Fobj=minz=mi=1nj=1Tt=1(cijtxijt+iijtIijt+pk=1yijktzijkt)s.t.pk=1Diktzijkt+Iijt=Iij,t1+xijt,i=1,,m;j=1,,n;t=1,,T(1)nj=1zijkt=1,k=1,,p;(2)xijtxmaxijt,i=1,,m;j=1,,n;t=1,,T(3)IijtImaxijt,i=1,,m;j=1,,n;t=1,,T(4)zijkt{0,1},i=1,,m;j=1,,n;k=1,,p;t=1,,T(5)xijt,Iijt0i=1,,m;j=1,,n;t=1,,T

si68_e

Ex. 17

Decision variables:

xijt = quantity of product i to be manufactured in facility j in period t

Iijt = final stock of product i in facility j in period t

Yijkt = quantity of product i to be transported from facility j to retailer k in period t

zijt={1if the manufacturing of productiin periodtoccurs in facilityj0otherwisesi69_e

Model parameters:

Dikt = demand of product i by retailer k in period t

cijt = unit production cost of product i in facility j in period t

iijt = unit storage cost of product i in facility j in period t

yijkt = unit transportation cost of product i from facility j to retailer k in period t

xijtmax = maximum production capacity of product i in facility j in period t

Iijtmax = maximum storage capacity of product i in facility j in period t

General formulation

minz=mi=1nj=1Tt=1(cijtxijt+iijtIijt+pk=1yijktYijkt)s.t.Iijt=Iij,t1+xijtpk=1Yijkt,i=1,,m;j=1,,n;t=1,,T(1)nj=1Yijkt=Dikt,i=1,,m;k=1,,p;t=1,,T(2)xijtpk=1Diktzijti=1,,m;j=1,,n;t=1,,T(3)xijtxmaxijt,i=1,,m;j=1,,n;t=1,,T(4)IijtImaxijt,i=1,,m;j=1,,n;t=1,,T(5)zijt{0,1},i=1,,m;j=1,,n;t=1,,T(6)xijt,Iijt,Yijt0i=1,,m;j=1,,n;t=1,,T

si70_e

Ex. 18

Time frame with T = 6 periods, t = 1, …, 6 (Jan., Feb., March, April, May, Jun.).

Pt = production in period t (kg)

St = production with outsourced labor in period t (kg)

NRt = number of regular employees in period t

NCt = number of employees hired from period t − 1 to period t

NDt = number of employees fired from period t − 1 to period t

HEt = total amount of overtime in period t

It = final stock in period t (kg)

minz=1.5P1+2S1+600NR1+1,000NC1+900ND1+7HE1+1I1+1.5P2+2S2+600NR2+1,000NC2+900ND2+7HE2+1I2+1.5P6+2S6+600NR6+1,000NC6+900ND6+7HE6+1I6si71_e

s.t.I1=600+P19,600I2=I1+P210,600I6=I5+P610,430si72_e

Answer Keys: Exercises: Chapter 17

Section 17.2.1 (ex.2)

  1. a) Optimal solution: x1 = 2, x2 = 1 and z = 10
  2. b) Optimal solution: x1 = 1, x2 = 4 and z = 14
  3. c) Optimal solution: x1 = 10, x2 = 6 and z = 52

Section 17.2.1 (ex.4)

  1. a) yes
  2. b) no
  3. c) yes
  4. d) no
  5. e) yes
  6. f) yes
  7. g) no
  8. h) no
  9. i) yes

Section 17.2.2 (ex.2)

  1. a) Optimal solution: x1 = 12, x2 = 2 and z = 26
  2. b) Optimal solution: x1 = 18, x2 = 8 and z = 28
  3. c) Optimal solution: x1 = 10, x2 = 10 and z = 100

Section 17.2.3 (ex.1)

e) Multiple optimal solutions.

f) There is no optimal solution.

g) Unlimited objective function z.

h) Multiple optimal solutions.

i) Degenerate optimal solution.

j) There is no optimal solution.

Section 17.2.3 (ex.2)

  1. a) Any point of the segment CD (C (10, 30);  D (0, 45)).
  2. b) Any point of the segment AB (A (8, 0);  B (7/2, 3)).

Section 17.3 (ex.1)

a) Six basic solutions.

c) Optimal solution: x1 = 5, x2 = 20 and z = 55

Section 17.3 (ex.2)

a) Ten basic solutions.

c) Optimal solution: x1 = 7, x2 = 11, x3 = 0 and z = 61

Section 17.4.2 (ex.1)

a) Optimal solution: x1 = 1, x2 = 17, x3 = 5 and z = 104

Section 17.4.3 (ex.2)

  1. a) Optimal solution: x1 = 3, x2 = 3 and z = 15
  2. b) Optimal solution: x1 = 2, x2 = 4, x3 = 0 and z = 20
  3. c) Optimal solution: x1 = 4, x2 = 0, x3 = 12 and z = 36

Section 17.4.4 (ex.1)

  1. a) Optimal solution: x1 = 0, x2 = 4 and z = − 4
  2. b) Optimal solution: x1 = 1, x2 = 7 and z = − 37
  3. c) Optimal solution: x1 = 0, x2 = 10, x3 = 35/2 and z = − 55/2
  4. d) Optimal solution: x1 = 100/3, x2 = 0, x3 = 40/3 and z = − 140/3

Section 17.4.5.1 (ex.1)

b) Solution 1: x1 = 115/2, x2 = 0 and z = 230

Solution 2: x1 = 60, x2 = 10 and z = 230

Section 17.4.5.1 (ex.2)

b) Solution 1: x1 = 310, x2 = 0 and z = 930

Solution 2: x1 = 30, x2 = 140 and z = 930

Section 17.4.5.2 (ex.2)

Solution 1: x1 = 10, x2 = 30

Solution 2: x1 = 30, x2 = 0

Section 17.4.5 (ex.1)

  1. a) Multiple optimal solutions.
  2. b) Unlimited objective function z.
  3. c) Multiple optimal solutions/degenerate optimal solution.

Section 17.4.5 (ex.2)

  1. a) No.
  2. b) Unfeasible solution.
  3. c) Degenerate optimal solution.
  4. d) Multiple optimal solutions.
  5. e) Unlimited objective function z.

Section 17.5.2 (ex.1)

b) Optimal solution: x1 = 70, x2 = 30, x3 = 35 and z = 363, 000.

Section 17.5.2 (ex.2)

b) Optimal solution: x1 = 24,960, x2 = 17,040 and z = 19,296.

Section 17.5.2 (ex.3)

b) Optimal solution: x1 = 475, x2 = 50, x3 = 50, x4 = 50, x5 = 75 and z = 32,475.

Section 17.5.2 (ex.4)

b) Optimal solution:    x11 = 3,600,    x21 = 0,            x31 = 0,          x41 = 8,400,

x12 = 0,           x22 = 10,000    x32 = 0,          x42 = 0,

x13 = 0,           x23 = 0,            x33 = 3,200,   x43 = 4,800 and

z = 5,160

Section 17.5.2 (ex.5)

b) Optimal solution: x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1 and z = 810,548 ($810,548.00).

Section 17.5.2 (ex.6)

b) Optimal solution: x1 = 20%, x7 = 20%, x9 = 20%, x10 = 40%, x2, x3, x4, x5, x6, x8, x11 = 0% and z = 3.07%.

Section 17.5.2 (ex.7)

b) Optimal solution: 50% ($250,000.00) in the RF_C fund

25% ($125,000.00) in the Petrobras stock fund

25% ($125,000.00) in the Vale stock fund

Objective function z = 16.90% per year.

Section 17.5.2 (ex.8)

b) Optimal solution: z = 126,590 ($126,590.00).

SolutionJan.Feb.Mar.Apr.MayJun.
Pt960010,00012,80011,52010,77010,430
St000000
NRt556655
NCt001000
NDt500010
HEt028.5791.43083.5759.29
It6000087000

Unlabelled Table

Section 17.6.1 (ex.1)

a) x1 = 60, x2 = 20 with z = 520

b) 1.333

c) 0.8

d) No.

e) The basic solution remains optimal.

Section 17.6.1 (ex.2)

  1. a) x1 = 15, x2 = 0 with z = 120
  2. b) c1 ≥ 2.4 or c1 ≥ c10 − 5.6
  3. c) c2 ≤ 20 or c2 ≤ c20 + 14

Section 17.6.1 (ex.3)

  1. a) x1 = 0, x2 = 17 with z = 102
  2. b) Unlimited objective function z.
  3. c) c1 ≥ 3 or c1 ≥ c10 − 5
  4. d) 0 ≤ c2 ≤ 16 or c20 − 6 ≤ c2 ≤ c20 + 10

Section 17.6.1 (ex.4)

  1. a) 0.133c1c20.25si73_e
  2. b) The basic solution remains optimal with z = 1,700.
  3. c) 8 ≤ c1 ≤ 15 or c10 − 4 ≤ c1 ≤ c10 + 3
  4. d) 48 ≤ c2 ≤ 90 or c20 − 12 ≤ c2 ≤ c20 + 30
  5. e) The basic solution remains optimal with z = 1,830.
  6. f) The basic solution remains optimal with z = 2,440.
  7. g) 13.333 ≤ c1 ≤ 25

Section 17.6.2 (ex.1)

  1. a) P1 = 0, P2 = 34.286, P3 = 85.714
  2. b) b1 ≥ b10 − 8.5
    b20 − 5.95 ≤ b2 ≤ b20 + 6.125
    b30 − 3.267 ≤ b3 ≤ b30 + 2.164
  3. c) 0
  4. d) $137.14 (z = 1,902.86), x1 = 115.71 and x2 = 8.57

Section 17.6.2 (ex.2)

  1. a) P1 = 0, P2 = 1.222, P3 = 0.444 (2nd operation)
  2. b) b1 ≥ b10 − 20
    b20 − 180 ≤ b2 ≤ b20 + 22.5
    b30 − 36 ≤ b3 ≤ b30 + 180
  3. c) $27.50
  4. d) $16.00

Section 17.6.3 (ex.1)

b) z11 = 3, z12=65si74_e, z1 = 3 and z2 = 2

Section 17.6.3 (ex.2)

b) z1 = − 4 and z2 = − 2

Section 17.6.4 (ex.3)

  1. a) Degenerate optimal solution.
  2. b) Multiple optimal solutions.
  3. c) Degenerate optimal solution.
  4. d) Multiple optimal solutions.
  5. e) Multiple optimal solutions.
  6. f) Degenerate optimal solution.
  7. g) Degenerate optimal solution.

Answer Keys: Exercises: Chapter 18

Ex.1

  1. a) N = {1, 2, 3, 4, 5, 6}
  2. b) A = {(1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 2), (4, 5), (4, 6), (5, 6)}
  3. c) Directed network.
  4. d) 1 → 2 → 3 → 4 → 2
  5. e) 1 → 3 → 5 → 4
  6. f) 1 → 3 → 4 → 6
  7. g) 2 → 3 → 4 → 2
  8. h) 3 → 4 → 5 → 3

Ex.2

  1. a) N = {1, 2, 3, 4, 5, 6}
  2. b) A = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 6), (5, 2), (5, 4), (6, 5)}
  3. c) Directed network.
  4. d) 2 → 3 → 5 → 4 → 6 → 5
  5. e) 1 → 2 → 5 → 4 → 6 → 5
  6. f) 1 → 3 → 5 → 4
  7. g) 2 → 3 → 5 → 2
  8. h) 1 → 2 → 3 → 1

Ex.3

  1. a) Tree
Unlabelled Image
  1. b) Cover tree
Unlabelled Image

Ex.4

Unlabelled Image

Ex.5

Classic transportation problem:

Unlabelled Image

Optimal FBS: x11 = 40, x14 = 30, x22 = 60, x24 = 20, x33 = 50 with z = 1, 110.

Ex.6

Maximum flow problem:

Unlabelled Image

Optimal solution: x12 = 6, x13 = 2, x14 = 7, x24 = 3, x25 = 3, x34 = 2, x36 = 0, x45 = 3, x46 = 3, x47 = 6, x57 = 6, x67 = 3 with z = 15.

Ex.7

Shortest route problem:

Unlabelled Image

Optimal FBS: x13 = 1, x36 = 1, x68 = 1 (1 − 3 − 6 − 8) with z = 11.

Ex.8

x11 = 50, x22 = 10, x23 = 20, x33 = 20.

Ex.9

x11 = 80, x13 = 70, x22 = 50, x23 = 80 with z = 4,590.

Ex.10

x13 = 150, x21 = 80, x22 = 50 with z = 4,110.

Ex.11

  1. a) Optimal FBS: x12 = 100, x13 = 100, x23 = 100, x31 = 150, x32 = 50 with z = 6,800.
  2. b) Optimal FBS: x13 = 50, x31 = 100, x41 = 20, x42 = 150, x43 = 30 with z = 1,250.
  3. c) Optimal FBS: x12 = 20, x14 = 30, x21 = 20, x24 = 10, x32 = 20, x33 = 60 with z = 1,490.
    Alternative solution: x11 = 20, x12 = 20, x14 = 10, x24 = 30, x32 = 20, x33 = 60 with z = 1,490.

Ex.12

Indexes:

Suppliers i ∈ I

Consolidating centers j ∈ J

Factory k ∈ K

Products p ∈ P

Model parameters:

Cmax, jmaximum capacity of consolidating center j.
Dpkdemand of product p in factory k.
Sipcapacity of supplier i to produce product p.
cpijunit transportation cost of p from supplier i to consolidating center j.
cpjkunit transportation cost of p from consolidating center j to factory k.
cpikunit transportation cost of p from supplier i to factory k.

Model’s decision variables:

xpijamount of product p transferred from supplier i to consolidating center j.
ypjkamount of product p transferred from consolidating center j to factory k.
zpikamount of product p transferred from supplier i to factory k.

The problem can be formulated as follows:

minpijcpijxpij+pjkcpjkypjk+pikcpikzpik

si75_e

s.t.:

jypjk+izpik=Dpk,p,k

si76_e  (1)

pixpijCmax,j,j

si77_e  (2)

jxpij+kzpikSip,i,p

si78_e  (3)

ixpij=kypjk,p,j

si79_e  (4)

xpij,ypjk,zpik0,p,i,j,k

si80_e  (5)

In the objective function, the first term represents suppliers’ transportation costs up to the consolidation terminals, the second refers to the transportation costs from the consolidation terminals to the final client (factory in Harbin), and the third represents suppliers’ transportation costs directly to the final client.

Constraint (1) ensures that client k’s demand for product p will be met. Constraint (2) refers to the maximum capacity of each consolidation terminal. Constraint (3) represents supplier i’s capacity to supply product p. Whereas constraint (4) refers to the preservation of the input and output flows in each transshipment point. Finally, we have the non-negativity constraints.

Ex.13

xij={1iftaskiis designated to machinej,i=1,,4,j=1,,40otherwise

si81_e

  1. a) Optimal FBS: x12 = 1, x24 = 1, x33 = 1, x41 = 1 with z = 37.
  2. b) Optimal FBS: x13 = 1, x24 = 1, x33 = 1, x41 = 1 with z = 35.

Ex.14

xij={1ifroute(i,j)is included in the shortest route,i,j0otherwise

si82_e

min6x12+9x13+4x23+4x24+7x25+6x35+2x45+7x46+3x56s.t.x12+x13=1x46+x56=1x12x23x24x25=0x13+x23x35=0x24x45x46=0x25+x35+x45x56=0xij{0,1}orxij0

si83_e

Optimal FBS: x12 = 1, x24 = 1, x45 = 1, x56 = 1 (1 − 2 − 4 − 5 − 6) with z = 15.

Ex.15

Optimal FBS: xAB = 1, xBD = 1, xDE = 1 (A − B − D − E) with z = 64.

Ex.16

x12 = 6, x13 = 4, x23 = 0, x24 = 6, x34 = 1, x35 = 3, x45 = 0, x46 = 7, x56 = 3 with z = 10.

Answer Keys: Exercises: Chapter 19

Section 19.1 (ex.1)

  1. a) BP
  2. b) MIP
  3. c) IP
  4. d) BIP
  5. e) BP
  6. f) MBP
  7. g) MIP

Section 19.2 (ex.1)

  1. a) No
  2. b) Yes (x1 = 10,x2 = 0 with z = 20)
  3. c) No
  4. d) Yes (x1 = 0, x2 = 4 with z = 32)
  5. e) Yes (x1 = 1,x2 = 0 with z = 4)
  6. f) No
  7. g) Yes (x1 = 6,x2 = 5 with z = 58)

Section 19.2 (ex.2)

b) SF = {(0,0);(0,1);(0,2);(0,3);(0,4);(1,0);(1,1);(1,2);(1,3);(2,0);(2,1);(2,2);(2,3);(3,0);(3,1);(3,2);(4,0);(4,1);(4,2);(5,0);(5,1);(6,0)}si84_e

c) Optimal solution: x1 = 4 and x2 = 2 with z = 14.

Section 19.2 (ex.3)

b) SF = {(0, 0); (0, 1); (0, 2); (1, 0); (1, 1); (2, 0); (2, 1); (3, 0)}

c) Optimal solution: x1 = 2 and x2 = 1 with z = 4.

Section 19.2 (ex.4)

b) {(0, 0); (0, 1); (0, 2); (1, 0); (1, 1); (1, 2); (2, 0); (2, 1); (2, 2); (3, 0); (3, 1); (3, 2); (4, 0)}

c) Optimal solution: x1 = 3 and x2 = 2 with z = 13.

Section 19.3 (ex.1)

Optimal FBS = {x3 = 1, x4 = 1, x6 = 1, x8 = 1} with z = 172.

Section 19.4 (ex.1)

maxz=7x1+12x2+8x3+10x4+7x5+6x6s.t.4x1+7x2+5x3+6x4+4x5+3x620x5+x61x3x20x1,x2,x3,x4,x5,x6{0,1}

si85_e

Optimal solution: x1 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 0, x6 = 1 with z = 35.

Section 19.5 (ex.1)

Indexes

i, j = 1, .., n that represent the customers (index 0 represents the depot)

v = 1, …, NV that represent the vehicles

Parameters

Cmax,v = maximum capacity of vehicle ν

di = demand of client i

cij = travel cost from client i to client j

Decision variables

xvij={1if thearcfromitojistraveledbyvehiclev0otherwise

si86_e

yvi={1if order of clientiis deliveredbyvehiclev0otherwise

si87_e

Model formulation

minijvcijxvijsi88_e

s.t.

vyvi=1,i=1,,n

si89_e  (1)

vyvi=NV,i=0

si90_e  (2)

idiyviCmax,v,v=1,,NV

si91_e  (3)

ixvij=yvj,j=0,,n,v=1,,NV

si92_e  (4)

jxvij=yvi,i=0,,n,v=1,,NV

si93_e  (5)

ijSxvij=xvij|S|1,S{1,,n},2|S|n1,v=1,,NV

si94_e  (6)

xvij{0,1},i=0,,nj=0,,n,v=1,,NV

si95_e  (7)

yvi{0,1},i=0,,n,v=1,,NV

si96_e  (8)

The main objective of the model is to minimize the total travel costs. Constraint (1) guarantees that each node (client) will be visited by only one vehicle. Whereas constraint (2) guarantees that all the routes will begin and end at the depot (i = 0). Constraint (3) guarantees that vehicle capacity will not be exceeded. Constraints (4) and (5) guarantee that vehicles will not interrupt their routes at one client. They are the constraints for the preservation of the input and output flows. Constraint (6) guarantees that subroutes will not be formed. Finally, constraints (7) and (8) guarantee that variables xijv and yiv will be binary.

Section 19.6 (ex.1)

Indexes

i = 1, …, m that represent the distribution centers (DCs)

j = 1, …, n that represent the consumers

Model parameters

fi = fixed costs to maintain DC i open

cij = transportation costs from DC i to consumer j

Dj = demand of customer j

Cmax, i = maximum capacity of DC i

Decision variables

yi={1ifDCiopens0otherwise

si97_e

xij={1if consumerjis suppliedbyDCi0otherwise

si98_e

General formulation

Fobj=minz=mi=1fiyi+mi=1nj=1cijxijDjs.t.nj=1xijDjCmax,iyi,i=1,,m(1)mi=1xij=1,j=1,,n(2)xij,yi{0,1},i=1,,m,j=1,,n(3)

si99_e

which corresponds to a binary programming problem.

For this problem, index i corresponds to:

i = 1 (Belem), i = 2 (Palmas), i = 3 (Sao Luis), i = 4 (Teresina), and i = 5 (Fortaleza);

and index j corresponds to:

j = 1 (Belo Horizonte), j = 2 (Vitoria), j = 3 (Rio de Janeiro), j = 4 (Sao Paulo), and j = 5 (Campo Grande).

Optimal FBS: x22 = 1, x24 = 1, x45 = 1, x51 = 1, x53 = 1, y2 = 1, y4 = 1, y5 = 1 with z = 459,400.00.

Section 19.6 (ex.2)

Indexes:

Suppliers i ∈ I

Consolidating centers j ∈ J

Factory k ∈ K

Products p ∈ P

Model parameters:

Cmax, jmaximum capacity of consolidating center j.
fjfixed costs to open consolidating center j.
Dpkdemand of product p in factory k.
Sipcapacity of supplier i to produce product p.
cpijunit transportation cost of p from supplier i to consolidating center j.
cpjkunit transportation cost of p from consolidating center j to factory k.
cpikunit transportation cost of p from supplier i to factory k.

Model’s decision variables:

xpijamount of product p transported from supplier i to consolidating center j.
ypjkamount of product p transported from consolidating center j to factory k.
zpikamount of product p transported from supplier i to factory k.
zjbinary variable that assumes value 1 if center j operates, and 0 otherwise.

The problem can be formulated as follows:

minpijcpijxpij+pjkcpjkypjk+pikcpikzpik+jfjzj

si100_e

s.t.:

jypjk+izpik=Dpk,p,k

si101_e  (1)

pixpijCmax,jzj,j

si102_e  (2)

jxpij+kzpikSip,i,p

si103_e  (3)

ixpij=kypjk,p,j

si104_e  (4)

xpij,ypjk,zpik0,p,i,j,k

si105_e  (5)

zj{0,1},z

si106_e  (6)

In the objective function, the first term represents suppliers’ transportation costs up to the consolidation terminals, the second refers to the transportation costs from the consolidation terminals to the final client (factory in Harbin), and the third represents suppliers’ transportation costs directly to the final client, and the last one the fixed costs related to the consolidation terminals’ location.

Constraint (1) ensures that client k’s demand for product p will be met. Constraint (2) refers to the maximum capacity of each consolidation terminal. Constraint (3) represents supplier i’s capacity to supply product p. Whereas constraint (4) refers to the preservation of the input and output flows in each transshipment point. Finally, we have the non-negativity constraints and that variable zj is binary.

Section 19.7 (ex.1)

xi = number of buses that start working in shift i, i = 1, 2, …, 9.

ShiftPeriod
16:01–14:00
28:01–16:00
310:01–18:00
412:01–20:00
514:01–22:00
616:01–24:00
718:01–02:00
820:01–04:00
922:01–06:00

Therefore, we have:

x1 = number of buses that start working at 6:01.

x2 = number of buses that start working at 8:01.

x3 = number of buses that start working at 10:01.

x4 = number of buses that start working at 12:01.

x5 = number of buses that start working at 14:01.

x6 = number of buses that start working at 16:01.

x7 = number of buses that start working at 18:01.

x8 = number of buses that start working at 20:01.

x9 = number of buses that start working at 22:01.

Fobj=minz=x1+x2+x3+x4+x5+x6+x7+x8+x9subject tox120(6:01-8:00)x1+x224(8:01-10:00)x1+x2+x318(10:01-12:00)x1+x2+x3+x415(12:01-14:00)x2+x3+x4+x516(14:01-16:00)x3+x4+x5+x627(16:01-18:00)x4+x5+x6+x718(18:01-20:00)x5+x6+x7+x812(20:01-22:00)x6+x7+x8+x910(22:01-24:00)x7+x8+x94(00:01-02:00)x8+x93(02:01-04:00)x98(04:01-06:00)xi0,i=1,2,,9si107_e

Optimal solution: x1 = 24, x2 = 0, x3 = 0, x4 = 0, x5 = 16, x6 = 11, x7 = 0, x8 = 0, x9 = 8 with z = 59.

Section 19.7 (ex.2)

xi = number of employees that start working on day i, i = 1, 2, …, 7.

x1 = number of employees that start working on Monday.

x2 = number of employees that start working on Tuesday.

x7 = number of employees that start working on Sunday.

minz=x1+x2+x3+x4+x5+x6+x7subject tox1+x4+x5+x6+x715(Monday)x1+x2+x5+x6+x720(Tuesday)x1+x2+x3+x6+x717(Wednesday)x1+x2+x3+x4+x722(Thursday)x1+x2+x3+x4+x525(Friday)x2+x3+x4+x5+x615(Saturday)x3+x4+x5+x6+x710(Sunday)xi0,i=1,,7si108_e

Alternative optimal solution: x1 = 10, x2 = 6, x3 = 0, x4 = 5, x5 = 4, x6 = 0, x7 = 1 with z = 26.

Answer Keys: Exercises: Chapter 20

4) P (I < 0) = 15.92% by using the NORM.DIST function in Excel or P (I < 0) = 12.19% analyzing the data generated in the Monte Carlo simulation for variable I.

Note: The results can change at each new simulation.

5) P (Index > 0.07) = 22.50% by using the NORM.DIST function in Excel or P (Index > 0.07) = 20.43% analyzing the values generated in the simulation.

Note: The results can change at each new simulation.

Answer Keys: Exercises: Chapter 21

1) Fcal = 2.476 (sig. 0.100), that is, there are no differences in the production of helicopters in the three factories.

2) There are no significant differences between the hardness measures of the different converters. That is, the “Type of Converter” factor does not have a significant effect on the variable “Hardness.” On the other hand, we can conclude that there are significant differences in the hardness of the different types of ore. That is, the “Type of Ore” factor has a significant effect on the variable “Hardness.” We can also conclude that there is a significant interaction between the two factors.

Tests of Between-Subjects Effects
Dependent Variable: Hardness
SourceType III Sum of SquaresdfMean SquareFSig.
Corrected Model15006.222a81875.77841.547.000
Intercept2023032.11112023032.11144808.751.000
Converter66.074233.037.732.485
Ore14433.85227216.926159.850.000
Converter ⁎ Ore506.2964126.5742.804.032
Error3250.6677245.148
Total2041289.00081
Corrected Total18256.88980

Unlabelled Table

a R Squared = .822 (Adjusted R Squared = .802).

3) There are significant differences between the octane rating indexes of the different types of petroleum and between the octane rating indexes of the different oil refining processes. That is, both factors have a significant effect on the octane rating index. Finally, we can conclude that there is significant interaction between the two factors.

Tests of Between-Subjects Effects
Dependent Variable: Octane Rating
SourceType III Sum of SquaresdfMean SquareFSig.
Corrected Model450.229a1140.93041.801.000
Intercept399857.5211399857.521408365.128.000
Petroleum402.7922201.396205.681.000
Refining31.729310.57610.801.000
Petroleum ⁎ Refining15.70862.6182.674.030
Error35.25036.979
Total400343.00048
Corrected Total485.47947

Unlabelled Table

a R Squared = .927 (Adjusted R Squared = .905).

Answer Keys: Exercises: Chapter 22

1)

a) Control charts forˉXsi109_e

  • UCL = 17.4035
  • Average = 16.5318
  • LCL = 15.6600

Control charts for R

  • UCL = 2.7305
  • Average = 1.1965
  • LCL = 0.0000

b)Cp = 0.860

Cpk = 0.842

Cpm = 0.859

2)

a) Control charts forˉXsi109_e

  • UCL = 17.3895
  • Average = 16.5318
  • LCL = 15.6740

Control charts for S

  • UCL = 1.1938
  • Average = 0.5268
  • LCL = 0.0000

b)Cp = 0.9491

Cpk = 0.9290

3)

a) Control charts forˉXsi109_e

  • UCL = 6.7113
  • Average = 6.0625
  • LCL = 5.4137

Control charts for R

  • UCL = 2.0322
  • Average = 0.8905
  • LCL = 0.0000

b)Cp = 0.771

Cpk = 0.722

Cpm = 0.542

4)

a) Control charts forˉXsi109_e

  • UCL = 6.7162
  • Average = 6.0625
  • LCL = 5.4088

Control charts for S

  • UCL = 0.9098
  • Average = 0.4015
  • LCL = 0.0000

b)Cp = 0.8302

Cpk = 0.7783

5)P chart

  • UCL = 0.1748
  • Average = 0.0680
  • LCL = 0.0000

6)UCL = 8.7403

Average = 3.4000

LCL = 0.0000

7)UCL = 11.9996

Average = 5.1750

LCL = 0.0000

8)

Unlabelled Image

Answer Keys: Exercises: Chapter 23

1)

a)

Unlabelled Image

In fact, this is a balanced clustered data structure.

b)

Unlabelled Image
Unlabelled Image

c)

Unlabelled Image

d)

Yes. Since the estimation of variance component τ00, which corresponds to random intercept u0j, is considerably higher than its standard error, it is possible to verify that there is variability, at a significance level of 0.05, in the score obtained between students from different countries. Statistically, z = 422.619/125.284 = 3.373 > 1.96, where 1.96 is the critical value of the standard normal distribution, which results in a significance level of 0.05.

e)

Since Sig. χ2 = 0.000, it is possible to reject the null hypothesis that the random intercepts are equal to zero (H0: u0j = 0), which makes the estimation of a traditional linear regression model be ruled out for these clustered data.

f)

rho=τ00τ00+σ2=422.619422.619+11.196=0.974

si113_e

which suggests that approximately 97% of the total variance in students’ grades in science is due to differences between the participants’ countries of origin.

g)

Unlabelled Image

h)

Unlabelled Image

i)

The parameters estimated of the fixed- and random-effects components are statistically different from zero, at a significance level of 0.05.

j)

Unlabelled Image

k)

Unlabelled Image

l)

Unlabelled Image

The significance level of the test is equal to 1.000 (much greater than 0.05) because the logarithms of both restricted likelihood functions are identical (LLr = − 357.501), the model with only random effects in the intercept is favored, since random error terms u1j are statistically equal to zero.

m)

Unlabelled Image

n)

scoreij=13.22+0.0028incomeij+0.0008resdeveljincomeij+u0j+rij

si114_e

o)

Unlabelled Image

2)

a)

Unlabelled Image

In fact, this is an unbalanced clustered data structure of real estate properties in districts.

b)

Unlabelled Image

This is also an unbalanced data panel.

c)

Unlabelled Image

d)

Unlabelled Image

e)

Unlabelled Image

f)

Unlabelled Image

g)

  •  Level-2 intraclass correlation:

rhopropertydistrict=τu000+τr000τu000+τr000+σ2=0.1228+0.03680.1228+0.0368+0.0007=0.996

si115_e

  •  Level-3 intraclass correlation:

rhodistrict=τu000τu000+τr000+σ2=0.12280.1228+0.0368+0.0007=0.766

si116_e

The correlation between the natural logarithms of the rental prices per square meter of the properties in the same district is equal to 76.6% (rhodistrict), and the correlation between these annual indexes, for the same property of a certain district, is equal to 99.6% (rhoproperty | district). Thus, we estimate that the real estate and districts random effects form more than 99% of the total variance of the residuals!

h)

Given the statistical significance of the estimated variances τu000, τr000, and σ2 (relationships between values estimated and respective standard errors higher than 1.96, and this is the critical value of the standard normal distribution which results in a significance level of 0.05), we can state that there is variability in the rental price of the commercial properties throughout the period analyzed. Moreover, there is variability in the rental price, throughout time, between real estate properties in the same district and between properties located in different districts.

i)

Since Sig. χ2 = 0.000, it is possible to reject the null hypothesis that the random intercepts are equal to zero (H0: u00k = r0jk = 0), which makes the estimation of a traditional linear regression model be ruled out for these data.

j)

Unlabelled Image

k)

First, we can see that the variable that corresponds to the year (linear trend) with fixed effects is statistically significant, at a significance level of 0.05 (Sig. z = 0.000 < 0.05), which demonstrates that, each year, rental prices of commercial properties increase, on average, 1.10% (e0.011 = 1.011), ceteris paribus.

In relation to the random-effects components, it is also possible to verify that there is statistical significance in the variances of u00k, r0jk, and etjk, at a significance level of 0.05, because the estimations of τu000, τr000, and σ2 are considerably higher than the respective standard errors.

l)

Unlabelled Image
Unlabelled Image

m)

Unlabelled Image

n)

  •  Level-2 intraclass correlation:

rhopropertydistrict=τu000+τu100+τr000+τr100τu000+τu100+τr000+τr100+σ2=0.142444+0.000043+0.039638+0.0000470.142444+0.000043+0.039638+0.000047+0.000103=0.9994

si117_e

  •  Level-3 intraclass correlation:

rhodistrict=τu000+τu100τu000+τu100+τr000+τr100+σ2=0.142444+0.0000430.142444+0.000043+0.039638+0.000047+0.000103=0.7817

si118_e

For this model, we estimate that the real estate and districts random effects form more than 99.9% of the total variance of the residuals!

o)

Unlabelled Image

Since Sig. χ22 = 0.000, we choose the linear trend model with random intercepts and slopes.

p)

Unlabelled Image

q)

ln(p)tjk=4.134+0.015yearjk+0.231foodjk+0.189space4jk0.004valetjkyearjk+u00k+u10kyearjk+r0jk+r1jkyearjk+etjk

si119_e

Note: At this moment, we decide to insert the parameter of the variable space4 in the expression, statistically significant at a significance level of 0.10.

r)

Yes, it is possible to state that the natural logarithm of the rental price per square meter of the real estate properties follows a linear trend throughout time. In addition, there is a significant variance in the intercepts and slopes between those located in the same district and between those located in different districts.

Yes, the existence of restaurants or food courts in the building, at least four or a higher number of parking spaces, and valet parking in the building where the property is located explain part of the evolution in variability of the natural logarithm of the rental price per square meter of the properties.

s)

Unlabelled Image

t)

  •  Random-effects variance-covariance matrix for level district:

var[u00ku10k]=[0.037004000.000016]

si120_e

  •  Random-effects variance-covariance matrix for level property:

var[r0jkr1jk]=[0.030961000.000044]

si121_e

u)

Unlabelled Image

v)

  •  Random-effects variance-covariance matrix for level district:

var[u00ku10k]=[0.0372530.0006530.0006530.000014]

si122_e

  •  Random-effects variance-covariance matrix for level property:

var[r0jkr1jk]=[0.0316790.0004840.0004840.000046]

si123_e

w)

Unlabelled Image

Since Sig. χ22 = 0.000, the structure of the random-terms variance-covariance matrices is considered unstructured, that is, we can conclude that error terms u00k and u10k are correlated (cov(u00k , u10k) ≠ 0), and that error terms r0jk and r1jk are also correlated (cov(r0jk , r1jk) ≠ 0).

x)

ln(p)tjk=3.7807+0.0144yearjk+0.2314foodjk+0.2071space4jk+0.5111subwayk0.0031valetjkyearjk0.0072subwaykyearjk+0.0001violencekyearjk+u00k+u10kyearjk+r0jk+r1jkyearjk+etjk

si124_e

y)

Yes, it is possible to state that the existence of subway and the violence index in the district explain part of the variability of the evolution of the natural logarithm of the rental price per square meter between real estate properties located in different districts.

z)

Unlabelled Image
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset