. 2011;99(1):80–93.

[111] Zhang Y., Markham P., Tao X. Wide-area frequency monitoring network (FNET) architecture and applications. IEEE Trans. Smart Grid. 2010;1(2):159–167.

[112] Ree J.D.L., Centeno V., Thorp J.S., Phadke A.G. Synchronized phasor measurement applications in power systems. IEEE Trans. Smart Grid. 2010;1(1):20–27.

[113] IEC 61850 Technical Issues Overview, tech. rep., URL http://tissues.iec61850.com/parts.mspx.

[114] Gidelines for proper wiring of an RS-485 network, tech. rep., URL http://www.maxim-ic.com/app-notes/index.mvp/id/763.

[115] Baillieul J., Antsaklis P.J. Control and communication challenges in networked real-time systems. Proc. IEEE. 2007;95:9–28.

[116] Nair G.N., Fagnani F., Zampieri S., Evans R.J. Feedback control under data rate constraints: an overview. Proc. IEEE. 2007;95:108–137.

[117] Niyato D., Wang P., Han Z., Hossain E. Impact of packet loss on power demand estimation and power supply cost in smart grid. In: Proceedings of the IEEE Wireless Communications and Networking Conference. 2011.

[118] Nutaro J., Protopopescu V. The impact of market clearing time and price signal delay on the stability of electric power markets. IEEE Trans. Power Syst. 2009;24:1337–1345.

[119] Yu X., Tomsovic K. Application of linear matrix inequalities for frequency control with communication delays. IEEE Trans. Power Syst. 2004;19:1508–1515.

[120] Cholley P., Crossley P., Van Acker V., Van Cutsem T., Fu W., Soto Idia Òez J., Ilar F., Karlsson D., Kojima Y., McCalley J. System Protection Schemes in Power Networks. CIGRE Technical Brochure; 2001.

[121] Narendra K., Weekes T. Phasor measurement unit (PMU) communication experience in a utility environment. In: Proceedings of the CIGRE Canada Conference on Power Systems. 2008.

[122] Kagami S., Ishikawa M. A sensor selection method considering communication delays. In: Proceedings of the IEEE International Conference on Robotics and Automation. 2004.

[123] Lunze J. Handbook of Hybrid Systems Control. Cambridge, UK: Cambridge University Press; 2009.

[124] Li H., Dimitrovski A., Song J.B., Han Z., Qian L. Communication infrastructure design in cyber physical systems with applications in smart grids: a hybrid system framework. IEEE Commun. Surv. Tut. 2014;16(3):1689–1708.

[125] Witsenhausen H.S. A class of hybrid-state continuous-time dynamic systems. IEEE Trans. Automat. Control. 1966;11(2):161–167.

[126] Middlebrook R.D., Cuk S. A general unified approach to modeling switching-converter power stages. In: Proceedings of the IEEE Power Electronics Specialists Conference. 1976.

[127] Sonntag C., Stursberg O. Optimally Controlled Start-up of a Multi-stage Evaporation System. Technische Universitata, Dortmund; 2005 Technical Report.

[128] Balluchi A., Di Benedetto M.D., Pinello C., Rossi C., Sangiovanni-Vincentelli A.L. Hybrid control in automotive applications: the cut-off control. Automatica. 1999;35:519–535.

[129] Zhang W., Hu J., Abate A. Infinite horizon switched LQR problems in discrete time: a suboptimal algorithm with performance analysis. IEEE Trans. Automat. Control. 2012;57(7):1815–1821.

[130] Li H., Han Z., Dimitrovski A.D., Zhang Z. Data traffic scheduling for cyber physical system with application in voltage control of microgrids: a hybrid system framework. IEEE Syst. J. 2014;8(2):542–552.

[131] Li H., Lai L., Poor H.V. Multicast routing for cyber physical systems with application in smart grid. IEEE J. Sel. Areas Commun. 2012;30(6):1097–1107.

[132] Geromel J.C., Colaneri P. Stability and stabilization of discrete time switched systems. Int. J. Control. 2006;79:719–729.

[133] Boyd S., El Ghaoui L., Feron E., Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: Society of Industrial and Applied Mathematics; 1994.

[134] Sun Z., Ge S.S., Lee T.H. Controllability and reachability criteria for switched linear systems. Automatica. 2002;38:775–786.

[135] Seatzu C., Corona D., Giua A., Bemporad A. Optimal control of continuous-time switched affine systems. IEEE Trans. Automat. Control. 2006;51:726–741.

[136] Savkin A.V., Evans R.J. Hybrid Dynamical Systems: Controller and Sensor Switching Problems. Birkhäuser; 2002.

[137] Meier L., Peschon J., Dressler R.M. Optimal control of measurement subsystems. IEEE Trans. Automat. Control. 1967;12(5):528–536.

[138] Oshman Y. Optimal sensor selection strategy for discrete-time state estimators. IEEE Trans. Aerosp. Electron. Syst. 1994;30(2):307–314.

[139] Bertsekas D.P. Dynamic Programming: Deterministic and Stochastic Models. Englewood Cliffs, NJ: Prentice-Hall; 1987.

[140] Powell W.B. Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley; 2007.

[141] Rantzer A. Relaxed dynamic programming in switching systems. IEE Proc. 2006;153:567–574.

[142] Lynch N.A. Distributed Algorithms. Morgan Kaufmann; 1996.

[143] Li H. Virtual queue based distributed data traffic scheduling for cyber physical systems with application in smart grid. In: Proceedings of the Second International Workshop on Cyber Physical Networking Systems (CPNS). 2012.

[144] Anderson B.D.O., Moore J.B. Optimal Filtering. Prentice Hall; 1979.

[145] Zečević A.I., Šiljak D.D. Control of Complex Systems: Structural Constraints and Uncertainty. Berlin: Springer; 2010.

[146] Li H., Song J., Zeng Q. Adaptive modulation in networked control systems with application in smart grids. IEEE Commun. Lett. 2013;17(7):1305–1308.

[147] Costa O.L.V., Fragoso M.D., Todorov M.G. Continuous-Time Markov Jump Linear Systems. New York: Springer; 2013.

[148] Costa O.L.V., Fragoso M.D. Stability results for discrete-time linear systems with Markovian jumping parameters. J. Math. Anal. Appl. 1993;179:154–178.

[149] Matei I., Martines N.C., Baras J.S. Optimal linear quadratic regulator for Markovian jump linear systems in the presence of one time-step delayed mode observations.In: Proceedings of the 17th Wolrd Congress of the International Federation of Automatic Control. 2008.

[150] Neuhoff D.L., Gilbert R. Causal source codes. IEEE Trans. Inform. Theory. 1982;28(5):701–713.

[151] Gaardar N.T., Slepian D. On optimal finite-state-digital transmission systems. IEEE Trans. Inform. Theory. 1982;28(2):167–186.

[152] Walrand J.C., Varaiya P. Optimal causal coding-decoding problems. IEEE Trans. Inform. Theory. 1983;29(6):814–820.

[153] Borkar V.S., Mitter S.K., Tatikonda S. Sequential vector quantization of Markov sources. SIAM J. Control Optim. 2001;40(1):135–148.

[154] Li H., Han Z. Distributed source coding for controlling physical systems with application in smart grid. In: IEEE Conference on Global Communications (Globecom). 2014.

[155] Slepian D., Wolf J.K. A coding theorem for multiple access channels with correlated sources. Bell Syst. Tech. J. 1973;52:1037–1076.

[156] Garcia-Frias J., Cabarcas F. Approaching the Slepian-Wolf boundary using practical channel codes. Signal Proces. 2006;86:3096–3101.

[157] Matsuta T., Ueymatsu T., Matsumoto R. Universal Slepian-Wolf source codes using low-density parity-check matrices. In: IEEE International Symposium of Information Theory. 2010.

[158] Pradhan S.S., Ramchandran K. Distributed source coding using syndromes (DISCUS): design and construction. In: Proceedings of the IEEE International Data Compression (DCC). 1999.

[159] Pradhan S.S., Ramchandran K. Generalized coset codes for distributed binning. IEEE Trans. Inform. Theory. 2005;51(10):3457–3474.

[160] Stankovic V., Liveris A.D., Xiong Z., Georghiades C.N. Code design for the Slepian–Wolf problem and lossless multiterminal networks. IEEE Trans. Inform. Theory. 2006;52(4):1495–1507.

[161] Liu Z., Cheng S., Liveris A.D., Xiong Z. Splepian-Wolf coded nested lattice quantization for Wyner-Ziv coding: high-rate performance analysis and code design. IEEE Trans. Inform. Theory. 2006;52(10):4358–4379.

[162] Zamir R., Shamai S., Erez U. Nested linear/lattice codes for structured multiterminal binning. IEEE Trans. Inform. Theory. 2002;48(6):1250–1276.

[163] Dragotti P.L., Gastpar M. Distributed Source Coding: Theory, Algorithms and Applications. Academic Press; 2008.

[164] Conway I., Sloane J. Sphere Packing, Lattices and Groups. New York: Springer; 1998.

[165] Gong S., Li H. Decoding the nature encoded messages for distributed energy generation in microgrid. In: Proceedings of the IEEE International Conference on Communications (ICC). 2011.

[166] Open Smart Grid (OpenSG). SG Network System Requirements Specification. 2010.

[167] Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley; 2006.

[168] Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, CA: Morgan Kaufmann; 1988.

[169] Ostrovsky R., Rabani Y., Schulman L. Error-correcting codes for automatic control. In: Proceedings of the 46th Annual IEEE Symposium on the Foundations of Computer Science (FOCS). 2005.

[170] Sukhavasi R.T., Hassibi B. Anytime reliable codes for stabilizing plants over erasure channels. In: Proceedings of the IEEE Conference on Decision and Control (CDC). 2011.

[171] Sason I., Shamai S. Performance analysis of linear codes under maximum-likelihood decoding: a tutorial. Future Trend Commun. Inform. Theory. 2006;3.

[172] Dossel L., Rasmussen L.K., Thobaben R. Anytime reliability of systematic LDPC convolutional codes. In: Proceedings of IEEE International Conference on Communications (ICC). 2012.

[173] Tarable A., Nordio A., Tempo R. Anytime reliable LDPC convolutional codes for networked control over wireless channel. In: IEEE International Symposium on Information Theory (ISIT). 2013.

[174] Schulman L.J. Coding for interactive communication. IEEE Trans. Inform. Theory. 1996;42(6):1745–1756.

[175] Gelles R., Moitra A., Sahai A. Efficient coding for interactive communication. IEEE Trans. Inform. Theory. 2014;60:3.

[176] Braverman M. Towards deterministic tree code constructions. Electronic Colloquium on Computational Complexity; 2011 64.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset