References

[1] See IEC 60268–5, ed. 3.1. Sound system equipment - part 5: loudspeakers. Available from: http://webstore.iec.ch/. For example, for a nominal 8-in (200 mm) diameter loadspeaker, the baffle size would be 1.65 m long by 1.35 m wide, with the loadspeaker offset from the center by 22.5 cm lengthways and 15 cm widthways.

[2] Small R.H. Closed-box loudspeaker systems Part I: analysis J Audio Eng Soc . 1972;20(10):798–808.

[3] Small R.H. Closed-box loudspeaker systems Part II: synthesis J Audio Eng Soc . 1973;21(1):11–18.

[4] Villchur E.M. Problems of bass reproduction in loudspeakers J Audio Eng Soc . 1957;5(3):122–126.

[5] Backman J.  Improvement of one-dimensional loudspeaker models, in the 123rd AES convention  Paper No. 7253. 2007.

[6] Attenborough K. Acoustical characteristics of porous materials Phys Rep . 1982;82(2):179–227.

[7] Zarek J.H.B. Sound absorption in flexible porous materials J Sound Vib . 1978;61(2):205–234.

[8] Delany M.E, Bazley E.N. Acoustical properties of fibrous absorbent materials Appl Acoust . 1970;3:105–116.

[9] Miki Y. Acoustical properties of porous materials, modification of Delany-Bazley models J Acoust Soc Jpn . 1990;11:19–24.

[10] Sides D.J, Attenborough K, Mulholland K.A. Application of a generalized acoustic propagation theory of fibrous absorbents J Sound Vib . 1971;19:49–64.

[11] Wright J.R. The virtual loudspeaker cabinet J Audio Eng Soc . 2003;51(4):244–247.

[12] Venegas R, Umnova O. Acoustical properties of double porosity granular materials J Acoust Soc Am . 2011;130(5):2765–2776.

[13] At 1000 Hz, a wavelength at 22°C is about 35 cm; at 500 Hz, 70 cm; at 2000 Hz, 17.5 cm; and so on.

[14] Backman J. Computation of diffraction for loudspeaker enclosures J Audio Eng Soc . 1989;37(5):353–362.

[15] Vanderkooy J. A simple theory of cabinet edge diffraction J Audio Eng Soc . 1991;39(12):923–933.

[16] Svensson U.P. Line integral model of transient radiation from planar pistons in baffles Acta Acust Acust . 2001;87:307–315.

[17] Thuras A.L.  U.S. Patent No. 1,869,178 sound translating device . July 1932 (filed 1930).

[18] Locanthi B.N. Applications of electric circuit analogies to loudspeaker design problems, IRE trans. Audio, PGA-6: 15 (1952); republished in J Audio Eng Soc . 1971;19(9):778–785.

[19] Novak J.F. Performance of enclosures for high-compliance loudspeakers J Audio Eng Soc . 1959;7(1):29–37.

[20] Thiele A.N. Loudspeakers in vented boxes Proc IREE . 1961;22:487 [republished in J Audio Eng Soc 1971;19(5):382–392 and 1971;19(6):471–83].

[21] Small R.H. Vented-box loudspeaker systems Part I: small-signal analysis J Audio Eng Soc . 1973;21(5):363–372.

[22] Small R.H. Vented-box loudspeaker systems Part II: large-signal analysis J Audio Eng Soc . 1973;21(6):438–444.

[23] Small R.H. Vented-box loudspeaker systems Part III: synthesis J Audio Eng Soc . 1973;21(7):549–554.

[24] Small R.H. Vented-box loudspeaker systems Part IV: appendices J Audio Eng Soc . 1973;21(8):635–639.

[25] Mellow T.J.  A new set of fifth and sixth-order vented-box loudspeaker system alignments using a loudspeaker-enclosure matching filter: Part I, in the 112th AES convention  Paper No. 5505. 2002.

[26] Mellow T.J.  A new set of fifth and sixth-order vented-box loudspeaker system alignments using a loudspeaker-enclosure matching filter: Part II, in the 112th AES convention  Paper No. 5506. 2002.

[27] Thiele A.N. Estimating the loudspeaker response when the vent output is delayed J Audio Eng Soc . 2002;50(3):173–175.

[28] Werner R.E. Effect of negative impedance source on loudspeaker performance J Audio Eng Soc . 1957;29(3):335–340.

[29] Linkwitz S.H. Active crossover networks for noncoincident drivers J Audio Eng Soc . 1976;24(1):2–8.

[30] Linkwitz S.H. Passive crossover networks for noncoincident drivers J Audio Eng Soc . 1978;28(3):149–150.

[31] Bullock III. R.M. Loudspeaker-crossover systems: an optimal crossover choice J Audio Eng Soc . 1982;30(7/8):486–495.

[32] Vanderkooy J, Lipshitz S.P. Power response of loudspeakers with noncoincident drivers – the influence of crossover design J Audio Eng Soc . 1986;34(4):236–244.

[33] Hawksford M.O.J. Asymmetric all-pass crossover alignments J Audio Eng Soc . 1993;41(2):123–134.

[34] Thiele A.N. Passive all-pass crossover system of order 3 (low pass) + 5 (high pass), incorporating driver parameters J Audio Eng Soc . 2002;50(12):1030–1038. .

[35] Thiele A.N. Implementing asymmetrical crossovers J Audio Eng Soc . 2007;55(10):819–832.

[36] Recklinghausen D.R. Low-frequency range extension of loudspeakers J Audio Eng Soc . 1985;33(6):440–446.

[37] Mathes R.C, Miller R.L. Phase effects in monaural perception J Acoust Soc Am . 1947;19(5):780–797.

[38] Craig J.H, Jeffress L.A. Effect of phase on the quality of a two-component tone J Acoust Soc Am . 1962;34(11):1752–1760.

[39] Cabot R.C, Mino M.G, Dorans D.A, Tackel I.S, Breed H.E. Detection. Of phase shifts in harmonically related tones J Audio Eng Soc . 1976;24(7):568–571.

[40] Ashley J.R. Group and phase delay requirements for loudspeaker systems. In:  Proc. IEEE int. conf. on acoustics, speech, and signal processing (Denver, CO, 1980 Apr. 9–11) . vol. 3. 1980:1030–1033.

[41] Lipshitz S.P, Pocock M, Vanderkooy J. On the audibility of midrange phase distortion in audio systems J Audio Eng Soc . 1982;30(9):580–595.

[42] Schuck P.L. Design of optimized loudspeaker crossover networks using a personal computer J Audio Eng Soc . 1986;34(3):124–142.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset