Chapter 9

  1. 9.7 β1=1/3,β0=14/3,y=14/3+(1/3)x

  2. 9.11

    1. a. dependent: size; independent: distance

    2. c. y=β0+β1x+ε

  3. 9.13

    1. a. dependent: ratio; independent: diameter

    2. c. y=β0+β1x+ε

  4. 9.15 difference between the observed and predicted

  5. 9.17 true

  6. 9.19

    1. b. y^=7.10.78x

  7. 9.21

    1. c. β^1=.918,β^0=.020

    2. e.1to7

  8. 9.23

    1. a. yes; positive

    2. d. y^=320.64+.084x

    3. e. 3.565

  9. 9.25

    1. y=β0+β1x+ε

    2. y^=19.3938.036x

    3. y-intercept: when concentration=0, predicted wicking length=19.393 mm ; slope: for every 1-unit increase in concentration, wicking length decreases 8.036 mm

  10. 9.27

    1. positive

  11. 9.29

    1. a. y=β0+β1x+ε

    2. b. y^=250.14.627x

    3. e. slope

  12. 9.31

    1. y=β0+β1x+ε

    2. positive

    3. β^1=210.8 : for every additional resonance, frequency increases 210.8; β^0=.020 : no practical interpretation

  13. 9.33

    1. y^=86.0.260x

    2. yes

    3. positive trend for females; positive trend for males

    4. y^=39.3+.493x ; for every 1-inch increase in height for females, ideal partner’s height increases .493 inch

    5. y^=23.3+.596x ; for every 1-inch increase in height for males, ideal partner’s height increases .596 inch

    6. yes

  14. 9.35 yes, y^=5.22.114x ; decrease by .114 pound

  15. 9.37 (1) mean error=0, (2) error variance is constant for all x, (3) errors are normally distributed, (4) errors are independent

  16. 9.39

    1. 57.5; 3.194

    2. 257.5; 6.776

    3. 9.288; 1.161

  17. 9.41 11.18:SSE=1.22,s2=.244,s=.494; 11.21:SSE=5.135,s2=1.03,s=1.01

  18. 9.43 s=.57;95% of angular sizes fall within 1.14 pixels of their respective predicted values

  19. 9.45

    1. SSE=22.268,s2=5.567,s=2.3594

    2. 95% of wicking length values fall within 4.72 mm of their respective predicted values

  20. 9.47

    1. SSE=2760,s2=306.6,ands=17.51

  21. 9.49

    1. 5.37

    2. 3.42

    3. reading score

  22. 9.51

    1. y^=23.3.596x;s=2.06

    2. y^=39.3+.493x;s=2.32

    3. males

  23. 9.53 0

  24. 9.55 divide the value in half

  25. 9.57

    1. 95%:31±1.13;90%:31±.92

    2. 95%:64±4.28; 90%:64±3.53

    3. 95%:.84±.67;90%:.84±.55

  26. 9.59

    1. b. y^=2.554+.246x

    2. d. t=.627

    3. e. fail to reject H0

    4. f. .246±1.81

  27. 9.61 yes, t=14.87 ; (.0041, .0055)

  28. 9.63

    1. negative linear trend

    2. y^=9,658.24171.573x ; for each 1-unit increase in search frequency, the total catch is estimated to decrease by 171.573 kg

    3. H0:β1=0,Ha:β1<0

    4. .0402/2=.0201

    5. reject H0

  29. 9.65

    1. H0:β1=0, Ha:β1<0

    2. t=13.23,p-value=0

    3. reject H0

  30. 9.67 .0023±.0019 ; 95% confident that change in sweetness index for each 1-unit change in pectin is between .0042 and .0004

  31. 9.69

    1. a. y=β0+β1x+ε

    2. b.y^=8.524+1.665x

    3. d. yes, t=7.25

    4. e. 1.67±.46

  32. 9.71

    1. 95% confident that for each 1% increase in body mass, the percentage change in eye mass increases between 0.25% and 0.30%

    2. 95% confident that for each 1% increase in body mass, the percentage change in orbit axis angle decreases between 0.05% and 0.14%.

  33. 9.73 (7.83,3.71)

  34. 9.75

    1. β^0=.515,β^1=.000021

    2. yes

    3. very influential

    4. β^0=.515,β^1=.000020, p-value=.332, fail to reject H0

  35. 9.77 true

  36. 9.79

    1. perfect positive linear

    2. perfect negative linear

    3. no linear

    4. strong positive linear

    5. weak positive linear

    6. strong negative linear

  37. 9.81

    1. r=.985,r2=.971

    2. r=.993,r2=.987

    3. r=0,r2=0

    4. r=0,r2=0

  38. 9.83 .877

  39. 9.85

    1. weak, negative linear relationship between the first letter of the last name and response time

    2. reject H0:ρ=0

    3. yes

  40. 9.87

    1. 18% of sample variation in points scored can be explained by the linear model

    2. .424

  41. 9.89

    1. a. moderate positive linear relationship; not significantly different from 0 at α=.05

    2. c. weak negative linear relationship; not significantly different from 0 at α=.10

  42. 9.91

    1. b. piano: r2=.1998 ; bench: r2=.0032 ; motorbike: r2=.3832, armchair: r2=.0864 ; teapot: r2=.9006

    2. c.Reject H0 for all objects except bench and armchair

  43. 9.93

    1. H0:β1=0,Ha:β1<0

    2. reject H0

    3. no; be careful not to infer a causal relationship

  44. 9.95 r=.570,r2=.325

  45. 9.97

    1. r2=0.4756 ; 47.56% of the sample variation in molecular variance can be explained by altitude in the linear model

    2. r2=0.5236 ; 52.36% of the sample variation in molecular variance can be explained by population size in the linear model

  46. 9.99 E(y) represents mean of y for all experimental units with same x-value

  47. 9.101 true

  48. 9.103

    1. y^=1.375+.875x

    2. 1.5

    3. .1875

    4. 3.56±.33

    5. 4.88±1.06

  49. 9.105

    1. c. 4.65±1.12

    2. d. 2.28±.63;.414±1.717

  50. 9.107

    1. Find a prediction interval for y when x=10

    2. Find a confidence interval for E(y) when x=10

  51. 9.109 (92.298, 125.104)

  52. 9.111 run 1: 90% confident that for all runs with a pectin value of 220, mean sweetness index will fall between 5.65 and 5.84

  53. 9.113

    1. 95% confidence interval for E(y)

    2. (48.4, 64.6)

    3. 95% confident that the mean in-game heart rate of all top-level water polo players who have a maximal oxygen uptake of 150 VO2max is between 48.4% and 64.6%.

  54. 9.115

    1. (67.07, 76.41); 95% confident that ideal partner’s height is between 67.07 and 76.41 in. when a female’s height is 66 in.

    2. (58.39, 66.83); 95% confident that ideal partner’s height is between 58.39 and 66.83 in. when a male’s height is 66 in.

    3. males; 66 in. is outside range of male heights in sample

  55. 9.117

    1. (2.955, 4.066)

    2. (1.020, 6.000)

    3. prediction interval; yes

  56. 9.119

    1. Brand A: 3.35±.59 ; Brand B: 4.46±.30

    2. Brand A: 3.35±2.22 ; Brand B: 4.46±1.12

    3. .65±3.61

  57. 9.121

    1. y^=1.411+349x

    2. t=1.05, fail to reject H0:β1=0;r2=0.1219 ; no

  58. 9.123 yes; y^=7.77+.000113x,t=4.04,reject H0:β1=0

  59. 9.125 1 ; 1

  60. 9.127

    1. .4

    2. .9

    3. .2

    4. .2

  61. 9.129

    1. c. rs=.95

    2. d. rejectH0

  62. 9.131

    1. rs=.934

    2. yes,

    3. p-value=.00035

  63. 9.133

    1. c. .713

    2. d. rs|>.425

    3. e. rejectH0

  64. 9.135 Private: do not reject H0,p-value=.103 ; Public: reject H0,p-value=.002

  65. 9.137 yes

  66. 9.139 rs=.341 reject H0,p-value=.0145

  67. 9.141 E(y)=β0+β1x

  68. 9.143 true

  69. 9.145

    1. b. y^=x;y^=3

    2. c. y^=x

    3. d. least squares line has the smallest SSE

  70. 9.149

    1. b. .185

  71. 9.151

    1. a. positive

    2. b. yes

    3. c. y^=58.86+554.5x

    4. e. slope: for each 01-point increase in batting average, estimated number of games won will increase by 5.54

    5. f. t=2.81, reject H0:β1=0

    6. g. .396;40% of sample variation in games won is explained by the linear model

    7. h. yes

  72. 9.153

    1. a. y=β0+β1x+ε

    2. b. y^=175.70.8195x

    3. e. t=3.43, reject H0

  73. 9.155

    1. y^=6.31+0.967x

    2. no practical interpretation

    3. For every 1 micrometer increase in mean pore diameter, porosity is estimated to increase by 0.967%

    4. t=2.68, reject H0

    5. r=.802,r2=.643

    6. (8.56, 23.40)

  74. 9.157

    1. yes

    2. β^0=3.05,β^1=.108

    3. .t=4.00, reject H0

    4. r=.756,r2=.572

    5. 1.09

    6. yes

  75. 9.159

    1. β^0=13.49,β^1=.0528

    2. .0528±.0178 ; yes

    3. r2=.854

    4. (.5987, 1.2653)

  76. 9.161

    1. y^=46.4x

    2. y^=478.44+45.15x

    3. no, t=.91

  77. 9.163 y^=2.55+2.76x;t=12.66reject H0

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset