References

  1. Abraham, I., Chechik, S., Kempe, D., Slivkins, A. (2013). Low-distortion inference of latent similarities from a multiplex social network. 24th Annual ACM-SIAM Symposium on Discrete Algorithms, 1853–1883.
  2. Archimède, B. and Vallespir, B. (eds) (2017). Enterprise Interoperability: INTEROP-PGSO Vision. ISTE Ltd, London, and John Wiley & Sons, New York.
  3. Bailey, N.T. (1975). The Mathematical Theory of Infectious Diseases and its Applications. Charles Griffin & Company Ed, Glasgow.
  4. Ballot, E. (2018). Improve logistics by interconnecting services in a physical internet: Potential benefits, barriers and developments. Supply Chain Management, Logistics and Procurement, 1(1), 178–192.
  5. Barnes, J.A. (1954). Class and committees in a Norwegian island parish. Human Relations, 7, 39–58.
  6. Bergier, J.Y. and Faucher, C. (2016a). Considering culture in contemporary military interventions: Simulating the effects of actions of influence on a realistic civilian population. 5th International Conference on Cross-Cultural Decision Making, Orlando, 27–31 July.
  7. Bergier, J.Y. and Faucher, C. (2016b). Simulating a realistic sub-Saharan population in the context of war: From social sciences to the generation of a culturally relevant multilayer network. 5th International Conference on Cross-Cultural Decision Making, Orlando, 27–31 July.
  8. Boehm, B. (2014). The Incremental Commitment Spiral Model: Principles and Practices for Successful Systems and Software. Addison Wesley Editions, Paris.
  9. Bollobás, B. (1998). Modern Graph Theory. Springer, New York.
  10. Bouanan, Y., Zacharewicz, G., Vallespir, B. (2014). Modelling of social influence with DEVS and CELLDEVS formalism. 11th International Multidisciplinary Modeling & Simulation Multiconference, Bordeaux, 10–12 September.
  11. Bouanan, Y., Forestier, M., Ribault, J., Zacharewicz, G., Vallespir, B., Moalla, N. (2015a). Simulating information diffusion in a multidimensional social network using the DEVS formalism (WIP). Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium. Society for Computer Simulation International, Alexandria, 12–15 April, 63–68.
  12. Bouanan, Y., Ribault, J., Forestier, M., Zacharewicz, G., Vallespir, B. (2015b). Modeling and simulation of human reaction in a multidimensional social network. IFAC-PapersOnLine, 48(3), 592–597.
  13. Bouanan, Y., Zacharewicz, G., Vallespir, B., Ribault, J., Diallo, S. (2016). DEVS based network: Modeling and simulation of propagation processes in a multi-layers network. Spring Simulation Multi-Conference, Pasadena, 3–6 April.
  14. Bouanan, Y., Zerguini, S., Gaussier, N. (2018). Agent-based modelling of urban land-use development: Modelling and simulating households and economic activities location choice. International Journal of Service and Computing Oriented Manufacturing, 3(4), 253.
  15. Bouanan, Y., Zacharewicz, G., Ribault, J., Vallespir, B. (2019). Discrete event system specification-based framework for modeling and simulation of propagation phenomena in social networks: Application to the information spreading in a multi-layer social network. Simulation, 95(5), 411–427.
  16. Boyd, D. and Ellison, N. (2007). Social network sites: Definition, history, and scholarship. Computer-Mediated Communication, 13(1), 210–230.
  17. Bryant, R.E. (1977). Simulation of packet communications architecture computer systems, MIT-LCS-TR-188. Technical report, Massachusetts Institute of Technology, Cambridge.
  18. Calvin, J.O. and Weatherly, R. (1996). An introduction to the highlevel architecture (HLA) runtime infrastructure (RTI). DIS Workshop on Standards for the Interoperability of Defense Simulations, Orlando, 705–715.
  19. Cardon, D. (2011). Réseaux sociaux de l’Internet. Communications, 1(1), 141–148.
  20. Casilli, A. and Tubaro, P. (2012). Social media censorship in times of political unrest. A social simulation experiment with the UK riots. Bulletin de méthodologie sociologique/Bulletin of Sociological Methodology, 115(1), 5–20.
  21. Cauchemez, S., Bhattarai, A., Marchbanks, T.L., Fagan, R.P., Ostroff, S., Ferguson, N.M., Swerdlow, D., Pennsylvania H1N1 Working Group. (2011). Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proceedings of the National Academy of Sciences of the USA, 108(7), 2825–2830.
  22. Chandy, K.M. and Misra, J. (1979). Distributed simulation: A case study in design and verification of distributed programs. IEEE Transactions on Software Engineering, 5(5), 440–452.
  23. Chen, L., Jian, D., Song, H., Wang, P., Bao, R., Zhang, K., Li, Y. (2018). A lightweight end-side user experience data collection system for quality evaluation of multimedia communications. IEEE Access, 6, 15408–15419.
  24. Chow, A. (1996). Parallel DEVS: A parallel, hierarchical, modular modeling formalism and its distributed simulator. SCS Transaction on Simulation, 13(2), 55–102.
  25. Cohen, G., Moller, P., Quadrat, J.P, Viot, M. (1984). Linear system theory for discrete event systems. 23rd Conference on Decision and Control, Las Vegas.
  26. Daclin, N., Chen, D., Vallespir, B. (2016). Developing enterprise collaboration: A methodology to implement and improve interoperability. Enterprise Information Systems, 10(5), 476–504.
  27. Dahmann, J.S., Fujimoto, R.M., Weatherly, R.M. (1997). The department of defense high level architecture. Proceedings of the 29th Conference on Winter Simulation, December, 142–149.
  28. De Meo, P., Ferrara, E., Fiumara, G., Provetti, A. (2014). On Facebook, most ties are weak. Communications of the ACM, 57(11), 78–84.
  29. Domingos, P. (2005). Mining social networks for viral marketing. IEEE Intelligent Systems, 20(1), 80–82.
  30. Eigner, M., Dickopf, T., Apostolov, H. (2017). The evolution of the V-Model: From VDI 2206 to a system engineering based approach for developing cybertronic systems. IFIP Advances in Information and Communication Technology, 382–393.
  31. Epstein, J.M. (2002). Modeling civil violence: An agent-based computational approach. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 7243–7250.
  32. Fienberg, S.E., Meyer, M., Wasserman, S.S. (1985). Statistical analysis of multiple sociometric relations. American Statistical Association, 80(389), 51–67.
  33. Fishwick, P. (1995). Simulation Model Design and Execution. Building Digital Worlds. Prentice Hall, Hoboken.
  34. FMI (2017). Functional mock-up interface for model exchange, Modelica association [Online]. Available at: https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_ModelExchange_v1.0.1.pdf.
  35. Ford, L.R. and Fulkerson, D.R. (1957). A simple algorithm for finding maximal network flows and an application to the Hitchcock problem. Canadian Journal of Mathematics, 9, 210–218.
  36. Forestier, M., Bergier, J.Y., Bouanan, Y., Ribault, J., Zacharewicz, G., Vallespir, B., Faucher, C. (2015). Generating multidimensional social network to simulate the propagation of information. IEEE/ACM International Conference, Paris, August, 1324–1331.
  37. François, J., Moad, K., Bourrières, J.P., Lebel, L. (2017). A tactical planning model for collaborative timber transport. 20th IFAC World Congress, Toulouse, 9–14 July.
  38. Fujimoto, R.M. (2000). Parallel and Distributed Simulation Systems. John Wiley, New York.
  39. Garrison Darrin, M.A. and Devereux, W.S. (2017). The agile manifesto, design thinking and systems engineering. IEEE Annual International Systems Conference, Montreal, 24–27 April.
  40. Gay, B. (2014). Open innovation, networking, and business model dynamics: The two sides. Journal of Innovation and Entrepreneurship, 3(2), 1–20.
  41. Girvan, M. and Newman, M.E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.
  42. Goldenberg, J., Libai, B., Muller, E. (2001). Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters, 12(3), 211–223.
  43. Gorecki, S., Possik, J., Zacharewicz, G., Ducq, Y., Perry, N. (2020). A multicomponent distributed framework for smart production system modeling and simulation. Sustainability, 12(17), 6969 [Online]. Available at: https://doi.org/10.3390/su12176969.
  44. Granovetter, M.S. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360–1380.
  45. Granovetter, M.S. (1978). Threshold models of collective behavior. American Journal of Sociology, 1420–1443.
  46. Guan, H., Alix, T., Bourrières, J.P. (2017). Reference product-service system lifecycle models in virtual enterprise context. 9th CIRP IPSS Conference: Circular Perspectives on Product/Service-Systems, Copenhagen, 19–21 June, 387–392.
  47. Harris, E. and Ross, F.S. (1955). Fundamentals of a method for evaluating rail net capacities. Research Memorandum RM-1573, The RAND Corporation, Santa Monica.
  48. Henry, D. (2018). Modèles de propagation de l’information et méthodes de sciences des données. PhD Thesis, Université des Antilles, Pointe-à-Pitre.
  49. Hofer, R.C. and Loper, M.L. (1995). DIS today [Distributed interactive simulation]. Proceedings of the IEEE, 83(8), 1124–1137.
  50. Huan, H. (2018). Location based services: Ongoing evolution and research agenda. Location Based Services, 12(2), 63–93.
  51. IEEE Standard for Modeling and Simulation (M&S) (2010). High level architecture (HLA)-framework and rules. IEEE Computer Society, 18 August.
  52. INCOSE (2015). Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities, 4th edition. John Wiley Publishing, New York.
  53. ISO 21500 (2012). Guidance on Project Management. International Organization for Standardization.
  54. Jagdev, H.S., Brennan, A., Browne, J. (2004). Strategic Decision Making in Modern Manufacturing. Kluwer Academic Publishers, Dordrecht.
  55. Jeekel, H. (2019). Inclusive Transport. Elsevier, Paris.
  56. Jefferson, D. and Sowizral, H. (1985). Fast concurrent simulation using the time warp mechanism. SCS Conf. Distributed Simulation, San Diego, January, 63–69.
  57. Jensen, K. (1992). Coloured Petri Nets: Basis Concepts, Analysis Methods and Practical Use. Springer, New York.
  58. Kazienko, P., Musial, K., Kajdanowicz, T. (2011). Multidimensional social network in the social recommender system. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 41(4), 746–759.
  59. Kucharski, A. (2021). Les lois de la contagion. Fake news, virus, tendances… Dunod, Paris.
  60. Lamport, L. and Mahlki, D. (eds) (2019). Time, Clocks, and the Ordering of Events in a Distributed System. Concurrency: The Works of Leslie Lamport. Association for Computing Machinery, New York.
  61. Lemieux, V. (1999). Les réseaux d’acteurs sociaux. PUF, Paris.
  62. MacFarlane, D., Giannikas, V., Wong, A.C.Y., Harrison, M. (2013). Product intelligence in industrial control: Theory and practice. Annual Reviews in Control, 37(1), 69–88.
  63. Magnani, M. and Rossi, L. (2011). The ML-model for multi-layer social networks. Advances in Social Networks Analysis and Mining (ASONAM), Int. Conference on IEEE Computer Society, 5–12.
  64. MASA (2013). SICOMORES [Online]. Available at: https://masasim.com/projects/sicomores/.
  65. Maslow, A. (1943). A theory of human motivation. Psychological Review, 50, 370–396.
  66. McCutcheon, J. (2019). Are primary care networks the future of general practice? Practice Management, 29(3), 40–41.
  67. McLeod Institute of Simulation Sciences (1993). Online course. California State University [Online]. Available at: http://www.ecst.csuchico.edu/~hla/courses.html.
  68. Mercier, A. (eds) (2019). La communication politique. CNRS Éditions, Paris.
  69. Mercier, A. and Pignard-Cheynel, N. (2018). #info. Commenter et partager l’actualité sur Twitter et Facebook. Éditions de la Maison des sciences de l’homme, Paris.
  70. Merkle, P. (2004). Sociologie des réseaux sociaux. La Découverte, Paris.
  71. Milgram, S. (1967). The small-world problem. Psychology Today, 1, 62–67.
  72. Miller, G., Adams, A., Fischer, M.C. (1995). Aggregate level simulation protocol (ALSP) Project. The MITRE Corporation.
  73. Minor, M.J. (1983). New Directions in Multiplexity Analysis. Applied Network Analysis: A Methodological Introduction. Sage Publications, Beverly Hills.
  74. Moad, K. (2016). Modélisation et optimisation multi-niveaux du transport forestier. PhD Thesis, Université de Bordeaux.
  75. Monge, P.R. and Contractor, N.S. (2003). Theories of Communication Networks. Oxford University Press, Oxford.
  76. Montreuil, B. (2011). Toward a physical internet: Meeting the global logistics sustainability grand challenge. Logistics Research, 3(2), 71–87.
  77. Moreno, J.L. (1934). Who Shall Survive? A New Approach to the Problem of Human Interrelations. Nervous and Mental Disease Publishing Company, Washington.
  78. Moreno, Y., Nekovee, M., Pacheco, A. (2004). Dynamics of rumor spreading in complex networks. Physical Review E, 69(6), 066130.
  79. Ören, T. (2020). Agent-directed simulation and nature-inspired modeling for cyber-physical systems engineering. In Simulation for Cyber-Physical Systems Engineering. Simulation Foundations, Methods and Applications, Risco Martín, J.L., Mittal, S., Ören, T. (eds). Springer, New York [Online]. Available at: https://doi.org/10.1007/978-3-030-51909-4_7.
  80. Pinède, N., Vallespir, B., Traoré, M.K., Diallo, S., Zacharewicz, G. (2020). Digital modelling and simulation in French social sciences and humanities research: An exploratory study. Proc. of IEEE Spring Simulation Conference (SpringSim), Fairfax, May, 1–12.
  81. Pritsker, A. (1979). Compilation of definitions of simulation. Simulation, 33, 61–63.
  82. Proulx, S. (2015). Réseau socionumérique. In Sciences, technologies et sociétés de A à Z, Prud’homme, J., Doray, P., Bouchard, F. (eds). Presses de l’Université de Montréal.
  83. Quesnel, G., Duboz, R., Ramat, E., Traoré, M.K. (2007). VLE: A multimodeling and simulation environment. Proceedings of the 2007 Summer Computer Simulation Conference, San Diego, 15–18 July, 367–374.
  84. Quesnel, G., Duboz, R., Ramat, E. (2008). The virtual laboratory environment – An operational framework for multi-modelling, simulation and analysis of complex dynamical systems. Simulation Modelling Practice and Theory, 17(4), 641–653.
  85. Quesnel, G., Duboz, R., Ramat, E. (2009). L’environnement du laboratoire virtuel – un cadre opérationnel pour la multimodélisation, la simulation et l’analyse de systèmes dynamiques complexes. Simulation Modelling Practice and Theory, 17(4), 641–653.
  86. Rhiu, I. and Yun, M.H. (2018). Exploring user experience of smartphones in social media: A mixed-method analysis. International Journal of Human–Computer Interaction, 34(10), 960–969.
  87. Rodriguez, M.A. and Shinavier, J. (2010). Exposing multi-relational networks to single-relational network analysis algorithms. Informetrics, 4(1), 29–41.
  88. Rogers, E.M. (1962). Diffusion of Innovation, 3rd edition. The Free Press, Macmillan Publishing, New York.
  89. Ruiz-Martin, C., Wainer, G., Bouanan, Y., Zacharewicz, G., Lopez-Paredes, A. (2016). A hybrid approach to study communication in emergency plans. 2016 Winter Simulation Conference (WSC), Washington, 11–14 December, 1376–1387.
  90. Ruiz-Martin, C., Wainer, G., Lopez-Paredes, A. (2020). Discrete-event modeling and simulation of diffusion processes in multiplex networks. ACM Transactions on Modeling and Computer Simulation, 31(1), 1–32.
  91. Samadi, B. (1985). Distributed simulation algorithms and performance analysis. PhD Thesis, University of California, Los Angeles.
  92. Sbayou, M., Bouanan, Y., Zacharewicz, G., Vallespir, B. (2019). BPMN coordination and DEVS network architecture for healthcare organizations. International Journal of Privacy and Health Information Management, IGI Global, 7(1), 103–115.
  93. Sumalee, A. and Waiho, H. (2018). Smarter and more connected: Future intelligent transportation system. IATSS Research, 42(2), 67–71.
  94. Szell, M., Lambiotte, R., Thurner, S. (2010). Multirelational organization of large-scale social networks in an online world. Proceedings of the National Academy of Sciences, 107(31), 13636–13641.
  95. Taguchi, G., El Sayed, M., Hsaing, C. (1989). Quality Engineering and Production Systems. McGraw Hill, New York.
  96. Taniguchi, E. and Thompson, R.G. (2018). City Logistics. ISTE Ltd, London, and John Wiley & Sons, New York.
  97. Tocher, K.D. (1963). The Art of Simulation. Hodder and Stoughton, London.
  98. Traoré, M.K. (2017). Spécification, synthèse et qualité des modèles de simulation à événements discrets. Éditions universitaires européennes, Chisineau.
  99. Tuballaa, M.L. and Abundob, M.L. (2016). A review of the development of smart grid technologies. Renewable and Sustainable Energy Reviews, 59, 710–725.
  100. Vangheluwe, H.L (2000). DEVS as a common denominator for multi-formalism hybrid systems modeling. IEEE International Symposium on Computer-Aided Control System Design, Anchorage, 25–27 September, 129–134.
  101. Zacharewicz, G. (2006). Un environnement G-DEVS/HLA : application à la modélisation et à la simulation distribuée de workflow. PhD Thesis, Université de droit, d’économie et des sciences d’Aix-Marseille III, Aix-en-Provence.
  102. Zacharewicz, G., Diallo, S., Ducq, Y., Agostinho, C., Jardim-Goncalves, R., Bazoun, H., Wang, Z., Doumeingts, G. (2017). Model-based approaches for interoperability of next generation enterprise information systems: State of the art and future challenges. Information Systems and e-Business Management, 15(2), 229–256.
  103. Zacharewicz, G., Daclin, N., Doumeingts, G., Haidar, H. (2020). Model driven interoperability for system engineering. Modelling, 1, 94–121.
  104. Zeigler, B.P. (1976). Theory of Modeling and Simulation. Wiley-Interscience, New York.
  105. Zeigler, B.P. (1984). Multifaceted Modeling and Discrete Event Simulation. Academic Press, Amsterdam.
  106. Zeigler, B.P. (1987). Hierarchical, modular discrete-event modelling in an object-oriented environment. Simulation, 49, 219–230.
  107. Zeigler, B.P., Praehofer, H., Kim, T.G. (2000). Theory of Modeling and Simulation. Integrating Discrete Event and Continuous Complex Dynamic Systems, 2nd edition. Academic Press, Amsterdam.
  108. Zimmermann, H. (1980). OSI reference model – The ISO model of architecture for open systems interconnection. IEEE Transactions on Communications, 28(4), 425–432.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset