References

[1] Morse P.M, Ingard K.U.  Theoretical acoustics . New York: McGraw-Hill; 1968:319–321 It should be noted that their derivation uses a bounded Green’s function which accounts for the reflections from the boundary which have nothing to do with the boundary integral.

[2] Rayleigh J.W.S.  The theory of sound . vol. II. New York: Dover; 1945:107–109 Interestingly, Rayleigh derives Eqs. (13.27) and (13.28) by shrinking the volume integral of Eq. (13.25) down to a plane and then applying the appropriate boundary conditions in the plane.

[3] Arfken G.B, Weber H.J.  Mathematical methods for physicists . 6th ed. Florida: Academic Press; 2005:60 Eq. (1.101a), p. 61, Eq. (1.104).

[4] Morse P.M, Ingard K.U.  Theoretical acoustics . New York: McGraw-Hill; 1968:364–365.

[5] Lamb H. On the propagation of tremors over the surface of an elastic solid Philos Trans R Soc London, Ser A . 1904;203:1–42.

[6] Sommerfeld A. Über die Ausbreitung der Wellen in der drahtlosen Telegraphie [On the propagation of waves in wireless telegraphy] Ann Phys . 1909;4(28):665–736.

[7] Skudrzyk E.  The foundations of acoustics: basic mathematics and basic acoustics . Wien: Springer-Verlag; 1971:658.

[8] Williams E.G.  Fourier acoustics: sound radiation and nearfield acoustical holography . San Diego: Academic Press; 1999.

[9] Watson G.N.  A treatise on the theory of Bessel functions . 2nd ed. London: Cambridge University Press; 1944 [chapter XI].

[10] Rayleigh J.W.S.  The theory of sound . vol. II. New York: Dover; 1945:107–162.

[11] Chester Rice W, Kellogg Edward W. Notes on the development of a new type of hornless loudspeaker Trans Am Inst Elec Eng . 1925;44:461–475 Reprinted J Audio Eng Soc (1982);30(7/8):512–521. U.S. Patent No. 1,795,214.

[12] King L.V. On the acoustic radiation field of the piezoelectric oscillator and the effect of viscosity on the transmission Can J Res . 1934;11:135–146. .

[13] Mast T.D, Yu F. Simplified expansions for radiation from a baffled circular piston J Acoust Soc Am . 2005;118(6):3457–3464.

[14] Stenzel H. Über die Berechnung des Schallfeldes einer kreisförmigen Kolbenmembran [On the calculation of the sound field of a circular piston diaphragm] Electr Nacr Tech . 1935;12:16–30.

[15] Rayleigh J.W.S.  The theory of sound . vol. II. New York: Dover; 1945:138–146.

[16] Kuntz H.L. Radiated sound and the geometric nearfield Noise Control Eng J . 2008;56(4):269–281.

[17] Mellow T.J. On the sound field of a resilient disk in free space J Acoust Soc Am . 2008;123(4):90–101.

[18] Walker P.J. New developments in electrostatic loudspeakers J Audio Eng Soc . 1980;28(11):795–799.

[19] Mellow T.J, Kärkkäinen L.M. On the sound field of a circular membrane in free space and an infinite baffle J Acoust Soc Am . 2006;120(5):2460–2477.

[20] Bouwkamp C.J. Theoretical and numerical treatment of diffraction through a circular aperture IEEE Trans Antennas Propag . 1970;18(2):152–176 This is a translation of his PhD dissertation originally published in Dutch in 1941.

[21] Mellow T.J. On the sound field of a resilient disk in an infinite baffle J Acoust Soc Am . 2006;120(1):90–101.

[22] Spence R.D. A note on the Kirchhoff approximation in diffraction theory J Acoust Soc Am . 1949;21(2):98–100.

[23] Streng J.H. Calculation of the surface pressure on a vibrating circular stretched membrane in free space J Acoust Soc Am . 1987;82(2):679–686.

[24] Aarts R.M, Janssen A.J.E.M. On-axis and far-field sound radiation from resilient flat and dome-shaped radiators J Acoust Soc Am . 2009;125(3):1444–1455.

[25] Mellow T.J, Kärkkäinen L.M. Comparison of spheroidal and eigenfunction-expansion trial functions for a membrane in an infinite baffle J Acoust Soc Am . 2008;123(5):2598–2602.

[26] Mellow T.J, Kärkkäinen L.M. On the sound field of an oscillating disk in an open and closed circular baffle J Acoust Soc Am . 2005;118(3):1311–1325.

[27] Mellow T.J, Kärkkäinen L.M. A dipole loudspeaker with a balanced directivity pattern J Acoust Soc Am . 2010;128(5):2749–2757.

[28] Nimura T, Watanabe Y. Effect of a finite circular baffle board on acoustic radiation J Acoust Soc Am . 1952;25(1):76–80.

[29] Sommerfeld A. Die frei schwingende Kolbenmembran [The freely oscillating piston membrane] Ann Phys . 1942/3;5(42):389–420.

[30] Meixner J, Fritze U. Das Schallfeld in der nähe einer frei schwingenden Kolbenmembran [The sound field in the vicinity of a freely oscillating piston diaphragm] Z Angew Physik . 1949;1:535–542.

[31] Wiener F.M. On the relation between the sound fields radiated and diffracted by plane obstacles J Acoust Soc Am . 1951;23(6):697–700.

[32] Mellow T.J, Kärkkäinen L.M. On the sound field of an oscillating disk in an open and closed circular baffle J Acoust Soc Am . 2005;118(3):1–15.

[33] Levine H, Schwinger J. On the radiation of sound from an unflanged circular pipe Phys Rev . February 15, 1948;73:383–406.

[34] Babinet J. Mémoires d’optique météorologique [Memoirs on meteorological optics] C R Acad Sci Paris . 1837;4:638.

[35] Kirchhoff G. Zur Theorie der Lichtstrahlen [On the theory of light radiation] Sitz-Ber kgl preuβ Akad Wiss . June 22, 1882:641–669.

[36] Bouwkamp C.J. A contribution to the theory of acoustic radiation Philips Res Rep . 1945;1:251–277.

[37] Lipshitz S.P, Scott T.C, Salvy B. On the acoustic impedance of baffled strip radiators J Audio Eng Soc . 1995;43(7/8):573–580.

[38] Mellow T.J, Kärkkäinen L.M. On the sound fields of infinitely long strips J Acoust Soc Am . 2011;130(1):153–167.

[39] Stenzel H. Die akustische Strahlung der rechteckigen Kolbenmembran [The acoustic radiation of the rectangular piston diaphragm] Acustica . 1952;2:263–281.

[40] Mellow T.J, Kärkkäinen L.M. Expansions for the radiation impedance of a rectangular piston in an infinite baffle J Acoust Soc Am . 2016;140(4):2867–2875. .

[41] Pritchard R.L. Mutual acoustic impedance between radiators in an infinite baffle J Acoust Soc Am . 1960;32(6):730–737 The paper also includes an illustrative example of how the mutual radiation impedance can be calculated for a seven-piston hexagonal array.

[42] Porter D.T.  Two FORTRAN programs for computing electroacoustical behavior of transmitting sonar arrays . U.S. Navy Underwater Sound Lab; 1967 Rep No. 791.

[43] Thompson Jr. W. The computation of self- and mutual-radiation impedances for annular and elliptical pistons using Bouwkamp's integral J Sound Vib . 1971;17(2):221–233.

[44] Anderson B.E, Griffa M, Larmar C, Ultrich A.J, Johnson P.A. Timing reversal Acoust Today . 2008;4(1):5–15.

[45] Mellow T.J, Kärkkäinen L.M. Expansions for infinite or finite plane circular time-reversal mirrors and acoustic curtains for wave-field-synthesis J Acoust Soc Am . 2014;135(3):1256–1277.

[46] Zeitler B, Zeitler E. The field of sound of a circular membrane J Acoust Soc Am . 2004;116(2):916–917.

[47] Backhaus H, Trendelenburg F. Ueber die richtwirkung von kolbenmembranen (On the directivity of piston membranes) Z Tech Phys (Leipzig) . 1927;7:630.

[48] Poletti MA. Spherical expansions of sound radiation from resilient and rigid disks with reduced error J Acoust Soc Am . 2018;144(3):1180–1189.

[49] Bouwkamp C.J. On integrals occurring in the theory of diffraction of electromagnetic waves by a circular disk Proc Koninklijke Nederl Akademie Wetenschappen Ser A Math Sci . 1950;53(5):654–661 http://www.dwc.knaw.nl/DL/publications/PU00018814.pdf.

[50] Aarts R.M, Janssen A.J.E.M. Sound radiation quantities arising from a resilient circular radiator J Acoust Soc Am . 2009;126(4):1776–1787.

[51] Rdzanek W.P. Sound scattering and transmission through a circular cylindrical aperture revisited using the radial polynomials J Acoust Soc Am . 2018;143(3):1259–1282 See Appendix E.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset