References

  1. [1] Brander, R.W. and Sutton, R.P. (1965) Solution grown SiC p-n junctions. Br. J. Appl. Phys., 2, 24.
  2. [2] Ikeda, M., Hayakawa, T., Yamagiwa, S. et al. (1980) Fabrication of 6H-SiC light-emitting diodes by a rotation dipping technique: Electroluminescence mechanisms. J. Appl. Phys., 50, 8215.
  3. [3] Jennings, V.J., Sommer, A. and Chang, H.C. (1966) The epitaxial growth of silicon carbide. J. Electrochem. Soc., 113, 728.
  4. [4] Campbell, R.B. and Chu, T.L. (1966) Epitaxial growth of silicon carbide by the thermal reduction technique. J. Electrochem. Soc., 113, 825.
  5. [5] von Muench, W. and Phaffeneder, I. (1976) Epitaxial deposition of silicon carbide from silicon tetrachloride and hexane. Thin Solid Films, 31, 39.
  6. [6] Yoshida, S., Sakuma, E., Okumura, H. et al. (1987) Heteroepitaxial growth of SiC polytypes. J. Appl. Phys., 62, 303.
  7. [7] Kuroda, N., Shibahara, K., Yoo, W.S. et al. (1987) Extended Abstract 19th Conference on Solid State Devices and Materials, Tokyo, Japan, 1987, p. 227 Step controlled VPE growth of SiC single crystals at low temperatures.
  8. [8] Ueda, T., Nishino, H. and Matsunami, H. (1990) Crystal growth of SiC by step-controlled epitaxy. J. Cryst. Growth, 104, 695.
  9. [9] Kong, H.S., Kim, H.J., Edmond, J.A. et al. (1987) Growth, doping, device development and characterization of CVD beta-SiC epilayers on Si(100) and alpha-SiC(0001). Mater. Res. Soc. Symp. Proc., 97, 233.
  10. [10] Kong, H.S., Glass, J.T. and Davis, R.F. (1988) Chemical vapor deposition and characterization of 6H-SiC thin films on off-axis 6H-SiC substrates. J. Appl. Phys., 64, 2672.
  11. [11] Itoh, A., Akita, H., Kimoto, T. and Matsunami, H. (1994) High-quality 4H-SiC homoepitaxial layers grown by step-controlled epitaxy. Appl. Phys. Lett., 65, 1400.
  12. [12] Kimoto, T., Itoh, A., Akita, H. et al. (1995) Step-controlled epitaxial growth of c04-math-0470 -SiC and application to high-voltage Schottky rectifiers, in Proceedings of the International Symposium on Compound Semiconductors 1994, IOP, p. 437.
  13. [13] Itoh, A., Kimoto, T. and Matsunami, H. (1995) High-performance of high-voltage 4H-SiC Schottky barrier diodes. IEEE Electron Device Lett., 16, 280.
  14. [14] Davis, R.F., Kelner, G., Shur, M. et al. (1991) Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide. Proc. IEEE, 79, 677.
  15. [15] Matsunami, H. and Kimoto, T. (1997) Step-controlled epitaxial growth of SiC: high quality homoepitaxy. Mater. Sci. Eng., R, 20, 125.
  16. [16] Burk, A. and Rowland, L.B. (1997) Homoepitaxial VPE growth of SiC active layers. Phys. Status Solidi B, 202, 263.
  17. [17] Rupp, R., Makarov, Y.N., Behner, H. and Wiedenhofer, A. (1997) Silicon carbide epitaxy in a vertical CVD reactor: experimental results and numerical process simulation. Phys. Status Solidi B, 202, 281.
  18. [18] Kordina, O., Hallin, C., Henry, A. et al. (1997) Growth of SiC by “Hot-Wall” CVD and HTCVD. Phys. Status Solidi B, 202, 321.
  19. [19] Kimoto, T., Itoh, A. and Matsunami, H. (1997) Step-controlled epitaxial growth of high-quality SiC layers. Phys. Status Solidi B, 202, 247.
  20. [20] Powell, J.A. and Larkin, D.J. (1997) Process-induced morphological defects in epitaxial CVD silicon carbide. Phys. Status Solidi B, 202, 529.
  21. [21] Schöner, A. (2004) New development in hot wall vapor phase epitaxial growth of silicon carbide, in Silicon Carbide—Recent Major Advances (eds W.J. Choyke, H. Matsunami and G. Pensl), Springer, p. 229.
  22. [22] Burk, A. (2006) Development of multiwafer warm-wall planetary VPE reactors for SiC device production. Chem. Vap. Deposition, 12, 465.
  23. [23] Henry, A., ul Hassan, J., Bergman, J.P. et al. (2006) Thick silicon carbide homoepitaxial layers grown by CVD techniques. Chem. Vap. Deposition, 12, 475.
  24. [24] La Via, F., Galvagno, G., Foti, G. et al. (2006) 4H SiC epitaxial growth with chlorine addition. Chem. Vap. Deposition, 12, 502.
  25. [25] Tsuchida, H., Ito, M., Kamata, I. and Nagano, M. (2009) Formation of extended defects in 4H-SiC epitaxial growth and development of a fast growth technique. Phys. Status Solidi B, 246, 1553.
  26. [26] Pedersen, H., Leone, S., Kordina, O. et al. (2012) Chloride-based CVD growth of silicon carbide for electronic applications. Chem. Rev., 112, 2434.
  27. [27] J.W. Matthews, ed. Epitaxial Growth, Part B, Chapter 5, Academic Press, New York, 1975.
  28. [28] Landini, B.E. and Brandes, G.R. (1999) Characteristics of homoepitaxial 4H-SiC films grown on c-axis substrates offcut towards c04-math-0471 or c04-math-0472 . Appl. Phys. Lett., 74, 2632.
  29. [29] Knippenberg, W.F. (1963) Growth phenomena in silicon carbide. Philips Res. Rep., 18, 161.
  30. [30] Heine, V., Cheng, C. and Needs, R.J. (1991) The preference of silicon carbide for growth in the metastable cubic form. J. Am. Ceram. Soc., 74, 2630.
  31. [31] Yoo, W.S. and Matsunami, H. (1992) Growth simulation of SiC polytypes and application to DPB-free 3C-SiC on alpha-SiC substrates, in Amorphous and Crystalline Silicon Carbide IV, Springer-Verlag, Berlin, p. 66.
  32. [32] Powell, J.A., Petit, J.B., Edgar, J.H. et al. (1991) Controlled growth of 3C-SiC and 6H-SiC films on low-tilt-angle vicinal (0001) 6H-SiC wafers. Appl. Phys. Lett., 59, 333.
  33. [33] Tairov, Y.M., Tsvetkov, V.F., Lilov, S.K. and Safaraliev, G.K. (1976) Studies of growth kinetics and polytypism of silicon carbide epitaxial layers grown from the vapour phase. J. Cryst. Growth, 36, 147.
  34. [34] Matsushita, Y., Nakata, T., Uetani, T. et al. (1990) Fabrication of SiC blue LEDs using off-oriented substrates. Jpn. J. Appl. Phys., 29, L343.
  35. [35] Tanaka, S., Kern, R.S. and Davis, R.F. (1994) Effects of gas flow ratio on silicon carbide thin film growth mode and polytype formation during gas-source molecular beam epitaxy. Appl. Phys. Lett., 65, 2851.
  36. [36] Kimoto, T., Nishino, H., Yoo, W.S. and Matsunami, H. (1993) Growth mechanism of 6H-SiC in step-controlled epitaxy. J. Appl. Phys., 73, 726.
  37. [37] Krishnan, B., Melnychuk, G. and Koshka, Y. (2010) Low-temperature homoepitaxial growth of 4H–SiC with c04-math-0473 and c04-math-0474 precursors. J. Cryst. Growth, 312, 645.
  38. [38] Kimoto, T., Nishino, H., Yamashita, A. et al. (1992) Low temperature homoepitaxial growth of 6H-SiC by VPE method, in Amorphous and Crystalline Silicon Carbide IV, Springer-Verlag, p. 31.
  39. [39] Burton, W.K., Cabrera, N. and Frank, F.C. (1951) The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. London, Ser. A, 243, 299.
  40. [40] Kimoto, T. and Matsunami, H. (1994) Surface kinetics of adatoms in vapor phase epitaxial growth of SiC on c04-math-0475 vicinal surfaces. J. Appl. Phys., 75, 850.
  41. [41] Hirschfelder, J.O., Curties, F. and Bird, R.B. (1954) Molecular Theory of Gases and Liquids, John Wiley & Sons, Inc., New York.
  42. [42] Konstantinov, A.O., Hallin, C., Kordina, O. and Janzen, E. (1996) Effect of vapor composition on polytype homogeneity of epitaxial silicon carbide. J. Appl. Phys., 80, 5704.
  43. [43] Hirth, J.P. and Pound, G.M. (1963) Condensation and Evaporation, Nucleation and Growth Kinetics, Pergamon Press, Oxford.
  44. [44] Pearson, E., Takai, T., Halicioglu, T. and Tiller, W.A. (1984) Computer modeling of Si and SiC surfaces and surface processes relevant to crystal growth from the vapor. J. Cryst. Growth, 70, 33.
  45. [45] Danno, K., Kimoto, T., Hashimoto, K. et al. (2004) Low-concentration deep traps in 4H-SiC grown with high growth rate by chemical vapor deposition. Jpn. J. Appl. Phys., 43, L969.
  46. [46] Hori, T., Danno, K. and Kimoto, T. (2007) Fast homoepitaxial growth of 4H-SiC with low basal-plane dislocation density and low trap concentration by hot-wall chemical vapor deposition. J. Cryst. Growth, 306, 297.
  47. [47] Burk, A.A. Jr. and Rowland, L.B. (1996) The role of excess silicon and in situ etching on 4H-SiC and 6H-SiC epitaxial layer morphology. J. Cryst. Growth, 167, 586.
  48. [48] Kimoto, T., Chen, Z.Y., Tamura, S. et al. (2001) Surface morphological structures of 4H-, 6H-, and 15R-SiC(0001) epitaxial layers grown by chemical vapor deposition. Jpn. J. Appl. Phys., 40, 3315.
  49. [49] Hallin, C., Konstantinov, A.O., Kordina, O. and Janzen, E. (1996) The mechanism of cubic SiC nucleation on off-axis substrates. Inst. Phys. Conf. Ser., 142, 85.
  50. [50] Fujiwara, H., Danno, K., Kimoto, T. et al. (2005) Effects of C/Si ratio in fast epitaxial growth of 4H-SiC(0001) by vertical hot-wall chemical vapor deposition. J. Cryst. Growth, 281, 370.
  51. [51] Charrier, A., Coati, A., Argunova, T. et al. (2002) Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films. J. Appl. Phys., 92, 2479.
  52. [52] Novoselov, K.S., Geim, A.K., Morozov, S.V. et al. (2004) Electric field effect in atomically thin carbon films. Science, 306, 666.
  53. [53] Seyller, T., Bostwick, A., Emtsev, K.V. et al. (2008) Epitaxial graphene: a new material. Phys. Status Solidi B, 245, 1436.
  54. [54] Tsuchida, H., Kamata, I. and Izumi, K. (1997) Infrared spectroscopy of hydrides on the 6H-SiC surface. Appl. Phys. Lett., 70, 3072.
  55. [55] Allendorf, M.D. and Kee, R.J. (1991) A model of silicon carbide chemical vapor deposition. J. Electrochem. Soc., 138, 841.
  56. [56] Stinespring, C.D. and Wormhoudt, J.C. (1988) Gas phase kinetics analysis and implications for silicon carbide chemical vapor deposition. J. Cryst. Growth, 87, 481.
  57. [57] Nishizawa, S. and Pons, M. (2006) Growth and doping modeling of SiC-CVD in a horizontal hot-wall reactor. Chem. Vap. Deposition, 12, 516.
  58. [58] Nishizawa, S. and Pons, M. (2006) Numerical modeling of SiC–CVD in a horizontal hot-wall reactor. Microelectron. Eng., 83, 100.
  59. [59] Meziere, J., Ucar, M., Blanquet, E. et al. (2004) Modeling and simulation of SiC CVD in the horizontal hot-wall reactor concept. J. Cryst. Growth, 267, 436.
  60. [60] Nishizawa, S., Kojima, K., Kuroda, S. et al. (2005) Modeling of SiC-CVD on Si-face/C-face in a horizontal hot-wall reactor. J. Cryst. Growth, 275, e515.
  61. [61] Danielsson, Ö., Henry, A. and Janzen, E. (2002) Growth rate predictions of chemical vapor deposited silicon carbide epitaxial layers. J. Cryst. Growth, 243, 170.
  62. [62] Danielsson, Ö., Forsberg, U. and Janzen, E. (2003) Predicted nitrogen doping concentrations in silicon carbide epitaxial layers grown by hot-wall chemical vapor deposition. J. Cryst. Growth, 250, 471.
  63. [63] Tsvetkov, V.F., Allen, S.T., Kong, H.S. and Carter, C.H. Jr. (1996) Recent progress in SiC crystal growth. Inst. Phys. Conf. Ser., 142, 17.
  64. [64] Chen, W. and Capano, M.A. (2005) Growth and characterization of 4H-SiC epilayers on substrates with different off-cut angles. J. Appl. Phys., 98, 114907.
  65. [65] Wada, K., Kimoto, T., Nishikawa, K. and Matsunami, H. (2006) Epitaxial growth of 4H-SiC on 4 degrees off-axis (0001) and c04-math-0476 substrates by hot-wall chemical vapor deposition. J. Cryst. Growth, 291, 370.
  66. [66] Kojima, K., Okumura, H., Kuroda, S. and Arai, K. (2004) Homoepitaxial growth of 4H-SiC on on-axis c04-math-0477 C-face substrates by chemical vapor deposition. J. Cryst. Growth, 269, 367.
  67. [67] Kimoto, T., Itoh, A. and Matsunami, H. (1995) Step bunching in chemical vapor deposition of 6H- and 4H-SiC on vicinal c04-math-0478 faces. Appl. Phys. Lett., 66, 3645.
  68. [68] Herring, C. (1951) Some theorems on the free energies of crystal surfaces. Phys. Rev., 82, 87.
  69. [69] W.A. Tiller, The Science of Crystallization: Microscopic Interfacial Phenomena, Chapter 2 (Cambridge University Press, Cambridge, 1991).
  70. [70] Tyc, S. (1994) Structure of a 6H silicon carbide vicinal surface. Inst. Phys. Conf. Ser., 137, 333.
  71. [71] Powell, J.A., Larkin, D.J., Abel, P.B. et al. (1996) Effect of tilt angle on the morphology of SiC epitaxial films grown on vicinal (0001)SiC substrates. Inst. Phys. Conf. Ser., 142, 77.
  72. [72] Neudeck, P.G., Trunek, A.J. and Powell, J.A. (2004) Atomic force microscope observation of growth and defects on as-grown (111) 3C-SiC mesa surfaces. Mater. Res. Soc. Symp. Proc., 815, 59.
  73. [73] Kimoto, T., Itoh, A., Matsunami, H. and Okano, T. (1997) Step bunching mechanism in chemical vapor deposition of c04-math-0479 . J. Appl. Phys., 81, 3494.
  74. [74] Thomas, B., Bartsch, W., Stein, R. et al. (2004) Properties and suitability of 4H-SiC epitaxial layers grown at different CVD systems for high voltage applications. Mater. Sci. Forum, 457–460, 181.
  75. [75] O. Kordina, C. Hallin, R.C. Glass, et al. (1994) Inst. Phys. Conf. Ser. 137, 41 A novel hot-wall CVD reactor for SiC epitaxy.
  76. [76] La Via, F., Izzo, G., Mauceri, M. et al. (2008) 4H-SiC epitaxial layer growth by trichlorosilane (TCS). J. Cryst. Growth, 311, 107.
  77. [77] Kimoto, T., Feng, G., Hiyoshi, T. et al. (2010) Defect control in growth and processing of 4H-SiC for power device applications. Mater. Sci. Forum, 645–648, 645.
  78. [78] Burk, A.A., O'Loughlin, M.J., Paisley, M.J. et al. (2005) Large area SiC epitaxial layer growth in a warm-wall planetary VPE reactor. Mater. Sci. Forum, 483–485, 137.
  79. [79] Thomas, B., Hecht, C., Stein, R. and Friedrichs, P. (2006) Challenges in large-area multi-wafer SiC epitaxy for production needs. Mater. Sci. Forum, 527–529, 135.
  80. [80] Ellison, A., Zhang, J., Henry, A. and Janzen, E. (2002) Epitaxial growth of SiC in a chimney CVD reactor. J. Cryst. Growth, 236, 225.
  81. [81] Larkin, D.J., Neudeck, P.G., Powell, J.A. and Matus, L.G. (1994) Site-competition epitaxy for superior silicon carbide electronics. Appl. Phys. Lett., 65, 1659.
  82. [82] Larkin, D.J. (1997) SiC dopant incorporation control using site-competition CVD. Phys. Status Solidi B, 202, 305.
  83. [83] Kimoto, T., Nakazawa, S., Hahimoto, K. and Matsunami, H. (2001) Reduction of doping and trap concentrations in 4H-SiC epitaxial layers grown by chemical vapor deposition. Appl. Phys. Lett., 79, 2761.
  84. [84] Tsuchida, H., Kamata, I., Jikimoto, T. and Izumi, K. (2002) Epitaxial growth of thick 4H–SiC layers in a vertical radiant-heating reactor. J. Cryst. Growth, 237–238, 1206.
  85. [85] Kimoto, T., Itoh, A. and Matsunami, H. (1995) Incorporation mechanism of N, Al, and B impurities in chemical vapor deposition of SiC. Appl. Phys. Lett., 67, 2385.
  86. [86] Hallin, C., Ivanov, I.G., Egilsson, T. et al. (1998) The material quality of CVD-grown SiC using different carbon precursors. J. Cryst. Growth, 183, 163.
  87. [87] Kojima, K., Suzuki, T., Kuroda, S. et al. (2003) Epitaxial growth of high-quality 4H-SiC carbon-face by low-pressure hot-wall chemical vapor deposition. Jpn. J. Appl. Phys., 42, L637.
  88. [88] Forsberg, U., Danielsson, Ö., Henry, A. et al. (2002) Nitrogen doping of epitaxial silicon carbide. J. Cryst. Growth, 236, 101.
  89. [89] Yamamoto, T., Kimoto, T. and Matsunami, H. (1998) Impurity incorporation mechanism in step-controlled epitaxy - Growth temperature and substrate off-angle dependence. Mater. Sci. Forum, 264–268, 111.
  90. [90] Wang, R., Bhat, I.B. and Chow, T.P. (2002) Epitaxial growth of n-type SiC using phosphine and nitrogen as the precursors. J. Appl. Phys., 92, 7587.
  91. [91] Yoshida, S., Sakuma, E., Misawa, S. and Gonda, S. (1984) A new doping method using metalorganics in chemical vapor deposition of 6H–SiC. J. Appl. Phys., 55, 169.
  92. [92] Forsberg, U., Danielsson, Ö., Henry, A. et al. (2003) Aluminum doping of epitaxial silicon carbide. J. Cryst. Growth, 253, 340.
  93. [93] Larkin, D.J., Sridhara, S.G., Devaty, R.P. and Choyke, W.J. (1995) Hydrogen incorporation in boron-doped 6H-SiC CVD epilayers produced using site-competition epitaxy. J. Electron. Mater., 24, 289.
  94. [94] Kimoto, T., Yamashita, A., Itoh, A. and Matsunami, H. (1993) Step-controlled epitaxial growth of 4H-SiC and doping of Ga as a blue luminescent center. Jpn. J. Appl. Phys., 32, 1045.
  95. [95] Negoro, Y., Kimoto, T., Matsunami, H. and Pensl, G. (2007) Abnormal out-diffusion of epitaxially doped boron in 4H-SiC caused by implantation and annealing. Jpn. J. Appl. Phys., 46, 5053.
  96. [96] Nordell, N., Schöner, A. and Linnarsson, M.K. (1997) Control of Al and B doping transients in 6H and 4H SiC grown by vapor phase epitaxy. J. Electron. Mater., 26, 187.
  97. [97] Benamara, M., Zhang, X., Skowronski, M. et al. (2005) Structure of the carrot defect in 4H-SiC epitaxial layers. Appl. Phys. Lett., 86, 021905.
  98. [98] Tsuchida, H., Kamata, I. and Nagano, M. (2007) Investigation of defect formation in 4H-SiC epitaxial growth by X-ray topography and defect selective etching. J. Cryst. Growth, 306, 254.
  99. [99] Okada, T., Kimoto, T., Noda, H. et al. (2002) Correspondence between surface morphological faults and crystallographic defects in 4H-SiC homoepitaxial film. Jpn. J. Appl. Phys., 41, 6320.
  100. [100] Okada, T., Kimoto, T., Yamai, K. et al. (2003) Crystallographic defects under device-killing surface faults in a homoepitaxially grown film of SiC. Mater. Sci. Eng., A, 361, 67.
  101. [101] Konstantinov, A.O., Hallin, C., Pecz, B. et al. (1997) The mechanism for cubic SiC formation on off-oriented substrates. J. Cryst. Growth, 178, 495.
  102. [102] Aigo, T., Ito, W., Tsuge, H. et al. (2013) Formation of epitaxial defects by threading screw dislocations with a morphological feature at the surface of 4° off-axis 4H-SiC substrates. Mater. Sci. Forum, 740–742, 629.
  103. [103] Kimoto, T. and Matsunami, H. (1995) Surface diffusion lengths of adatoms on c04-math-0480 faces in chemical vapor deposition of SiC. J. Appl. Phys., 78, 3132.
  104. [104] Kimoto, T., Miyamoto, N. and Matsunami, H. (1999) Performance limiting surface defects in SiC epitaxial p-n junction diodes. IEEE Trans. Electron Devices, 46, 471.
  105. [105] Ohtani, N. (2011) Toward the reduction of performance-limiting defects in SiC epitaxial substrates. ECS Trans., 41, 253.
  106. [106] Kamata, I., Tsuchida, H., Jikimoto, T. and Izumi, K. (2000) Structural transformation of screw dislocations via thick 4H-SiC epitaxial growth. Jpn. J. Appl. Phys., 39, 6496.
  107. [107] Kamata, I., Tsuchida, H., Jikimoto, T. and Izumi, K. (2002) Influence of 4H–SiC growth conditions on micropipe dissociation. Jpn. J. Appl. Phys., 41, L1137.
  108. [108] Nakamura, S., Kimoto, T. and Matsunami, H. (2003) Effect of C/Si ratio on spiral growth on 6H-SiC(0001). Jpn. J. Appl. Phys., 42, L846.
  109. [109] Tsuchida, H., Kamata, I. and Nagano, M. (2008) Formation of basal plane Frank-type faults in 4H-SiC epitaxial growth. J. Cryst. Growth, 310, 757.
  110. [110] Bergman, J.P., Lendenmann, H., Nilsson, P.A. et al. (2001) Crystal defects as source of anomalous forward voltage increase of 4H-SiC diodes. Mater. Sci. Forum, 353–356, 299.
  111. [111] Skowronski, M. and Ha, S. (2006) Degradation of hexagonal silicon-carbide-based bipolar devices. J. Appl. Phys., 99, 011101.
  112. [112] Muzykov, P.G., Kennedy, R.M., Zhang, Q. et al. (2009) Physical phenomena affecting performance and reliability of 4H-SiC bipolar junction transistors. Microelectron. Reliab., 49, 32.
  113. [113] Hull, D. and Bacon, D.J. (2001) Introduction to Dislocations, 4th edn, Butterworth-Heinemann.
  114. [114] Ha, S., Mieszkowski, P., Skowronski, M. and Rowland, L.B. (2002) Dislocation conversion in 4H silicon carbide epitaxy. J. Cryst. Growth, 244, 257.
  115. [115] Ohno, T., Yamaguchi, H., Kuroda, S. et al. (2004) Influence of growth conditions on basal plane dislocation in 4H-SiC epitaxial layer. J. Cryst. Growth, 271, 1.
  116. [116] Jacobson, H., Bergman, J.P., Hallin, C. et al. (2004) Properties and origins of different stacking faults that cause degradation in SiC PiN diodes. J. Appl. Phys., 95, 1485.
  117. [117] Tsuchida, H., Ito, M., Kamata, I. and Nagano, M. (2009) Fast epitaxial growth of 4H-SiC and analysis of defect transfer. Mater. Sci. Forum, 615–617, 67.
  118. [118] Jacobson, H., Birch, J., Yakimova, R. et al. (2002) Dislocation evolution in 4H-SiC epitaxial layers. J. Appl. Phys., 91, 6354.
  119. [119] Hong, M.H., Samant, A.V. and Pirouz, P. (2000) Stacking fault energy of 6H-SiC and 4H-SiC single crystals. Philos. Mag., 80, 919.
  120. [120] Pirouz, P., Demenet, J.L. and Hong, M.H. (2001) On transition temperatures in the plasticity and fracture of semiconductors. Philos. Mag., 81, 1207.
  121. [121] Tanuma, R., Mori, D., Kamata, I. and Tsuchida, H. (2012) X-ray microbeam three-dimensional topography imaging and strain analysis of basal-plane dislocations and threading edge dislocations in 4H-SiC. Appl. Phys. Express, 5, 061301.
  122. [122] Chung, S., Wheeler, V., Myers-Ward, R. et al. (2011) Secondary electron dopant contrast imaging of compound semiconductor junctions. J. Appl. Phys., 109, 094906.
  123. [123] Sumakeris, J.J., Bergman, J.P., Das, M.K. et al. (2006) Techniques for minimizing the basal plane dislocation density in SiC epilayers to reduce Vf drift in SiC bipolar power devices. Mater. Sci. Forum, 527–529, 141.
  124. [124] Sumakeris, J.J., Hull, B.A., O'Loughlin, M.J. et al. (2007) Developing an effective and robust process for manufacturing bipolar SiC power devices. Mater. Sci. Forum, 556–557, 77.
  125. [125] Zhang, Z. and Sudarshan, T.S. (2005) Basal plane dislocation-free epitaxy of silicon carbide. Appl. Phys. Lett., 87, 151913.
  126. [126] Tsuchida, H., Kamata, I., Miyanagi, T. et al. (2006) Comparison of propagation and nucleation of basal plane dislocations in 4H-SiC c04-math-0481 and (0001) epitaxy. Mater. Sci. Forum, 527–529, 231.
  127. [127] Starlbush, R.E., VanMil, B.L., Myers-Ward, R.L. et al. (2009) Basal plane dislocation reduction in 4H-SiC epitaxy by growth interruptions. Appl. Phys. Lett., 94, 041916.
  128. [128] Tsuchida, H., Kamata, I., Miyanagi, T. et al. (2005) Growth of thick 4H-SiC (0001) epilayers and reduction of basal plane dislocations. Jpn. J. Appl. Phys., 44, L806.
  129. [129] Zhang, X. and Tsuchida, H. (2012) Conversion of basal plane dislocations to threading edge dislocations in 4H-SiC epilayers by high temperature annealing. J. Appl. Phys., 111, 123512.
  130. [130] Zhang, X., Skowronski, M., Liu, K.X. et al. (2007) Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy. J. Appl. Phys., 102, 093520.
  131. [131] Nagano, M., Tsuchida, H., Suzuki, T. et al. (2010) Annealing induced extended defects in as-grown and ion-implanted 4H-SiC epitaxial layers. J. Appl. Phys., 108, 013511.
  132. [132] Zhang, N., Chen, Y., Zhang, Y. et al. (2009) Nucleation mechanism of dislocation half-loop arrays in 4H-silicon carbide homoepitaxial layers. Appl. Phys. Lett., 94, 122108.
  133. [133] Zhang, X., Miyazawa, T. and Tsuchida, H. (2012) Critical conditions of misfit dislocation formation in 4H-SiC epilayers. Mater. Sci. Forum, 717–720, 313.
  134. [134] Matthews, J.W. and Blakeslee, A.E. (1974) Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth, 27, 118.
  135. [135] Ha, S., Chung, H.J., Nuhfer, N.T. and Skowronski, M. (2004) Dislocation nucleation in 4H silicon carbide epitaxy. J. Cryst. Growth, 262, 130.
  136. [136] Bai, S., Wagner, G., Choyke, W.J. et al. (2002) Spectra associated with stacking faults in 4H-SiC grown in a hot-wall CVD reactor. Mater. Sci. Forum, 389–393, 589.
  137. [137] Feng, G., Suda, J. and Kimoto, T. (2008) Characterization of stacking faults in 4H-SiC epilayers by room-temperature microphotoluminescence mapping. Appl. Phys. Lett., 92, 221906.
  138. [138] Liu, K.X., Stahlbush, R.E., Lew, K.-K. et al. (2008) Examination of in-grown stacking faults in 8°- and 4°- offcut 4H-SiC epitaxy by photoluminescence imaging. J. Electron. Mater., 37, 730.
  139. [139] Camassel, J. and Juillaguet, S. (2008) Optical properties of as-grown and process-induced stacking faults in 4H-SiC. Phys. Status Solidi B, 245, 1337.
  140. [140] Hassan, J., Henry, A., Ivanov, I.G. and Bergman, J.P. (2009) In-grown stacking faults in 4H-SiC epilayers grown on off-cut substrates. J. Appl. Phys., 105, 123513.
  141. [141] Feng, G., Suda, J. and Kimoto, T. (2009) Characterization of major in-grown stacking faults in 4H-SiC epilayers. Physica B, 23–24, 4745.
  142. [142] Izumi, S., Tsuchida, H., Tawara, T. et al. (2005) Structure of in-grown stacking faults in the 4H-SiC epitaxial layers. Mater. Sci. Forum, 483–485, 323.
  143. [143] Izumi, S., Tsuchida, H., Kamata, I. and Tawara, T. (2005) Structural analysis and reduction of in-grown stacking faults in 4H-SiC epilayers. Appl. Phys. Lett., 86, 202108.
  144. [144] Fujiwara, H., Kimoto, T. and Matsunami, H. (2005) Characterization of in-grown stacking faults in 4H-SiC (0001) epitaxial layers and its impacts on high-voltage Schottky barrier diodes. Appl. Phys. Lett., 87, 051912.
  145. [145] Kamata, I., Zhang, X. and Tsuchida, H. (2010) Photoluminescence of Frank-type defects on the basal plane in 4H-SiC epilayers. Appl. Phys. Lett., 97, 172107.
  146. [146] Milnes, A.G. (1973) Deep Impurities in Semiconductors, John Wiley & Sons, Inc., New York.
  147. [147] Lang, D.V. (1974) Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. J. Appl. Phys., 45, 3023.
  148. [148] Weiss, S. and Kassing, R. (1988) Deep Level Transient Fourier Spectroscopy (DLTFS)—A technique for the analysis of deep level properties. Solid State Electron., 31, 1733.
  149. [149] Dalibor, T., Pensl, G., Matsunami, H. et al. (1997) Deep defect centers in silicon carbide monitored with deep level transient spectroscopy. Phys. Status Solidi A, 162, 199.
  150. [150] Hemmingsson, C., Son, N.T., Kordina, O. et al. (1997) Deep level defects in electron-irradiated 4H SiC epitaxial layers. J. Appl. Phys., 81, 6155.
  151. [151] Storasta, L., Bergman, J.P., Janzen, E. et al. (2004) Deep levels created by low energy electron irradiation in 4H-SiC. J. Appl. Phys., 96, 4909.
  152. [152] Danno, K. and Kimoto, T. (2006) Investigation of deep levels in n-type 4H-SiC epilayers irradiated with low-energy electrons. J. Appl. Phys., 100, 113728.
  153. [153] Danno, K. and Kimoto, T. (2007) Deep level transient spectroscopy on as-grown and electron-irradiated p-type 4H-SiC epilayers. J. Appl. Phys., 101, 103704.
  154. [154] Storasta, L., Carlsson, F.H.C., Sridhara, S.G. et al. (2001) Pseudodonor nature of the defect in 4H-SiC. Appl. Phys. Lett., 78, 46.
  155. [155] Klein, P.B., Shanabrook, B.V., Huh, S.W. et al. (2006) Lifetime-limiting defects in 4H-SiC epilayers. Appl. Phys. Lett., 88, 052110.
  156. [156] Danno, K., Nakamura, D. and Kimoto, T. (2007) Investigation of carrier lifetime in 4H-SiC epilayers and lifetime control by electron irradiation. Appl. Phys. Lett., 90, 202109.
  157. [157] Alfieri, G., Monakhov, E.V., Svensson, B.G. and Linnarsson, M.K. (2005) Annealing behavior between room temperature and 2000 °C of deep level defects in electron-irradiated n-type 4H silicon carbide. J. Appl. Phys., 98, 043518.
  158. [158] Kawahara, K., Suda, J., Pensl, G. and Kimoto, T. (2010) Reduction of deep levels generated by ion implantation into n- and p-type 4H-SiC. J. Appl. Phys., 108, 033706.
  159. [159] Kawahara, K., Krieger, M., Suda, J. and Kimoto, T. (2010) Deep levels induced by reactive ion etching in n- and p-type 4H-SiC. J. Appl. Phys., 108, 023706.
  160. [160] Troffer, T., Schadt, M., Frank, T. et al. (1997) Doping of SiC by implantation of boron and aluminum. Phys. Status Solidi A, 162, 277.
  161. [161] Dalibor, T., Pensl, G., Nordell, N. and Schöner, A. (1997) Electrical properties of the titanium acceptor in silicon carbide. Phys. Rev. B, 55, 13618.
  162. [162] Zhang, J., Storasta, L., Bergman, J.P. et al. (2003) Electrically active defects in n-type 4H-silicon carbide grown in a vertical hot-wall reactor. J. Appl. Phys., 93, 4708.
  163. [163] Danno, K., Hori, T. and Kimoto, T. (2007) Impacts of growth parameters on deep levels in n-type 4H-SiC. J. Appl. Phys., 101, 053709.
  164. [164] Tsuchida, H., Ito, M., Kamata, I. et al. (2010) Low-pressure fast growth and characterization of 4H-SiC epilayers. Mater. Sci. Forum, 645–648, 77.
  165. [165] Kimoto, T., Hashimoto, K. and Matsunami, H. (2003) Effects of C/Si ratio in chemical vapor deposition of c04-math-0482 and c04-math-0483 . Jpn. J. Appl. Phys., 42, 7294.
  166. [166] Son, N.T., Trinh, X.T., Løvlie, L.S. et al. (2012) Negative-U system of carbon vacancy in 4H-SiC. Phys. Rev. Lett., 109, 187603.
  167. [167] Kawahara, K., Trinh, X.T., Son, N.T. et al. (2013) Investigation on origin of c04-math-0484 center in SiC by deep level transient spectroscopy and electron paramagnetic resonance. Appl. Phys. Lett., 102, 112106.
  168. [168] Kimoto, T., Danno, K. and Suda, J. (2008) Lifetime-killing defects in 4H-SiC epilayers and lifetime control by low-energy electron irradiation. Phys. Status Solidi B, 245, 1327.
  169. [169] Sze, S.M. (2002) Semiconductor Devices, Physics and Technology, 2nd edn, John Wiley & Sons, Inc., Hoboken, NJ.
  170. [170] Ito, M., Storasta, L. and Tsuchida, H. (2008) Development of 4H–SiC epitaxial growth technique achieving high growth rate and large-area uniformity. Appl. Phys. Express, 1, 015001.
  171. [171] Ishida, Y., Takahashi, T., Okumura, H. et al. (2009) Development of a practical high-rate CVD system. Mater. Sci. Forum, 600–603, 119.
  172. [172] Crippa, D., Valente, G.L., Ruggerio, A. et al. (2005) New achievements on CVD based methods for SiC epitaxial growth. Mater. Sci. Forum, 483–485, 67.
  173. [173] Myers, R., Kordina, O., Shishkin, Z. et al. (2005) Increased growth rate in a SiC CVD reactor using HCl as a growth additive. Mater. Sci. Forum, 483–485, 73.
  174. [174] Pedersen, H., Leone, S., Henry, A. et al. (2007) Very high growth rate of 4H-SiC epilayers using the chlorinated precursor methyltrichlorosilane (MTS). J. Cryst. Growth, 307, 334.
  175. [175] Ellison, A., Zhang, J., Peterson, J. et al. (1999) High temperature CVD growth of SiC. Mater. Sci. Eng., B, 61, 113.
  176. [176] Zhang, J., Ellison, A., Danielsson, Ö. et al. (2002) Epitaxial growth of 4H SiC in a vertical hot-wall CVD reactor: Comparison between up- and down-flow orientations. J. Cryst. Growth, 241, 421.
  177. [177] Fujihira, K., Kimoto, T. and Matsunami, H. (2002) High-purity and high-quality 4H-SiC grown at high speed by chimney-type vertical hot-wall chemical vapor deposition. Appl. Phys. Lett., 80, 1586.
  178. [178] Nishino, S., Matsunami, H. and Tanaka, T. (1978) Growth and morphology of 6H-SiC epitaxial layers by CVD. J. Cryst. Growth, 45, 144.
  179. [179] Leone, S., Mauceri, M., Pistone, G. et al. (2006) SiC-4H epitaxial layer growth using trichlorosilane (TCS) as silicon precursor. Mater. Sci. Forum, 527–529, 179.
  180. [180] Chowdhury, I., Chandrasekhar, M.V.S., Klein, P.B. et al. (2011) High growth rate 4H-SiC epitaxial growth using dichlorosilane in a hot-wall CVD reactor. J. Cryst. Growth, 316, 60.
  181. [181] MacMillan, M.F., Loboda, M.J., Chung, G. et al. (2006) Homoepitaxial growth of 4H-SiC using a chlorosilane silicon precursor. Mater. Sci. Forum, 527–529, 175.
  182. [182] Leone, S., Kordina, O., Henry, A. et al. (2012) Gas-phase modeling of chlorine-cased chemical vapor deposition of silicon carbide. Cryst. Growth Des., 12, 1977.
  183. [183] Koshka, Y., Lin, H.D., Melnychuk, G. et al. (2005) Homoepitaxial growth of 4H-SiC using c04-math-0485 carbon precursor. Mater. Sci. Forum, 483-485, 81.
  184. [184] Lu, P., Edgar, J.H., Glembocki, O.J. et al. (2005) High-speed homoepitaxy of SiC from methyltrichlorosilane by chemical vapor deposition. J. Cryst. Growth, 285, 506.
  185. [185] Pedersen, H., Leone, S., Henry, A. et al. (2008) Very high crystalline quality of thick 4H-SiC epilayers grown from methyltrichlorosilane (MTS). Phys. Status Solidi, 2, 188.
  186. [186] Leone, S., Pedersen, H., Henry, A. et al. (2009) Improved morphology for epitaxial growth on 4° off-axis 4H-SiC substrates. J. Cryst. Growth, 311, 3265.
  187. [187] Pozzetti, V. (2001) in Silicon Epitaxy, Semiconductors and Semimetals, vol. 72 (eds D. Crippa, D.L. Rode and M. Masi), Academic Press.
  188. [188] Pedersen, H., Beyer, F.C., Henry, A. and Janzen, E. (2009) Acceptor incorporation in SiC epilayers grown at high growth rate with chloride-based CVD. J. Cryst. Growth, 311, 3364.
  189. [189] Nakamura, S., Kimoto, T. and Matsunami, H. (2003) Homoepitaxy of 6H-SiC on nearly on-axis (0001) faces by chemical vapor deposition, Part I: Effect of C/Si ratio on wide-area homoepitaxy without 3C-SiC inclusions. J. Cryst. Growth, 256, 341.
  190. [190] Neudeck, P.G. and Powell, J.A. (2004) Homoepitaxial growth and heteroepitaxial growth on step-free SiC mesas, in Silicon Carbide - Recent Major Advances (eds W.J. Choyke, H. Matsunami and G. Pensl), Springer, p. 179.
  191. [191] Neudeck, P.G., Trunek, A.J., Spry, D.J. et al. (2006) CVD growth of 3C-SiC on 4H/6H mesas. Chem. Vap. Deposition, 12, 531.
  192. [192] Kojima, K., Kuroda, S., Okumura, H. and Arai, K. (2006) Homoepitaxial growth on a 4H-SiC C-Face substrate. Chem. Vap. Deposition, 12, 489.
  193. [193] Stein, R.A. and Lanig, P. (1992) Influence of surface energy on the growth of 6H- and 4H-SiC polytypes by sublimation. Mater. Sci. Eng., B, 11, 69.
  194. [194] Kojima, K., Okumura, H. and Arai, K. (2009) Control of the surface morphology on low off angled 4H-SiC homoepitaxal growth. Mater. Sci. Forum, 615-617, 113.
  195. [195] Leone, S., Pedersen, H., Henry, A. et al. (2009) Thick homoepitaxial layers grown on on-axis Si-face 6H- and 4H-SiC substrates with HCl addition. J. Cryst. Growth, 312, 24.
  196. [196] Leone, S., Beyer, F.C., Pedersen, H. et al. (2010) High growth rate of 4H-SiC epilayers on on-axis substrates with different chlorinated precursors. Cryst. Growth Des., 10, 5334.
  197. [197] Hassan, J., Bergman, J.P., Henry, A. and Janzen, E. (2008) On-axis homoepitaxial growth on Si-face 4H–SiC substrates. J. Cryst. Growth, 310, 4424.
  198. [198] Kimoto, T., Nakazawa, S., Fujihira, K. et al. (2002) Recent achievements and future challenges in SiC homoepitaxial growth. Mater. Sci. Forum, 389-393, 165.
  199. [199] Powell, J.A. and Will, H.A. (1973) Epitaxial growth of 6H SiC in the temperature range 1320-1390 °C. J. Appl. Phys., 44, 5177.
  200. [200] Yamashita, A., Yoo, W.S., Kimoto, T. and Matsunami, H. (1992) Homoepitaxial chemical vapor deposition of 6H-SiC at low temperatures on c04-math-0486 substrates. Jpn. J. Appl. Phys., 31, 3655.
  201. [201] Kimoto, T., Hirao, T., Nakazawa, S. et al. (2003) Homoepitaxial growth of c04-math-0487 and nitrogen doping by chemical vapor deposition. J. Cryst. Growth, 249, 208.
  202. [202] Kimoto, T., Yamamoto, T., Chen, Z.Y. et al. (2001) Chemical vapor deposition and deep level analyses of c04-math-0488 . J. Appl. Phys., 89, 6105.
  203. [203] Hallin, C., Ellison, A., Ivanov, I.G. et al. (1998) CVD growth and characterisation of SiC epitaxial layers on faces perpendicular to the (0001) basal plane. Mater. Sci. Forum, 264-268, 123.
  204. [204] Kojima, K., Ohno, T., Senzaki, J. et al. (2002) Epitaxial growth of c04-math-0489 4H-SiC using substrate grown in the c04-math-0490 direction. Mater. Sci. Forum, 389-393, 195.
  205. [205] Kimoto, T., Fujihira, K., Shiomi, H. and Matsunami, H. (2003) High-voltage 4H-SiC Schottky barrier diodes fabricated on c04-math-0491 with closed micropipes. Jpn. J. Appl. Phys., 42, L13.
  206. [206] Tanaka, Y., Okamoto, M., Takatsuka, A. et al. (2006) 700-V c04-math-0492 buried gate SiC-SIT (SiC-BGSIT). IEEE Electron Device Lett., 27, 908.
  207. [207] Malhan, R.K., Bakowski, M., Takeuchi, Y. et al. (2009) Design, process, and performance of all-epitaxial normally-off SiC JFETs. Phys. Status Solidi A, 206, 2308.
  208. [208] Konstantinov, A.O., Harris, C.I. and Ray, I.C. (2005) High power lateral epitaxy MESFET technology in silicon carbide. Mater. Sci. Forum, 483-485, 853.
  209. [209] Nordell, N., Karlsson, S. and Konstantinov, A.O. (1998) Homoepitaxy of 6H and 4H SiC on nonplanar substrates. Appl. Phys. Lett., 72, 197.
  210. [210] Chen, Y., Kimoto, T., Takeuchi, Y. et al. (2004) Homoepitaxy of 4H-SiC on trenched (0001) Si face substrates by chemical vapor deposition. Jpn. J. Appl. Phys., 43, 4105.
  211. [211] Takeuchi, Y., Kataoka, M., Kimoto, T. et al. (2006) SiC migration enhanced embedded epitaxial (ME3) growth technology. Mater. Sci. Forum, 527-529, 251.
  212. [212] Negoro, Y., Kimoto, T., Kataoka, M. et al. (2006) Embedded epitaxial growth of 4H-SiC on trenched substrates and pn junction characteristics. Microelectron. Eng., 83, 27.
  213. [213] Chen, Y., Kimoto, T., Takeuchi, Y. et al. (2005) Selective embedded growth of 4H-SiC trenches in 4H-SiC(0001) substrates using carbon mask. Jpn. J. Appl. Phys., 44, 4909.
  214. [214] Li, C., Losee, P., Seiler, J. et al. (2005) Fabrication and characterization of 4H-SiC PN junction diodes by selective-epitaxial growth using TaC as the mask. J. Electron. Mater., 34, 450.
  215. [215] Ziegler, G., Lanig, P., Theis, D. and Weurich, C. (1980) Single crystal growth of SiC substrate material for blue light emitting diodes. IEEE Trans. Electron Devices, 30, 277.
  216. [216] Koga, K., Fujikawa, Y., Ueda, Y. and Yamaguchi, T. (1992) Growth and characterization of 6H-SiC bulk crystals by the sublimation method, in Amorphous and Crystalline Silicon Carbide IV, Springer Proceedings of Physics, vol. 71 (eds C.Y. Yang, M.M. Rahman and G.L. Harris), Springer-Verlag, p. 96.
  217. [217] Yakimova, R., Tuominen, M., Bakin, A.S. et al. (1996) Silicon carbide liquid phase epitaxy in the Si-Sc-C system. Inst. Phys. Conf. Ser., 142, 101.
  218. [218] Nishitani, S.R. and Kaneko, T. (2008) Metastable solvent epitaxy of SiC. J. Cryst. Growth, 310, 1815.
  219. [219] Vodakov, Y.A., Roenkov, A.D., Ramm, M.G. et al. (1997) Use of Ta-container for sublimation growth and doping of SiC bulk crystals and epitaxial layers. Phys. Status Solidi B, 202, 177.
  220. [220] Syväjärvi, M., Yakimova, R., Tuominen, A, M. et al. (1999) Growth of 6H and 4H-SiC by sublimation epitaxy. J. Cryst. Growth, 197, 155.
  221. [221] Syväjärvi, M., Yakimova, R., Jacobsson, H. and Janzen, E. (2000) Structural improvement in sublimation epitaxy of 4H-SiC. J. Appl. Phys., 88, 1407.
  222. [222] Motoyama, S., Morikawa, N. and Kaneda, S. (1990) Low-temperature growth and its growth mechanisms of 3C-SiC crystal by gas source molecular beam epitaxial method. J. Cryst. Growth, 100, 615.
  223. [223] Fissel, A., Schröter, B., Kaiser, U. and Richter, W. (2000) Advances in the molecular-beam epitaxial growth of artificially layered heteropolytypic structures of SiC. Appl. Phys. Lett., 77, 2418.
  224. [224] Kern, R.S., Järrendahl, K., Tanaka, S. and Davis, R.F. (1997) Homoepitaxial SiC growth by molecular beam epitaxy. Phys. Status Solidi B, 202, 379.
  225. [225] Matsunami, H., Nishino, S. and Ono, H. (1981) Heteroepitaxial growth of cubic silicon carbide on foreign substrates. IEEE Trans. Electron Devices, 28, 1235.
  226. [226] Nishino, S., Powell, A. and Will, H.A. (1983) Production of large-area single-crystal wafers of cubic SiC for semiconductor devices. Appl. Phys. Lett., 42, 460.
  227. [227] Nishino, S., Suhara, H., Ono, H. and Matsunami, H. (1987) Epitaxial growth and electric characteristics of cubic SiC on silicon. J. Appl. Phys., 61, 4889.
  228. [228] Shibahara, K., Nishino, S. and Matsunami, H. (1986) Surface morphology of cubic SiC(100) grown on Si(100) by chemical vapor deposition. J. Cryst. Growth, 78, 538.
  229. [229] Yamanaka, M., Daimon, H., Sakuma, E. et al. (1987) Temperature dependence of electrical properties of n-and p-type 3C-SiC. J. Appl. Phys., 61, 599.
  230. [230] Kong, H.S., Wang, Y.C., Glass, J.T. and Davis, R.F. (1988) The effect of off-axis Si (100) substrates on the defect structure and electrical properties of c04-math-0493 -SiC thin films. J. Mater. Res., 3, 521.
  231. [231] Davis, R.F. (1989) Epitaxial growth and doping of and device development in monocyrstalline c04-math-0494 -SiC semiconductor thin films. Thin Sold Films, 181, 1.
  232. [232] Ishida, Y., Takahashi, T., Okumura, H. and Yoshida, S. (2003) Investigation of antiphase domain annihilation mechanism in 3C-SiC on Si substrates. J. Appl. Phys., 94, 4676.
  233. [233] Kitabatake, M. (1997) Simulations and experiments of 3C-SiC/Si heteroepitaxial growth. Phys. Status Solidi B, 202, 405.
  234. [234] Mogab, C.J. and Leamy, H.J. (1974) Conversion of Si to epitaxial SiC by reaction with c04-math-0495 . J. Appl. Phys., 45, 1075.
  235. [235] Pirouz, P., Chorey, C.M. and Powell, J.A. (1987) Antiphase boundaries in epitaxially grown c04-math-0496 -SiC. Appl. Phys. Lett., 50, 221.
  236. [236] Carter, C.H. Jr., Davis, R.F. and Nutt, S.R. (1987) Transmission electron microscopy of process-induced defects in beta-SiC thin films. J. Mater. Res., 1, 811.
  237. [237] Nagasawa, H. and Yagi, K. (1997) 3C-SiC sngle-crystal films grown on 6-inch Si substrates. Phys. Status Solidi B, 202, 335.
  238. [238] Nagasawa, H., Yagi, K., Kawahara, T. and Hatta, N. (2006) Reducing planar defects in 3C-SiC. Chem. Vap. Deposition, 12, 502.
  239. [239] Shibahara, K., Nishino, S. and Matsunami, H. (1987) Antiphase-domain-free growth of cubic SiC on Si(100). Appl. Phys. Lett., 50, 1888.
  240. [240] Ishida, Y., Takahashi, T., Okumura, H. and Yoshida, S. (2006) Effect of reduced pressure on 3C-SiC heteroepitaxial growth on Si by CVD. Chem. Vap. Deposition, 12, 495.
  241. [241] Ferro, G., Chassagne, T., Leycuras, A. et al. (2006) Strain tailoring in 3C-SiC heteroepitaxial layers grown on Si(100). Chem. Vap. Deposition, 12, 483.
  242. [242] Zorman, C. and Mehregany, M. (2004) Micromachining of SiC, in Silicon Carbide - Recent Major Advances (eds W.J. Choyke, H. Matsunami and G. Pensl), Springer, p. 671.
  243. [243] Cheung, R. (2006) Silicon Carbide Microelectromechanical Systems for Harsh Environments, Imperial College Press.
  244. [244] Kong, H.S., Glass, J.T. and Davis, R.F. (1989) Growth rate, surface morphology, and defect microstructures of c04-math-0497 -SiC films chemically vapor deposited on 6H-SiC substrates. J. Mater. Res., 4, 204.
  245. [245] Chien, F.R., Nutt, S.R., Yoo, W.S. et al. (1994) Terrace growth and polytype development in epitaxial c04-math-0498 -SiC films on c04-math-0499 -SiC (6H and 15R) substrates. J. Mater. Res., 9, 940.
  246. [246] Nishino, K., Kimoto, T. and Matsunami, H. (1997) Reduction of double positioning twinning in 3C-SiC grown on c04-math-0500 -SiC. Jpn. J. Appl. Phys., 36, 5202.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset