Index

A
Acrylonitrile-butadiene-styrene (ABS) blend, 195
Alkaline electrolytes, 74
Alloys production, mechanical friction, use of, 127
Aluminum anodization, 76, 77, 79
Ammonium borate, 76
Ammonium tartrate, 76
Amphiphilic molecules, 35
Anodic oxide films, 68
Anodization, 67
oxide formation of valve metals, 67
oxide properties modification, by anodic doping, 90
self-organization in anodic oxides, 76
under strong electric fields, 70
TiO2 nanotubes, electrochemical synthesis, 85
Anodization potential, 78, 83, 87
Anodization reactions, 58, 90
Antiferromagnetic materials, 151
dipole arrangements, 153
exchange constant value, 153
Aspergillus niger, 23
Atomic force microscopy (AFM), 109
image acquisition
three modes, 138
roughness investigation, 137
surface topography investigation, 137
Atomic-scale microscopy, 7
nanoscience/nanotechnology, 7
Average surface roughness, investigation, 138
B
Binders, 49
Biocompatible polymers, 166
Biomagnetic compasses, 147
Biomedical devices, 24
Biomimicry, 8, 24
Bloch theorem, 213–215
Blocking temperature, 158, 159
Bohr magneton, 150
Boltzmann constant, 129, 158
Boric acid, 76
Bragg reflections, 215
Bragg’s law, 135
Bravais lattice, 215
Brazilian Agricultural Research Corporation (EMBRAPA), 7
Brewster angle microscopy, 109
Brillouin zones, 215
Brownian mechanism, 160
Brownian relaxation time, 160
Buckminsterfullerene, 234
Buckyball, 234
Bulk heterojunction, 235
C
Carbon nanotubes (CNTs), 23, 221, 237
applications, 240
biosensors, 241
diagnosis of diseases, 241
engineering materials, 242
integration of, with biological compounds, 241
as reinforcement in composites, 242
as supercapacitors, 242
electrical characteristics, 237
electronic structure, 228–230, 239
energy dispersion, 229
ratios, 230
mechanical characteristics, 237
molecular orbitals in energy bands, 229
occupation of valence band, 227
properties of, 237
schematic diagram of, rolling of graphene sheet, 239
structure, 221
application of quantum theory to, 222
lattice vectors in real space, 222
TB model, 224
synthesis, 240
CVD, 240
electric arc, 240
pulsed laser, 240
types of sensors containing CNTs, 241
wave vectors, representation of, 226
zone-folding approximation, 229
Cell membranes
chemical composition, 45
physicochemical properties, 45
C-60 fullerene, 1
Chemical erosion, 82
Chiral vectors, 221
Cholesteryl benzoate, 20
double melting point of, 19
structure, 20
Chronoamperometry, 63
Chronopotentiometry, 63
Classical mechanics, 211
classical formalism at, nanometric scale, 211
degrees of freedom, 211
quantum mechanics equation, 211
Cobalt ferrite films, atomic force microscopy topographical image, 173
Cobalt ferrite nanoparticles, Mössbauer spectra, 171
Coercive field, 153
Complementary metal-oxide semiconductors (CMOSs), 17
Control drug delivery (CDD) systems, 178
Coordination number, 49
Coupling constant, 153
Critical micelle concentration (CMC), 37
Crystal lattice
electronic structure, 216
density of states, discretization of energy, 217–218
quantum confinement of electrons, volume of material, 218–219
mathematical modeling techniques, 213
periodic structure of, 213
reciprocal lattice and, 215
wave function, 214
wave vector, 214
Crystalline anatase phase, 88
Crystallization processes, 62
Curie temperature, 153
Cyclic voltammetry, 63, 141
Cyclic voltammogram, 65
Cyclodextrin, chemical structure, 50
D
Data-storage chips, 17
de Broglie equation, 210
de Broglie wavelength, 133
Degree of inversion, 155
Demchak and Fort (DF) model, 110
capacitor model of, 111
Langmuir films, characterizing, 110
Dendrimers, 132
advantages, 132
metal nanoparticles, synthesis of, 133
tree-like morphology, macromolecules of, 132
Detergents, 35
adsorption, 36
and surfactants, 35
Diamagnetic materials, 150
Diamagnetism
illustration of magnetic dipole arrangement, 151
magnetic dipole arrangement, 151
Digital screens, 17
Dimercaptosuccinic acid (DMSA), 164
Dipalmitoylphosphatidylcholine (DPPC), 44
Dipalmitoylphosphatidylglycerol (DPPG), 44
Direct methanol fuel cell (DMFC)-type fuel cells, 141
DMSA-coated iron oxide nanoparticles
disulfide bridge formation, 172
E
Effective relaxation time, 160
Electrochemical cells, 56
definition, 56
three-electrode, experimental configuration, 58
types, 56
Electrochemical circuit, 57
Electrochemical reaction, 60
charge-transfer, 60
chemical reaction, 60
crystallization, 60
diffusion, 60
Electrochemistry, 54
electrochemical cells, 56
definition, 56
types, 56
faradaic processes, 54
non-faradaic processes, 54
Electrodeposition, 60
Electrolysis, 56
Electrolytic breakdown, 69
Electrolytic cell, 56
Electron-hole pair recombination, 93
Electron-injection layer (EIL), 20
Electron microscopes, high-resolution, 17, 174
Electron state
magnetic quantum number, 149
orbital angular momentum, 149
principal quantum number, 149
spin quantum number, 149
Emitting layer (EL), 20
Endorem, 179
Enzymatic biosensor, glucose detection, 133
Etching techniques, 17
Exchange integral, 152
Exfoliated nanocomposites, 190
Extrusion, 43
F
Faradaic processes, 54
Fermi energy, 218
Ferrimagnetic materials, 152
dipole arrangements, 153
exchange constant value, 153
Ferrites, 154–155
Ferrofluids, 148
Ferromagnetic materials, 151, 153
dipole arrangements, 153
exchange constant value, 153
magnetic hysteresis curve, 154
rare-earth metals, 151
transition metals, 151
First Brillouin zone, hexagonal graphene
conduction and valence bands in, 221
illustrations of allowed wave vector, 228, 230
First-order Langevin function, 159
Fullerene, 234
applications, 235
as drug carriers, 237
medical and pharmaceutical fields, 237
organic electronic devices, 237
organic solar cells, 235
solar cell efficiency, 236
icosahedral symmetrically closed-cage structure, 234
processes of synthesis, 235
properties, 235
electron-deficient alkene, 235
mechanical properties, 235
molecular stability, 235
optical properties, 235
schematic representation of, C60 fullerene, 234
zero-dimensional carbon structure, 234
Fundamental state, 219
G
Galvanostatic, 68
Galvanostatic anodization curve, 72
Galvanostatic method, 75
Giant magnetoresistance (GMR), 18
Gibbs free energy, 164
per unit volume, 129
Gibbs theory, 35
Global positioning system (GPS), 19
Gold nanoparticles, 3
preparation, 126
via sodium citrate, 131
size distribution, 137
transmission electron microscopy (TEM), 137
Gold nanorod, different aspect ratios
optical spectra, 135
photographs, 135
transmission electron micrographs, 135
Gouy-Chapman model, 60
Graphene, 219, 243
applications, 244
biomedical applications, 246
high-performance logic circuits, 245
for next-generation lithium-ion batteries, 245
in sensors and biosensors, 245
supercapacitors, 245
band structure, 243
Brillouin zone of, 219
electronic properties, 220
electronic structure, 219–221
properties, 243
electron mobility, 243
thermal conductivity, 243
schematic representation, 244
structure in real space, 220
synthesis, 243
bottom-up approach, 243
top-down approach, 243
Graphene oxide (GO), 243
chemical reduction, purpose, 244
schematic representation, 244
structural defects, 244
Graphene-platinum colloidal suspension, atomic force microscopy (AFM) image, 139
H
Hafnium oxides (HfO2), 18
Hamiltonian operator, 213
Hard anodization cell, 83
Hard anodization method, 83
Heisenberg Hamiltonian equation, 152
Helmholtz model, 59
Helmholtz plane, 60
Heterojunction solar cell
polymer/fullerene, 236
schematic illustration of, 236
High-density polyethylene (HDPE), 197
mechanical properties of, 201
morphology of, 200
oxygen permeability of films, 203
in packaging and electric sectors, 197
TEM micrographs of, 198
XRD patterns of OMMT and, 197, 199
High-energy grinding process, 127
High-time-resolution signal acquisition, 71
Hole-transporting layer (HTL), 20
Hopping term, 225
Host-guest complex, 34
Hydrogen atoms, 4
Hysteresis, 153
I
Indium tin oxide (ITO), 19
Intercalated nanocomposites, 190
International Organization for Standardization-Technical Committee (ISO-TC), 3
K
Krätschmer-Huffman method, 235
Kronecker delta, 216
L
Lamellar clays
cation exchange capacity (CEC), 189
composition, 188
flexibility of, 188
structures, 188
surface treatment, 189
used, in production of nanocomposites, 188
XRD patterns of HDPE/LLDPE nanocomposite blends and, 197
Langmuir-Blodgett technique, 106
applications, 113–114
biotechnological applications, 118
characterization methods, 118
different Langmuir monolayer deposition, 112
different LB film types, 113
disadvantage, 109, 110
history, 106
Langmuir-Schaefer (LS) method, 107
monolayer deposition method, 107
nonpolar tail group (hydrophobic), 108
novel LbL deposition strategies, 117
overview, 108–109
polar head group (hydrophilic), 108
pressure and surface potential, 109
liquid surface tension, 109
prototype of Langmuir, 107
schematic illustration of, fabrication of spherical shells, 119
schematic representation of Langmuir, 107
spray- and spin-LbL methods, 117
surface potential, 110
wave-damping phenomenon, 106
Langmuir-Schaefer (LS) method, 107
Laser vaporization method, 235
Layer-by-layer technique, 114
applications, 118
characterization methods, 118
historical prospectus, 114
mechanisms of, LbL film formation, 115–117
overview, 114–115
schematic representation of, traditional LbL deposition process, 115
spray- and spin-LbL methods, 117
Lift-off metallization process, 128
Linear combination of atomic orbitals (LCAO), 213
Linear low-density polyethylene (LLDPE) nanocomposite blends, 197
mechanical properties of, 201
morphology of, 200
oxygen permeability of films, 203
TEM micrographs of, 198
XRD patterns of OMMT and, 197, 199
Lipid aggregates, 37
Lipid bilayers, 39
structure, 40
Liposomes, 43
biomedical applications, 43
preparation method, 41
Liquid condensate phase (stage C), 108
Liquid crystal displays (LCDs), 19
Lithographic methods, 79
Lithography, 17
electronic and optical devices production, 128
steps, 128
Lowest unoccupied molecular orbital (LUMO), 235
Lycurgus cup, 126
M
Macrocycles, 34
Maghemite, 156
nanoparticles, positively charged, Raman spectrum, 170
particle size distribution, 162
synthesis process
via coprecipitation of magnetite, 162
transmission electron microscopy (TEM) image, 162, 163
Magnetic colloids, biomedical applications, 177–180
in vitro application, 177
magnetic separation, 180
in vivo application, 177
Magnetic domain, 157
structure, 157
Magnetic moment, 150
Magnetic nanoparticles
biomedical applications, 141
controlled release of pharmaceuticals, 142
encapsulation, 142
surface functionalization, 142
synthesis, 142
Magnetic sensor, 18
Magnetic susceptibility, 149
Magnetic tunnel junction (MTJ), 18
Magnetism
basic concepts, 149–160
cubic ferrites, 155–156
ferrimagnetism, 154–155
superparamagnetism, 157–160
quantum mechanical phenomenon, 149
Magnetite, 156
inverse spinel structure
spin moment distribution, 157
and maghemite nanoparticles
self-assembly, 176
Magnetization decay time, 160
Magnetization process, 153
Magnetocrystalline anisotropy, 158
Magnetocrystalline energy boundary, 158
Magnetoliposomes (MLs), 166
Mass variation, 63
Metal nanoparticles synthesis
via reduction by borohydride, inside dendrimer, 133
Metal reduction, 132–133
metal precursors, 132
acetates, 132
acetyl ketones, 132
chlorides, 132
nitrates, 132
oxides, 132
reducing agents, 132
ascorbic acid, 132
citrates, 132
dehydrogenating gases, 132
glycol ethylene, 132
hydrazine, 132
hydrides, 132
Micelles, 37
critical micelle concentration, 37
formation, 37
dependence on surfactant concentration, 38
Microarrays, 12
Microcomposites, 190
Micro Electro Mechanical Systems (MEMS), 12
Microfluidics, 83
Microprocessors, 17
Micro-Raman configuration, 169
Molecular magnets, 147
Molecular recognition, 34
biosensor selectivity, 139
host-guest complex, 34
principles of, 12
Montmorillonite clay (OMMT)
TEM micrograph, 194, 196, 198, 199
XRD patterns of HDPE/LLDPE nanocomposite blends and, 199
Mössbauer spectroscopy, 169, 170
Multicyclic supramolecular systems, 49
Multilamellar vesicles (MLVs), 41
Multilayer formation process, 115
initial adsorption of material, 115
relaxation of adsorbed layer (slower process), 115
Multiwalled carbon nanotubes (MWNTs), 237
length and diameter, 237
structures, 238
N
Nanoarrays, 12
Nanobots, 26
Nano Electro Mechanical Systems (NEMS), 12
Nanofluids (NFs), 148
Nanoindentation, 79
Nanomaterials, 53
to create new products, 71
defined, 53
electrical behavior, 218
electrochemical synthesis, 54
magnetic materials of, 147
size and shape of, 167
Nanomedicine, 24
Nanometric array, 87
Nanoparticle formation, physicochemical aspects
Gibbs free energy, 129
growth phenomena, 129, 130
nucleation, 129, 130
solute concentration, 129
supersaturation, 130
surface energy, 130
Nanoparticles
applications, 139–142
biosensors, 139–140
immunosensors, 140
molecular recognition based, 139, 140
cancer treatment, 125
catalysis, 140–141
oxidoreduction in fuel cells, 141
diagnosis, 125
high-sensitivity sensors, 139
magnetic nanoparticles in biomedicine, 141–142
characterization methods, 135–139
atomic force microscopy (AFM), 137–139
transmission electron microscopy (TEM), 136–137
X-ray diffraction (XRD), 135–136
colloidal aggregation prevention, 164
definition, 126
electrophoretic mobility, 171
preparation
decomposition method, 162–163
disadvantage, 163
via coprecipitation, 161
properties, 133–134
magnetic properties, 134
shape and size, dependence on, 126
spin orientations, 134
tunneling effect, 134
stabilization, 131
agglomeration process, 131
stabilizers, use of, 131
surfactants, use of, 131
stabilization mechanisms, 164
surface charge density variation, 165
surface charge determination
zeta potential, 171
surface energy minimization, 131
surface functionalization, 164
surface manipulation, 163
synthesis methods, 126–133
bottom-up methods, 129–133
chemical vapor deposition, 129
laser ablation, 129
metal reduction, 132–133
molecular beam epitaxy, 129
nanoparticle stabilization, 131
physicochemical aspects of nanoparticle formation, 129–130
pulse laser deposition, 129
sol-gel synthesis, 131–132
sputtering deposition, 129
liquid phase
growth phenomena, 129
nucleation, 129
top-down methods, 127–128
lithography, 128
mechanical friction, 127
zero-dimensional nanostructures, 126
Nanoporous alumina, 80
illustration for fabrication, 80
Nanoreactors, 132
control of synthesis processes, 132
polyamidoamine (PAMAM), 133
Nanoscale, 1
Nanoscale materials, 26
Nanoscience, 3
concepts, 3
defined, 3
history, 3
principles, 3
Nanoscopic luminescent devices, 84
Nanostructured films, 59
electrodeposition process, 62
single-constituent metallic films, 64
synthesis by electrodeposition, 59
Nanostructures, 1
Nanotechnology, 1
actions, 14
commercial products involving, 17
definition, 3
investments, 14
research, 14
strategies, 14
Nanotube fabrication, 83
National Institute of Science and Technology Policy (NISTEP), 15
National Nanotechnology Initiative of the US (NNI), 3
National Science Foundation (NSF), 14
Natural latex rubber, surface modification, 138
Néel relaxation time, 158
Neutral electrolytes, 74
Ni-Co alloy, 64
Non-faradaic processes, 54
Nonpolar matrices, 196
compatibilization in nanocomposites, 192
nanocomposites, 196
structure and properties, 197
Nucleation processes, 62
O
Oleic acid-coated maghemite nanoparticles, characterization
Raman spectroscopy, 172
thermogravimetry, 172
One-dimensional double-well potential
particle magnetic moments dynamics, 159
superparamagnetic regimen, 158
Optical emission spectroscopy equipment, 71
Organically modified montmorillonite clay (OMMT), 194
TEM micrographs of, 199
XRD patterns, 199
Organic light-emitting diode (OLED), 13
Organometallic compounds, 162
Organometallic nanowires, 7
Organophilic clay
effect of shearing on, intercalation and/or exfoliation, 191
exfoliation of, 191
Ostwald ripening, 130
Oxide film, 58
P
(PAni/n-MAG)10 nanofilm
high-resolution electron microscopy images, 174
Parallel electrochemical reactions, 68
Parallel-plate capacitor, 59
Paramagnetic materials, 150
Paramagnetism, magnetic dipole arrangement, 151
Pauli exclusion principle, 150, 155
Perchloric acid, 76
Phosphate aqueous solution, 76
Phospholipids, properties, 42
Phospholipid vesicles, 43
Phosphoric acid, 74
Photoacoustic spectroscopy, 172
Photocurrent, 93
Photodynamic therapy (PDT), 180
Photonic crystals, 83
Phthalocyanine, chemical structure, 49
Platinum nanoparticles
modified synthesis, 141
with Nafion, 141
production, 141
Polarization, 68
Polar matrices, 193
degree of exfoliation, 195
mechanical properties, 195
structure and properties, 193
Polyacid acrylic (PAA), 116
Polyacrylic acid (PAA), 44
Polyamidoamine (PAMAM), 133
Polyamidoamine dendrimer (PAMAM), 44
Polyaniline/maghemite nanofilms, susceptibility measurements, 177
Polymeric nanomaterials, 23
Polymer nanocomposites, 187
compatibilization, with nonpolar matrices, 192
copolymerization techniques, 193
methods for obtaining, 191
morphology, 194
nonpolar matrices and, 196
permeability of, 202
polar matrices and, 193
schematic representation, action of block copolymer, 193
schematic representation of, different types of composites, 190
structural characterization, 190
structure, 189–190
thermal stability, 193
Polyolefins, 196
compatibilizing agents, 196
exfoliated nanocomposites, 196
Polyvinyl pyridine (PVP) multilayers, 116
Porous anodic alumina (PAA), 69
hexagonal configuration schematic, 76
potentiostatic formation process, 78
Porphyrin, chemical structure, 49
Potentiostatic, 68
Potentiostatic regime, 68
POX3OA sample
magnetization curves, 175
ZFC-FC curves, 176
Prostheses, 24
Protonation-deprotonation equilibrium, 161
Pulsed anodization, 75
Q
Quantum confinement of electrons, volume of material, 218–219
discrete levels, 218
quantum confinement condition of electrons, 219
wave vector, 218
Quantum electrostatic interaction, 151
Quantum mechanics, 212
oscillation frequency, 212
quantum system, 212
wave function, 212
Quantum system, 212
eigenvalues for, 212
energy, stationary conditions, 212
Hamiltonian formulation, 213
Quantum trapping, 133
Quartz-crystal electrochemical microbalance (QCEM), 63
R
Raman modes, 168
Raman spectroscopy, 169, 172
Rapid thermal annealing, 79
Reciprocal lattice, 216
Responsible Research Innovation (RRI) program, 15
Robots, 26
Russell-Saunders coupling, 153
S
Saturation magnetization, 153
Scanning tunneling microscope (STM), 6, 63
Scherrer’s equation, 136, 167
Schrödinger’s equation, 149, 152
Schrödinger theory, 212, 213
Science of Science and Innovation Policy (SciSIP), 15
Self-aggregated disperse systems, 34
Self-organized systems, 35
cell membranes, 45
chemical composition, 45
physicochemical properties, 45
detergents, 35
lipid bilayers, 39
liposomes, 43
biomedical applications, 43
liposomes and multilayer systems, preparation method of, 41
micelles, 37
vesicular systems, 39
Silicate, 2:1 phyllosilicate structure, 188
Silicon, 18
Silver nanoparticles, light-sensitive, 126
Single-walled carbon nanotubes (SWNTs), 237
chiral vector pair, 238
in field-effect transistors (FET), 242
properties of, 238
relationship of (n,m) pair with, 239
schematic diagram of, rolling of graphene sheet, 239
structures, 238
Small-angle X-ray scattering (SAXS), 136
Sol-gel synthesis
colloidal dispersions of oxides production, 131
core-shell nanostructures production, 131
nonaqueous synthesis, 132
solvent control, 132
surfactant control, 132
precursor, 131
Sonication, 42
Spin-assisted LbL method, 117
Spinel, 155
Spinel-like cubic ferrite, atomic arrangement, 156
Spin-orbit interaction energy, 153
Spontaneous magnetization, 155
Spray- and spin-LbL methods, 117
Stabilizer/gold ratio, 137
Staphylococcus aureus, 23
Stearic acid monolayer
Demchak and Fort (DF) model, 110
surface potential isotherm, 112
typical surface pressure isotherm for, 108
Stern model, 60
Stöber method, 166
Supercapacitors, 245
schematic representation, 246
Superparamagnetic cubic ferrites, 148
Superparamagnetic iron oxides (SPIOs) systems, 160–166
agglomeration state measurement, 167–168
cancer treatment nanotherapy, 179
chemotherapy, 179
gene therapy, 179
magneto hyperthermia (MHT), 179
chemical composition determination
atomic absorption spectrometry, 168
colorimetric analysis, 168
energy dispersive spectroscopy (EDS), 168
X-ray fluorescence, 168
composition and structure, 168–170
crystalline morphology, 167
crystalline quality, X-ray diffraction technique, 167
high-resolution TEMs (HRTEMs), 167
magnetic colloids preparation, 163–166
magnetic properties, 174–176
microscopy, 167
morphology investigation, atomic force microscopy, 172
nanoparticles, functionalization by DMSA, 166
particle functionalization, 163–166
physico-chemical properties, 166–176
size measurement, 167–168
structure, 166–176
surface morphology and properties, 171–174
synthesis
via coprecipitation, 161
via thermal decomposition, 162–163
theranostic agents, applications, 178
Superparamagnetic relaxation, 170
Superparamagnetism, 158
Supramolecular chemistry, 50
Supramolecular system, 33
classification, 33
macrocycle compounds, 33
systems with molecular self-aggregation, 33
scientific applications, 33
biomimetic systems, 33
in catalysis, 33
molecular recognition, 33
transport of substances, 33
technological applications, 33
Surface conduction electrons, 134
Surface plasmon absorption, 134
Surface potential
definition, 110
measurement, 110
Surfactants, 35
amphiphilic substances, 35
examples, 36
T
Template-driven synthesis, 34
Tetraborate, 76
Tetrahydrofuran (THF), 132
Theranostic agent, definition, 177
Theranostic nanotherapeutic system
architecture of, 179
Thermal cracking, 70
Thermionic valves, 67
TiO2 nanotubes, 85
Tissue regeneration, 142
Titanium oxidation technique, 85
Tortuosity factor, 202
Total angular momentum, 152
Transistors, 17
Transition elements, 153
Transmission electron microscopy (TEM), 64
U
US Food and Drug Administration, 179
V
Valve metals, 67
Vesicular systems, 39
W
Wave-damping phenomenon, 106
Web of Science (WOS), 15
X
X-ray diffraction (XRD) technique, investigation of
atomic arrangement, 136
crystallinity degree, 135
crystallites size, 135
X-ray radiation, reflection of, 215
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset