Appendix C

Major Physical Properties of Common SiC Polytypes

C.1 Properties

All measurements at room temperature if not specified otherwise. Values taken from [1–19].

Properties/polytype 3C-SiC 4H-SiC 6H-SiC
Stacking sequence ABC ABAC ABCACB
Bandgap (eV) 2.36 3.26 3.02
Exciton gap (eV), 2 K 2.390 3.265 3.023
Lattice constant
b03-math-0001 (Å) 4.3596 3.0798 3.0805
b03-math-0002 (Å) 10.0820 15.1151
b03-math-0003 3.21 3.21 3.21
Electron effective mass
b03-math-0004 0.67 0.33 2.0
b03-math-0005 0.25 0.42 0.48
Hole effective mass
b03-math-0006 b03-math-0007 1.75 1.85
b03-math-0008 b03-math-0009 0.66 0.66
Number of conduction band minima 3 3 6
Effective density of states in the conduction band (cm−3) 1.5 × 1019 1.8 × 1019 8.8 × 1019
Effective density of states in the valence band (cm`−3) 1.9 × 1019 2.1 × 1019 2.2 × 1019
b03-math-0010 0.1 b03-math-0011 b03-math-0012
Electron mobility b03-math-0013 (at low doping)
b03-math-0014 perpendicular to c-axis b03-math-0015 1020 450
b03-math-0016 parallel to c-axis b03-math-0017 1200 100
Hole mobility b03-math-0018 (at low doping) 100 120 100
Electron saturated drift velocity b03-math-0019 b03-math-0020 b03-math-0021 b03-math-0022
Hole saturated drift velocity b03-math-0023 b03-math-0024 b03-math-0025 b03-math-00261
Breakdown electric field b03-math-0027 (at b03-math-0028)
b03-math-0029 perpendicular to c-axis 1.4 2.2 1.7
b03-math-0030 parallel to c-axis 1.4 2.8 3.0
Ionization energy of dopants (meV)
Nitrogen (hexagonal/cubic) 55 61/126 85/140
Aluminum (hexagonal/cubic) 250 198/201 240
Relative dielectric constant
b03-math-0031 perpendicular to c-axis 9.72 9.76 9.66
b03-math-0032 parallel to c-axis 9.72 10.32 10.03
Thermal conductivity b03-math-0033 3.3–4.9a 3.3–4.9 3.3–4.9
Young modulus (GPa) 310–550 390–690 390–690
Poisson's ratio 0.24 0.21 0.21

a Estimated values.

C.2 Temperature and/or Doping Dependence of Major Physical Properties

  1. 1. Temperature dependence of bandgap [4]
C1 equation

b03-math-0035: bandgap at 0 K, b03-math-0036: absolute temperature,

equation
  1. 2. Doping dependence of carrier mobility (perpendicular to the c-axis) [12–17]
C2 equation
C3 equation
C4 equation
C5 equation

b03-math-0042: donor density, b03-math-0043: acceptor density given in units of b03-math-0044.

n = 2.4∼2.8 for lightly-doped material (1014∼1015 cm−3), 240 K < T < 600 K

= 1.8∼2.4 for moderately-doped material (1016∼1017 cm−3), 280 K < T < 600 K

m = 2.2∼2.5 for lightly-doped material (1014∼1015 cm−3), 240 K < T < 600 K

= 1.8∼2.2 for moderately-doped material (1016∼1017 cm−3), 280 K < T < 600 K

  1. 3. Doping dependence of critical electric field strength (b03-math-0045, parallel to the c-axis) [19]
C6 equation

b03-math-0047: doping density of the lightly-doped side of the junction (cm−1).

  1. 4. Impact ionization coefficients [19, 20]
C7 equation
C8 equation

b03-math-0050: electric field strength.

References

  1. [1] Levinshtein, M.E., Rumyantsev, S.L. and Shur, M.S. (2001) Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, John Wiley & Sons, Inc., New York.
  2. [2] Harris, G.L. (1995) Properties of Silicon Carbide, INSPEC.
  3. [3] Adachi, S. (2005) Properties of Group-IV, III-V, and II-VI Semiconductors, John Wiley & Sons, Ltd, Chichester.
  4. [4] Choyke, W.J. (1969) Optical properties of polytypes of SiC: interband absorption, and luminescence of nitrogen-exciton complexes. Mater. Res. Bull., 4, S141–S152.
  5. [5] Devaty, R.P. and Choyke, W.J. (1997) Optical properties of silicon carbide polytypes. Phys. Status Solidi A, 162 (1), 5–38.
  6. [6] Choyke, W.J. and Devaty, R.P. (2004) Optical properties of SiC: 1997–2002, in Silicon Carbide—Recent Major Advances (eds W.J. Choyke, H. Matsunami and G. Pensl), Springer, pp. 413–435.
  7. [7] Egilsson, T., Ivanov, I.G., Son, N.T. et al. (2004) Exciton and defect photoluminescence from SiC, in Silicon Carbide, Materials, Processing, and Devices (eds Z.C. Feng and J.H. Zhao), Taylor & Francis, pp. 81–120.
  8. [8] Janzen, E., Gali, A., Henry, A. et al. (2008) Defects in SiC, in Defects in Microelectronic Materials and Devices, Taylor & Francis, pp. 615–669.
  9. [9] Chen, W.M., Son, N.T., Janzen, E. et al. (1997) Effective masses in SiC determined by cyclotron resonance experiments. Phys. Status Solidi A, 162 (1), 79–94.
  10. [10] Volm, D., Meyer, B.K., Hofmann, D.M. et al. (1996) Determination of the electron effective-mass tensor in 4H SiC. Phys. Rev. B, 53 (23), 15409–15412.
  11. [11] Son, N.T., Persson, C., Lindefelt, U. et al. (2004) Cyclotron resonance studies of effective masses and band structure, in SiC, Silicon Carbide—Recent Major Advances (eds W.J. Choyke, H. Matsunami and G. Pensl), Springer, pp. 437–492.
  12. [12] Schaffer, W.J., Negley, G.H., Irvine, K.G. and Palmour, J.W. (1994) Conductivity anisotropy in epitaxial 6H and 4H SiC. Mater. Res. Soc. Symp. Proc., 339, 595–600.
  13. [13] Iwata, H., Itoh, K.M. and Pensl, G. (2000) Theory of the anisotropy of the electron Hall mobility in n-type 4H– and 6H–SiC. J. Appl. Phys., 88 (4), 1956–1961.
  14. [14] Pernot, J., Zawadzki, W., Contreras, S. et al. (2001) Electrical transport in n-type 4H silicon carbide. J. Appl. Phys., 90 (4), 1869–1878.
  15. [15] Kagamihara, S., Matsuura, H., Hatakeyama et al. (2004) Parameters required to simulate electric characteristics of SiC devices for n-type 4H–SiC. J. Appl. Phys., 96 (5), 5601–5606.
  16. [16] Matsuura, H., Komeda, M., Kagamihara, S. et al. (2004) Dependence of acceptor levels and hole mobility on acceptor density and temperature in Al-doped -type 4H-SiC epilayers. J. Appl. Phys., 96 (5), 2708–2715.
  17. [17] Koizumi, A., Suda, J. and Kimoto, T. (2009) Temperature and doping dependencies of electrical properties in Al-doped 4H-SiC epitaxial layers. J. Appl. Phys., 106 (1), 013716.
  18. [18] Khan, I.A. and Cooper, J.A. Jr. (2000) Measurement of high-field electron transport in silicon carbide. IEEE Trans. Electron Devices, 47 (2), 269–273.
  19. [19] Konstantinov, A.O., Wahab, Q., Nordell, N. and Lindefelt, U. (1997) Ionization rates and critical fields in 4H silicon carbide. Appl. Phys. Lett., 71 (1), 90–92.
  20. [20] Morisette, D.T. (2001) Development of robust power Schottky barrier diodes in silicon carbide. PhD Thesis. Purdue University.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset