References

[1] Roriz P, Ramos A, Santos J, Simões J. Fiber optic intensity-modulated sensors: a review in biomechanics. In: Photonic sensors. University of Electronic Science and Technology of China, co-published with Springer; 2012.

[2] Caler W.E, Carter D.R, Harris W.H. Techniques for implementing an in vivo bone strain gage system. Journal of Biomechanics. 1981;14:503–507.

[3] Komi P.V, Salonen M, Järvinen M. In vivo measurements of Achilles tendon forces in man. Medicine and Science in Sports and Exercise. 1984;16:165.

[4] Roriz P, Carvalho L, Frazão O, Santos J.L, Simões J.A. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review. Journal of Biomechanics. 2014;47:1251–1261.

[5] Roriz P, Ferreira M.S, Schuster K, Kobelke J, Frazão O. A Fabry–Pérot sensor prototype for low-pressure measurements. Microwave and Optical Technology Letters. 2014;56:2981–2986.

[6] Roriz P, Frazão O, Lobo-Ribeiro A, Santos J, Simões J. Review of fiber optic pressure sensors for biomedical and biomechanical applications. Journal of Biomedical Optics. 2013;18:1–18.

[7] Voskerician G, Shive M.S, Shawgo R.S, Recum H.V, Anderson J.M, Cima M.J, Langer R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials. 2003;24:1959–1967.

[8] Thompson M, Vandenberg E.T. In vivo probes: problems and perspectives. Clinical Biochemistry. 1986;19:255–261.

[9] Biswas D.R. Characterization of polyimide-coated optical fibers. Optical Engineering. 1991;30:772–775.

[10] Biswas D.R. Optical fiber coatings for biomedical applications. Optical Engineering. 1992;31:1400–1403. .

[11] Chen L, Wansapura J.P, Heit G, Butts K. Study of laser ablation in the in vivo rabbit brain with MR thermometry. Journal of Magnetic Resonance Imaging. 2002;16:147–152.

[12] Pleros N, Kanellos G.T, Papaioannou G. Optical fiber sensors in orthopedic biomechanics and rehabilitation. In: 9th Int conf information technology applications biomedicine (ITAB). Larnaca (Cyprus): IEEE; November 4–7, 2009:1–4.

[13] Samset E, Mala T, Ellingsen R, Gladhaug I, Soreide O, Fosse E. Temperature measurement in soft tissue using a distributed fibre Bragg-grating sensor system. Minimally Invasive Therapy. 2001;10:89–93.

[14] Wonneberger U, Schnackenburg B, Wlodarczyk W, Walter T, Streitparth F, Rump J, Teichgräber U.K.M. Intradiscal temperature monitoring using double gradient-echo pulse sequences at 1.0T. Journal of Magnetic Resonance Imaging. 2010;31:1499–1503.

[15] Stolov A.A, Simoff D.A, Li J. Thermal stability of specialty optical fibers. Journal of Lightwave Technology. 2008;26:3443–3451.

[16] Dennison C.R, Wild P.M, Dvorak M.F, Wilson D.R, Cripton P.A. Validation of a novel minimally invasive intervertebral disc pressure sensor utilizing in-fiber Bragg gratings in a porcine model: an ex vivo study. Spine. 2008;33:E589–E594.

[17] Dennison C.R, Wild P.M, Wilson D.R, Cripton P.A. A minimally invasive in-fiber Bragg grating sensor for intervertebral disc pressure measurements. Measurement Science and Technology. 2008;19:1–12.

[18] Ferreira L.A, Araújo F.M, Mascarenhas T, Natal-Jorge R.M, Fernandes A.A. Dynamic assessment of women pelvic floor function by using a fiber Bragg grating sensor system. In: Proceedings of SPIE 6083. San Jose (CA, USA): SPIE; February 15, 2006:H1–H10.

[19] Nesson S, Yu M, Zhang X, Hsieh A.H. Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements. Journal of Biomedical Optics. 2008;13:1–19.

[20] Utzinger U, Richards-Kortum R.R. Fiber optic probes for biomedical optical spectroscopy. Journal of Biomedical Optics. 2003;8:121–147.

[21] Webb D.J, Hathaway M.W, Jackson D.A, Jones S, Zhang L, Bennion I. First in-vivo trials of a fiber Bragg grating based temperature profiling system. Journal of Biomedical Optics. 2000;5:45–50.

[22] Xu J. High temperature high bandwidth fiber optic pressure sensors [Ph.D. thesis]. Faculty of Virginia Polytechnic Institute and State University; 2005.

[23] Udd E. Fiber optic sensors: an introduction for engineers and scientists. NY: Wiley Interscience; 1991.

[24] Wehrle G, Nohama P, Kalinowski H.J, Torres P.I, Valente L.C.G. A fibre optic Bragg grating strain sensor for monitoring ventilatory movements. Measurement Science and Technology. 2001;12:805–809.

[25] Jackson D.A, Jones J.D.C. Fibre optic sensors. Optica Acta: International Journal of Optics. 1986;33:1469–1503.

[26] Fresvig T, Ludvigsen P, Steen H, Reikerås O. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone. Medical Engineering and Physics. 2008;30:104–108.

[27] Mohanty L, Tjin S.C, Lie D.T.T, Panganiban S.E.C, Chow P.K.H. Fiber grating sensor for pressure mapping during total knee arthroplasty. Sensor and Actuators A-Physical. 2007;135:323–328.

[28] Ward D.S, Evenson K.R, Vaughn A, Rodgers A.B, Troiano R.P. Accelerometer use in physical activity: best practices and research recommendations. Medicine and Science in Sports and Exercise. 2005;37:S582–S588. .

[29] Pereira S, Silva C.C, Ferreira S, Silva C, Oliveira N, Santos R, Vilas-Boas J.P, Correia M.V. Anticipatory postural adjustments during sitting reach movement in post-stroke subjects. Journal of Electromyography and Kinesiology. 2014;24:165–171.

[30] Pinzone O, Schwartz M.H, Thomason P, Baker R. The comparison of normative reference data from different gait analysis services. Gait and Posture. 2014;40:286–290.

[31] Roriz P, Castro Gonçalves J, Sousa F. Kinematic analysis of the gait cycle in the elderly. In: XVI international symposium on biomechanics in sports, July 21–25 1998 Konstanz, Germany. 1998:318–320.

[32] Silk E, Jones R.K, Hendriksz C, Sharma R, Jovanovic A, Wilcox G, Baker R.J. A comparison of gait patterns between late-onset Pompe disease and age-matched healthy individuals: does late-onset Pompe disease have a typical gait pattern? Journal of Neuromuscular Diseases. 2015;2:S31.

[33] Coventry E, Ball K, Parrington L, Aughey R, Mckenna M. Kinematic effects of a short-term fatigue protocol on punt-kicking performance. Journal of Sports Sciences. 2015:1–10.

[34] João F, Veloso A, Cabral S, Moniz-Pereira V, Kepple T. Synergistic interaction between ankle and knee during hopping revealed through induced acceleration analysis. Human Movement Science. 2014;33:312–320.

[35] Kim W, João F, Tan J, Mota P, Vleck V, Aguiar L, Veloso A. The natural shock absorption of the leg spring. Journal of Biomechanics. 2013;46:129–136.

[36] De Luca C.J. The use of surface electromyography in biomechanics. Journal of Applied Biomechanics. 1997;13:135–163.

[37] Winby C.R, Gerus P, Kirk T.B, Lloyd D.G. Correlation between EMG-based co-activation measures and medial and lateral compartment loads of the knee during gait. Clinical Biomechanics. 2013;28:1014–1019.

[38] Pozzo M, Bottin A, Ferrabone R, Merletti R. Sixty-four channel wearable acquisition system for long-term surface electromyogram recording with electrode arrays. Medical and Biological Engineering and Computing. 2004;42:455–466.

[39] Hendershot B.D, Wolf E.J. Three-dimensional joint reaction forces and moments at the low back during over-ground walking in persons with unilateral lower-extremity amputation. Clinical Biomechanics. 2014;29:235–242.

[40] Kristianslund E, Krosshaug T, Van Den Bogert A.J. Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. Journal of Biomechanics. 2012;45:666–671.

[41] Mcnair P.J, Prapavessis H. Normative data of vertical ground reaction forces during landing from a jump. Journal of Science and Medicine in Sport. 1999;2:86–88.

[42] Roriz P, Rodrigues C, Carvalho A, Cabral V, Martins J, Carvalho C. Effect of selected biodynamical variables on vertical jump. In: 7th annual congress of the European college of sport science. 2002:945 Athens (Greece).

[43] Park Y.-L, Ryu S.C, Black R.J, Moslehi B, Cutkosky M.R. Fingertip force control with embedded fiber Bragg grating sensors. In: IEEE int conf robotics and automation (ICRA). May 19–23, 2008:3431–3436.

[44] Paul J, Zhao L, Ngoi B.A. Fiber-optic sensor for handgrip-strength monitoring: conception and design. Applied Optics. 2005;44:3696–3704.

[45] Soo-Chul L, Hyung-Kew L, Joonah P. Grip force measurement of forceps with fibre Bragg grating sensors. Electronics Letters. 2014;50:733–735. .

[46] Zhao L.P, Fang Z.P, Paul J, Ngoi B.K.A, Ng J.H. Novel fiber optic sensor for grip testing. In: Cullum B.M, ed. Smart medical and biomedical sensor technology II. Philadelphia (PA): SPIE; October 25, 2004:192–199.

[47] Abushagur A.A, Arsad N, Reaz M.I, Bakar A. Advances in bio-tactile sensors for minimally invasive surgery using the fibre Bragg grating force sensor technique: a survey. Sensors. 2014;14:6633–6665.

[48] Arata J, Terakawa S, Fujimoto H. Fiber optic force sensor for medical applications within a backbone-shape structure. Procedia CIRP. 2013;5:66–69.

[49] Dennison C.R, Wild P.M, Wilson D.R, Gilbart M.K. An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints. Measurement Science and Technology. 2010;21:115803.

[50] Hao S, Fischer G.S.A. 3-axis optical force/torque sensor for prostate needle placement in magnetic resonance imaging environments. In: IEEE international conference on technologies for practical robot applications. TePRA 2009, 9–10 November 2009. 2009:5–9.

[51] Iordachita I, Sun Z, Balicki M, Kang J, Phee S, Handa J, Gehlbach P, Taylor R. A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery. International Journal of Computer Assisted Radiology and Surgery. 2009;4:383–390.

[52] Liu X, Iordachita I.I, He X, Taylor R.H, Kang J.U. Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery. Biomedical Optics Express. 2012;3:1062–1076.

[53] Müller M.S, Hoffmann L, Buck T.S, Koch A.W. Realization of a fiber-optic force-torque sensor with six degrees of freedom. 2008 72660S-8.

[54] Polygerinos P, Puangmali P, Schaeffter T, Razavi R, Seneviratne L.D, Althoefer K. Novel miniature MRI-compatible fiber-optic force sensor for cardiac catheterization procedures. In: IEEE int conf robotics automation (ICRA), May 3–7 2010 Anchorage, AK, USA. 2010:2598–2603.

[55] Song H, Kim K, Suh J, Lee J. Development of optical FBG force measurement system for the medical application. In: Quan C, Qian K, Asundi A.K, Chau F.S, eds. Proceedings of SPIE 7522. vol. 752230. November 18, 2009 Singapore (Singapore). 752230-8.

[56] Thiagalingam A, D'avila A, Foley L, Guerrero J.L, Lambert H, Leo G, Ruskin J.N, Reddy V.Y. Importance of catheter contact force during irrigated radiofrequency ablation: evaluation in a porcine ex vivo model using a force-sensing catheter. Journal of Cardiovascular Electrophysiology. 2010;21:806–811.

[57] Yokoyama K, Nakagawa H, Shah D.C, Lambert H, Leo G, Aeby N, Ikeda A, Pitha J.V, Sharma T, Lazzara R, Jackman W.M. Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus. Circulation: Arrhythmia and Electrophysiology. 2008;1:354–362.

[58] Gassert R, Moser R, Burdet E, Bleuler H. MRI/fMRI-compatible robotic system with force feedback for interaction with human motion. IEEE/ASME Transactions on Mechatronics. 2006;11:216–224.

[59] Polygerinos P, Schaeffter T, Seneviratne L.D, Althoefer K. A fibre-optic catheter-tip force sensor with MRI compatibility: a feasibility study. In: Proc IEEE eng medicine and biology conf (EMBC 2009). 2009 Minneapolis (MN).

[60] Tada M, Sasaki S, Ogasawara T. Development of an optical 2-axis force sensor usable in MRI environments. In: Proc IEEE sensors, November 7, 2002 Orlando, Florida. 2002:984–989. .

[61] Takahashi N, Tada M, Ueda J, Matsumoto Y, Ogasawara T. An optical 6-axis force sensor for brain function analysis using fMRI. In: Proc IEEE int conf sensors, October 22–24, 2003 Toronto, Canada. 2003:253–258.

[62] Tan U.X, Bo Y, Gullapalli R, Desai J.P. Triaxial MRI-compatible fiber-optic force sensor. IEEE Transactions on Robotics. 2011;27:65–74.

[63] Da Silva A.F, Goncalves A.F, Mendes P.M, Correia J.H. FBG sensing glove for monitoring hand posture. IEEE Sensors Journal. 2011;11:2442–2448.

[64] Nuckley D.J, Linders D.R, Wang W.-C. Development of a fiber-optic force sensing glove to provide clinical biomechanics measurements. North American Congress on Biomechanics; 2008:5–9.

[65] Wang W.-C, Ledoux W.R, Huang C.-Y, Huang C.-S, Klute G.K, Reinhall P.G. Development of a microfabricated optical bend loss sensor for distributive pressure measurement. IEEE Transactions on Biomedical Engineering. 2008;55:614–625.

[66] Wang W.-C, Ledoux W.R, Sangeorzan B.J, Reinhall P.G. A shear and plantar pressure sensor based on fiber-optic bend loss. Journal of Rehabilitation Research and Development. 2005;42:315–325.

[67] Wang W.-C, Ho C.-T, Lian Y.-R, Chuang W.-C. Transducing mechanical force by use of a diffraction grating sensor. Applied Optics. 2006;45:1893–1897.

[68] Wang W.-C, Huang C.-Y, Chiang T.-K, Reinhall P.G. Optical and mechanical characterization of microfabricated optical bend loss sensor for distributive pressure measurement. In: Kundu T, ed. Health monitoring structural and biological systems April 11, 2007. San Diego (California, USA): SPIE; 2007 65321K-10.

[69] Soetanto W, Nguyen N.T, Wang W.-C. Fiber optic plantar pressure/shear sensor. In: Kundu T, ed. Proceedings of SPIE 7984. vol. 79840Z. March 7, 2011 San Diego (CA, USA). 79840Z-7.

[70] Hao J.Z, Tan K.M, Tjin S.C, Liaw C.Y, Chaudhuri P.R, Guo X, Lu C. Design of a foot-pressure monitoring transducer for diabetic patients based on FBG sensors. In: 16th annual meeting IEEE. Tucson (AZ, USA): IEEE; October 27–28, 2003:23–24.

[71] Tjin S.C, Hao J, Lam Y.-Z, Ho Y.C, Ng B.K. A pressure sensor using fiber Bragg grating. Fiber and Integrated Optics. 2001;20:59–69.

[72] Betts R.P, Duckworth T, Austin I.G, Crocker S.P, Moore S. Critical light reflection at a plastic/glass interface and its application to foot pressure measurements. Journal of Medical Engineering and Technology. 1980;4:136–142.

[73] Franks C.I, Betts R.P. Selection of transducer material for use with ‘optical’ foot pressure systems. Journal of Biomedical Engineering. 1988;10:365–367.

[74] Franks C, Betts R, Duckworth T. Microprocessor-based image processing system for dynamic foot pressure studies. Medical and Biological Engineering and Computing. 1983;21:566–572.

[75] Quaney B, Meyer K, Cornwall M.W, Mcpoil T.G. A comparison of the dynamic pedobarograph and EMED systems for measuring dynamic foot pressures. Foot and Ankle International. 1995;16:562–566.

[76] IASIS. Intelligent adaptable surface with optical fiber sensing for pressure-tension relief. 2009 [Online]. Available from:. http://www.ist-world.org/ProjectDetails.aspx?ProjectId=ccaa7a17cf7b4d64a1a54702bafa64a4&SourceDatabaseId=018774364ea94468b3f4dec24aa1ee53.

[77] Papaioannou G, Mitrogiannis C, Nianios G, Fiedler G, Baradaki V. Validation of a novel adaptive smart surface bed with integrated decubitus prophylaxis sensors. In: Proc 56th annual meeting orthopaedic research society. New Orleans (LA, USA): Orthopaedic Research Society; March 6–9, 2010. .

[78] Papaioannou G, Mitrogiannis C, Fiedler G, Nianios G. Assessment of vacuum-assisted trans-tibial amputee socket dynamics. In: Proc 9th int conf information technology applications biomedicine. Larnaca (Cyprus): IEEE; November 4–7, 2009:1–4.

[79] Papaioannou G, Mitrogiannis C, Nianios G, Fiedler G. Towards a novel “SMARTsocket” design for lower extremity amputees. In: Proc HFM symposium advanced technologies new procedures medical field operations. Essen (Germany): NATO Science and Technology Organization; April 19–21, 2010:17.

[80] Baillon R, Salvia P, Rooze M. In vivo measurements of shoulder movements by a goniometer with six degrees of freedom: preliminary study. Revue de Chirurgie Orthopedique et Reparatrice de l'appareil Moteur. 2002;88:379–386.

[81] Chao E.Y.S. Justification of triaxial goniometer for the measurement of joint rotation. Journal of Biomechanics. 1980;13:989–1006.

[82] Wilke H, Ostertag G, Claes L. A three-dimensional goniometer linkage system for the analysis of movement with six degrees of freedom. Biomedizinische Technik Biomedical Engineering. 1994;39:149–155.

[83] Bell J.A, Stigant M. Development of a fibre optic goniometer system to measure lumbar and hip movement to detect activities and their lumbar postures. Journal of Medical Engineering and Technology. 2007;31:361–366.

[84] Bell J.A, Stigant M. Validation of a fibre-optic goniometer system to investigate the relationship between sedentary work and low back pain. International Journal of Industrial Ergonomics. 2008;38:934–941.

[85] Golomb M.R, Mcdonald B.C, Warden S.J, Yonkman J, Saykin A.J, Shirley B, Huber M, Rabin B, Abdelbaky M, Nwosu M.E, Barkat-Masih M, Burdea G.C. In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Archives of Physical Medicine and Rehabilitation. 2010;91 1.e1–8.e1.

[86] Huber M, Rabin B, Docan C, Burdea G.C, Abdelbaky M, Golomb M.R. Feasibility of modified remotely monitored in-home gaming technology for improving hand function in adolescents with cerebral palsy. IEEE Transactions on Information Technology in Biomedicine. 2010;14:526–534.

[87] Jeong-Whan L, Lee-Yon H, Jae-Hoon J, Kang-Hwi L, Kyeong-Seop K, Dong-Jun K, Kyung-Ho K. A simple optical angular sensor to measure the human joint angle. In: SICE-ICASE, 2006. International joint conference, 18–21 October 2006. 2006:1125–1126.

[88] Jung G.-I, Kim J.-S, Lee T.-H, Choi J.-H, Oh H.-B, Kim A.-H, Jun J.-H. Fiber-optic goniometer for measuring joint angles. Journal of Mechanics in Medicine and Biology. 2014;14.

[89] Kim S, Jang K, Yoo W, Shin S, Cho S, Lee B. Feasibility study on fiber-optic goniometer for measuring knee joint angle. Optical Review. 2014;21:694–697.

[90] Kim S, Shin S, Jeon D, Hong S, Sim H, Jang K, Yoo W, Lee B. Fiber-optic goniometer to measure knee joint angle for the diagnosis of gait disturbance. Transactions of the Korean Institute of Electrical Engineers. 2013;62(7):1009–1013.

[91] Nelson J.E, Treaster D.E, Marras W.S. Finger motion, wrist motion and tendon travel as a function of keyboard angles. Clinical Biomechanics. 2000;15:489–498.

[92] Williams J.M, Haq I, Lee R.Y. Dynamic measurement of lumbar curvature using fibre-optic sensors. Medical Engineering and Physics. 2010;32:1043–1049. .

[93] Wise S, Gardner W, Sabelman E, Valainis E, Wong Y, Glass K, Drace J, Rosen J.M. Evaluation of a fiber optic glove for semi-automated goniometric measurements. Journal of Rehabilitation Research and Development. 1990;27:411–424.

[94] Zawawi M.A, O'keeffe S, Lewis E. Plastic optical fibre sensor for spine bending monitoring with power fluctuation compensation. Sensors. 2013;13:14466–14483.

[95] Zimmerman T.G, Lanier J, Blanchard C, Bryson S, Harvill Y. A hand gesture interface device. SIGCHI Bulletin. 1986;18:189–192.

[96] Perez-Ramirez C.A, Almanza-Ojeda D.L, Guerrero-Tavares J.N, Mendoza-Galindo F.J, Estudillo-Ayala J.M, Ibarra-Manzano M.A. An architecture for measuring joint angles using a long period fiber grating-based sensor. Sensors. 2014;14:24483–24501.

[97] Rocha R.P, Silva A.F, Carmo J.P, Correia J.H. FBG in PVC foils for monitoring the knee joint movement during the rehabilitation process. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2011;2011:458–461.

[98] Scully P.J, Holmes R, Jones G.R. Optical fibre-based goniometer for sensing patient position and movement within a magnetic resonance scanner using chromatic modulation. Journal of Medical Engineering and Technology. 1993;17:1–8.

[99] Donno M, Palange E, Di Nicola F, Bucci G, Ciancetta F. A new flexible optical fiber goniometer for dynamic angular measurements: application to human joint movement monitoring. IEEE Transactions on Instrumentation and Measurement. 2008;57:1614–1620.

[100] Dunne L.E, Walsh P, Hermann S, Smyth B, Caulfield B. Wearable monitoring of seated spinal posture. IEEE Transactions on Biomedical Circuits and Systems. 2008;2:97–105.

[101] Fujiwara E, Ferreira Marques Dos Santos M, Suzuki C.K. Flexible optical fiber bending transducer for application in blove-based sensors. IEEE, Sensors Journal. 2014;14:3631–3636.

[102] Silva A.S, Catarino A, Correia M.V, Frazão O. Design and characterization of a wearable macrobending fiber optic sensor for human joint angle determination. Optical Engineering. 2013;52:126106.

[103] Bilro L, Oliveira J.G, Pinto J.L, Nogueira R.N. A reliable low-cost wireless and wearable gait monitoring system based on a plastic optical fibre sensor. Measurement Science and Technology. 2011;22.

[104] Stupar D.Z, Bajic J.S, Manojlovic L.M, Slankamenac M.P, Joza A.V, Zivanov M.B. Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor. IEEE, Sensors Journal. 2012;12:3424–3431.

[105] Danisch L.A. Bend-enhanced fiber optic sensors. In: Udd E, Depaula R.P, eds. Fiber optic and laser sensors X. Boston (MA): SPIE; September 08, 1993:204–214.

[106] Danisch L.A. Laminated BEAM loops. In: Depaula R.P, Iii J.W.B, eds. Fiber optic and laser sensors XIV. Denver (CO, United States): SPIE; 1996:311–322.

[107] Mohamed A.A, Baba J, Beyea J, Landry J, Sexton A, Mcgibbon C.A. Comparison of strain-gage and fiber-optic goniometry for measuring knee kinematics during activities of daily living and exercise. Journal of Biomechanical Engineering. 2012;134:084502.

[108] Campbell A.D, Squair J.W, Chua R, Inglis J.T, Carpenter M.G. First trial and StartReact effects induced by balance perturbations to upright stance. Journal of Neurophysiology. 2013;110:2236–2245. .

[109] Han D, Kuschner D, Yuan-Fang W. Upper limb position sensing: a machine vision approach. In: Conference proceedings. 2nd international IEEE EMBS conference on Neural engineering, 16–19 March 2005. 2005:490–493.

[110] Izumizaki M, Tsuge M, Akai L, Proske U, Homma I. The illusion of changed position and movement from vibrating one arm is altered by vision or movement of the other arm. The Journal of Physiology. 2010;588:2789–2800.

[111] Jindrich D.L, Balakrishnan A.D, Dennerlein J.T. Finger joint impedance during tapping on a computer keyswitch. Journal of Biomechanics. 2004;37:1589–1596.

[112] Mackenzie S.J, Lavers R.J, Wallace B.B. A biomechanical comparison of the vertical jump, power clean, and jump squat. Journal of Sports Sciences. 2014;32:1576–1585.

[113] Morkel D, Dillon E, Muller C, Barnard J. In vivo study of the effect of tennis shoes on patellar tendon tensile forces. Bone and Joint Journal Orthopaedic Proceedings Supplement. 2013;95-B:84.

[114] Sekihara C, Izumizaki M, Yasuda T, Nakajima T, Atsumi T, Homma I. Effect of cooling on thixotropic position-sense error in human biceps muscle. Muscle and Nerve. 2007;35:781–787.

[115] Yang Y.-R, Lee Y.-Y, Cheng S.-J, Wang R.-Y. Downhill walking training in individuals with Parkinson's disease: a randomized controlled trial. American Journal of Physical Medicine and Rehabilitation. 2010;89:706–714.

[116] Danisch L, Englehart K, Trivett A. Spatially continuous six degree of freedom position and orientation sensor. Sensor Review. 1999;19:106–112.

[117] Mraz R, Ferber S, Baker S, Graham S. An fMRI-compatible writing device for investigating the neural substrates of drawing, copying and tracing. Proceedings of the International Society for Magnetic Resonance in Medicine. 2004:1042.

[118] Mraz R, Tam F, Mcilroy W, Staines W, Black S, Zakzanis K, Graham S. Integration of shape tape (TM) with experiments involving virtual reality and fMRI. Proceedings of the International Society for Magnetic Resonance in Medicine. 2003:1723.

[119] Lu G, Shark L.-K, Hall G, Zeshan U. Immersive manipulation of virtual objects through glove-based hand gesture interaction. Virtual Reality. 2012;16:243–252.

[120] Duncan R.G, Froggatt M.E, Kreger S.T, Seeley R.J, Gifford D.K, Sang A.K, Wolfe M.S. High-accuracy fiber-optic shape sensing. In: Peters K.J, ed. Sensor systems and networks: phenomena, technology, and applications for NDE and health monitoring. 2007 San Diego (CA). 65301S-11.

[121] Kreger S.T, Sang A.K, Garg N, Michel J. High resolution, high sensitivity, dynamic distributed structural monitoring using optical frequency domain reflectometry. In: Udd E, Pickrell G, Du H.H, Benterou J.J, Fan X, Mendez A, Mihailov S.J, Wang A, Xiao H, eds. Fiber optic sensors and applications X. Baltimore (Maryland, USA): SPIE; April 29, 2013 87220D-8.

[122] Silva A, Salazar A, Borges C, Correia M. Wearable monitoring unit for swimming performance analysis. In: Fred A, Filipe J, Gamboa H, eds. Biomedical engineering systems and technologies. Berlin, Heidelberg: Springer; 2013.

[123] Nishiyama M, Sasaki H, Watanabe K. Performance characteristics of wearable embedded hetero-core fiber sensors for unconstrained motion analyses. Transactions of the Society of Instrument and Control Engineers. 2007;43:1075–1081. .

[124] Nishiyama M, Sasaki H, Watanabe K. Restraint-free wearable sensing clothes using a hetero-core optic fiber for measurements of arm motion and walking action. In: Tomizuka M, Yun C.-B, Giurgiutiu V, eds. Sensors and smart structures technologies for civil, mechanical, and aerospace systems. San Diego (California): SPIE; March 18, 2007 65291Y-8.

[125] Sudhakar R, Luis V. Evaluation of a non-video based mobility tracking system for suited operations. In: Space 2004 conference and exhibit. American Institute of Aeronautics and Astronautics; 2004.

[126] Goel V.K, Panjabi M.M, Patwardhan A.G, Dooris A.P, Serhan H. Test protocols for evaluation of spinal implants. The Journal of Bone and Joint Surgery – American Volume. 2006;88:103–109.

[127] Wilke H.J, Wenger K.H, Claes L.E. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. European Spine Journal. 1998;7:148–154.

[128] Yang G.Y, Bailey V.J, Gisela L, Tang W.C, Keyak J.H. Design of microfabricated strain gauge array to monitor bone deformation in vitro and in vivo. In: BIBE 2004. Proceedings. Fourth IEEE symposium on bioinformatics and bioengineering, 19–21 May 2004. 2004:30–37.

[129] Kopola H.K, Mantyla O, Makiniemi M, Mahonen K, Virtanen K. Instrument for measuring human biting force. In: Proceedings of SPIE 2331. vol. 149. Lille (France): SPIE; September 6, 1995:149–155.

[130] Marin G.C, Milczewski M.S, Abe I, Lopes S.C.P.S, Camargo E.S, Kalinowski H.J. The magnitude of a human bite measured exactly at the molar intercuspidation using FBG. In: López-Higuera J.M, Jones J.D.C, López-Amo M, Santos J.L, eds. 23rd international conference on optical fibre sensors, 2 June 2014. Santander (Spain): SPIE; 2014 91575J-91575J-4.

[131] Tjin S.C, Tan Y, Yow M, Lam Y.-Z, Hao J. Recording compliance of dental splint use in obstructive sleep apnoea patients by force and temperature modelling. Medical and Biological Engineering and Computing. 2001;39:182–184.

[132] Milczeswki M.S, Silva J.C, Abe I, Simões J.A, Paterno A.S, Kalinowski H.J. Measuring orthodontic forces with HiBi FBG sensors. Optical fiber sensors (OFS). Cancún (Mexico): Optical Society of America; 2006.

[133] Milczewski M.S, Kalinowski H, Martelli C, Canning J, Stevenson M, Simões J.A, Talaia P. Orthodontic forces using polymer PCF. In: Cutolo A, Culshaw B, López-Higuera J.M, eds. Proceedings of SPIE 6619. vol. 66191M. Italy: Napoli; 24–27 June 2007:1–3.

[134] Milczewski M.S, Da Silva J.C.C, Martelli C, Grabarski L, Abe I, Kalinowski H.J. Force monitoring in a maxilla model and dentition using optical fiber Bragg gratings. Sensors. 2012;12:11957–11965.

[135] Carvalho L, Silva J.C, Nogueira R.N, Pinto J.L, Kalinowski H.J, Simões J.A. Application of Bragg grating sensors in dental biomechanics. The Journal of Strain Analysis Engineering. 2006;41:411–416.

[136] Carvalho P, Abe I, Schiller M.W, Carvalho L, Simões J.A, Lopes P, Pinto J.L. FEA and experimental FBG sensing system for the analysis of different dental implant concepts. Journal of Biomechanics. 2006;39:S568.

[137] Alberto N, Carvalho L, Lima H, Antunes P, Nogueira R, Pinto J.L. Characterization of different water/powder ratios of dental gypsum using fiber Bragg grating sensors. Dental Materials Journal. 2011;30:700–706.

[138] Milczewski M.S, Silva J.C, Abe I, Carvalho L, Nogueira R.N, Paterno A.S, Kalinowski H.J, Pinto J.L. Determination of setting expansion of dental materials using fibre optical sensing. Measurement Science and Technology. 2006;17:1152–1156. .

[139] Ottevaere H, Tabak M, Bartholomees F, De Wilde W, Veretennicoff I, Thienpont H. Monitoring the stress build-up in dental cements: a novel optical characterization technique. In: Brouwer P, ed. Proceedings of SPIE 4156. vol. 309. Amsterdam (Netherlands): SPIE; July 4, 2001:309.

[140] Ottevaere H, Tabak M, Fernandez Fernandez A, Berghmans F, Thienpont H. Optical fiber sensors and their application in monitoring stress build-up in dental resin cements. In: Jaroszewicz L.R, Culshaw B, Mignani A.G, eds. Proceedings of SPIE 5952. vol. 59520P. Warsaw (Poland): SPIE; September 1, 2005 59520P.

[141] Tiwari U, Mishra V, Bhalla A, Singh N, Jain S.C, Garg H, Raviprakash S, Grewal N, Kapur P. Fiber Bragg grating sensor for measurement of impact absorption capability of mouthguards. Dental Traumatology. 2011;27:263–268.

[142] Frias C, Frazão O, Tavares S, Vieira A, Marques A.T, Simões J.A. Mechanical characterization of bone cement using fiber Bragg grating sensors. Materials and Design. 2009;30:1841–1844.

[143] Ramos A, Abe I, Schiller M.W, Lopes P, Nogueira R, Pinto J.L, Simões J.A. On the use of fiber Bragg sensors to assess temperature and thermal induce strain profiles in cemented hip mantles. Journal of Biomechanics. 2006;39:S514.

[144] Talaia P, Ramos A, Abe I, Schiller M, Lopes P, Nogueira R, Pinto J, Claramunt R, Simões J.A. Plated and intact femur strains in fracture fixation using fiber Bragg gratings and strain gauges. Experimental Mechanics. 2007;47:355–363.

[145] Mishra V, Singh N, Rai D.V, Tiwari U, Poddar G.C, Jain S.C, Mondal S.K, Kapur P. Fiber Bragg grating sensor for monitoring bone decalcification. Orthopaedics and Traumatology: Surgery and Research. 2010;96:646–651.

[146] Komi P.V, Belli A, Huttunen V, Bonnefoy R, Geyssant A, Lacour J. Optic fibre as a transducer of tendomuscular forces. European Journal of Applied Physiology and Occupational Physiology. 1996;72:278–280.

[147] Arndt A.N, Komi P.V, Brüggemann G.P, Lukkariniemi J. Individual muscle contributions to the in vivo Achilles tendon force. Clinical Biomechanics. 1998;13:532–541.

[148] Finni T, Komi P.V, Lepola V. In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump. European Journal of Applied Physiology. 2000;83:416–426.

[149] Finni T, Komi P.V, Lukkariniemi J. Achilles tendon loading during walking: application of a novel optic fiber technique. European Journal of Applied Physiology and Occupational Physiology. 1998;77:289–291.

[150] Ishikawa M, Komi P.V, Grey M.J, Lepola V, Bruggemann G.-P. Muscle-tendon interaction and elastic energy usage in human walking. Journal of Applied Physiology. 2005;99:603–608.

[151] Müller J.H, Scheffer C, Elvin A. In-vivo detection of patellar tendon creep using a fibre-optic sensor. International Journal of Medical Engineering Informatics. 2008;1:155–173.

[152] Erdemir A, Piazza J.P, Sharkey N.A. Influence of loading rate and cable migration on fiberoptic measurement of tendon force. Journal of Biomechanics. 2002;35:857–862.

[153] Erdemir A, Hamel A.J, Piazza S.J, Sharkey N.A. Fiberoptic measurement of tendon forces is influenced by skin movement artifact. Journal of Biomechanics. 2003;36:449–455.

[154] Fleming B.C, Beynnon B.D. In vivo measurement of ligament/tendon strains and forces: a review. Annals of Biomedical Engineering. 2004;32:318–328. .

[155] Hall G.W, Crandall J.R, Carmines D.V, Hale J.E. Rate-independent characteristics of an arthroscopically implantable force probe in the human achilles tendon. Journal of Biomechanics. 1999;32:203–207.

[156] Vilimek M. Using a fiber Bragg grating sensor for tendon force measurements. Journal of Biomechanics. 2008;41:S511.

[157] Goh P.K, Fuss F.K, Yanai T, Ritchie A.C, Lie D.T, Tjin S.C. Measurement of intrameniscal forces and stresses by two different miniature transducers. Journal of Mechanics in Medicine and Biology. 2007;7:65–74.

[158] Behrmann G, Hidler J, Mirotznik M. Fiber optic micro sensor for the measurement of tendon forces. Biomedical Engineering Online. 2012;11:1–16.

[159] Ren L, Song G, Conditt M, Noble P.C, Li H. Fiber Bragg grating displacement sensor for movement measurement of tendons and ligaments. Applied Optics. 2007;46:6867–6871.

[160] Roriz P, Abe I, Schiller M, Gabriel J, Simões J.A. Intervertebral disc bulging measurement using a fibre Bragg grating sensor. Experimental Mechanics. 2011;51:1573–1577.

[161] Roriz P, Marques M.B, Carvalho L, Simões J.A, Frazão O. Fiber optic buckle transducers: an alternative to conventional strain/force buckle transducers used in biomechanics, In: Proc. 6th Portuguese Congress on Biomechanics. Portugal: Leiria; February 6–7, 2015:311–312.

[162] Augousti A.T, Maletras F.X, Mason J. Improved fibre optic respiratory monitoring using a figure-of-eight coil. Physiological Measurement. 2005;26:585–590.

[163] Babchenko A, Khanokh B, Shomer Y, Nitzan M. Fiber optic sensor for the measurement of respiratory chest circumference changes. Journal of Biomedical Optics. 1999;4:224–229.

[164] Davis C, Mazzolini A, Mills J, Dargaville P. A new sensor for monitoring chest wall motion during high-frequency oscillatory ventilation. Medical Engineering and Physics. 1999;21:619–623.

[165] Davis C, Mazzolini A, Murphy D. A new fibre optic sensor for respiratory monitoring. Australasian Physical and Engineering Sciences in Medicine. 1997;20:214–219.

[166] Augousti A.T, Raza A. The development of a fibre-optic respiratory plethysmograph (FORP). In: Grattan K.T.V, Augousti A.T, eds. Sensors VI: technology, systems and applications. Bristol: Institute of Physics Publishing; 1993.

[167] Allsop T, Carroll K, Lloyd G, Webb D.J, Miller M, Bennion I. Application of long-period-grating sensors to respiratory plethysmography. Journal of Biomedical Optics. 2007;12:064003.

[168] Allsop T, Earthrowl-Gould T, Webb D.J, Bennion I. Embedded progressive three-layered fiber long-period gratings for respiratory monitoring. Journal of Biomedical Optics. 2003;8:552–558.

[169] Grillet A, Kinet D, Witt J, Schukar M, Krebber K, Pirotte F, Depre A. Optical fiber sensors embedded into medical textiles for healthcare monitoring. IEEE Sensors Journal. 2008;8:1215–1222.

[170] OFSETH. Optical fiber sensors embedded into technical textile for healthcare [Online]. Available from:. 2006. www.ofseth.org/.

[171] Lekholm A, Lindström L.H. Optoelectronic transducer for intravascular measurements of pressure variations. Medical and Biological Engineering and Computing. 1969;7:333–335.

[172] Lindström L.H. Miniaturized pressure transducer intended for intravascular use. IEEE Transaction on Biomedical Engineering. 1970;17:207–219. .

[173] Bekar A, Doğan Ş, Abaş F, Caner B, Korfali G, Kocaeli H, Yilmazlar S, Korfali E. Risk factors and complications of intracranial pressure monitoring with a fiberoptic device. Journal of Clinical Neuroscience. 2009;16:236–240.

[174] Bruder N, N'zoghe P, Graziani N, Pelissier D, Grisoli F, François G. A comparison of extradural and intraparenchymatous intracranial pressures in head injured patients. Intensive Care Medicine. 1995;21:850–852.

[175] Crutchfield J.S, Narayan R.K, Robertson C.S, Michael L.H. Evaluation of a fiberoptic intracranial pressure monitor. Journal of Neurosurgery. 1990;72:482–487.

[176] Czosnyka M, Czosnyka Z, Pickard J.D. Laboratory testing of three intracranial pressure microtransducers: technical report. Neurosurgery. 1996;38:219–224.

[177] Eide P.K. Comparison of simultaneous continuous intracranial pressure (ICP) signals from ICP sensors placed within the brain parenchyma and the epidural space. Medical Engineering and Physics. 2008;30:34–40.

[178] Gelabert-Gonzalez M, Ginesta-Galan V, Sernamito-Garcia R, Allut A.G, Bandin-Dieguez J, Rumbo R.M. The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochirurgica (Wien). 2006;148:435–441.

[179] Hollingsworth-Fridlund P, Vos H, Daily E.K. Use of fiber-optic pressure transducer for intracranial pressure measurements: a preliminary report. Heart and Lung. 1988;17:111–120.

[180] Martinez-Manas R, Santamarta D, Campos J.M, Ferrer E. Camino® intracranial pressure monitor: prospective study of accuracy and complications. Journal of Neurology, Neurosurgery, and Psychiatry. 2000;69:82–86.

[181] Münch E, Weigel R, Schmiedek P, Schürer L. The Camino intracranial pressure device in clinical practice: reliability, handling characteristics and complications. Acta Neurochirurgica (Wien). 1998;140:1113–1120.

[182] Piper I, Barnes A, Smith D, Dunn L. The Camino intracranial pressure sensor: is it optimal technology? An internal audit with a review of current intracranial pressure monitoring technologies. Neurosurgery. 2001;49:1158–1165.

[183] Raboel P.H, Bartek J, Andresen M, Bellander B.M, Romner B. Intracranial pressure monitoring: invasive versus non-invasive methods: a review. Critical Care Research and Practice. 2012;2012:1–14.

[184] Smith M. Monitoring intracranial pressure in traumatic brain injury. Anesthesia and Analgesia. 2008;106:240–248.

[185] Stendel R, Heidenreich J, Schilling A, Akhavan-Sigari R, Kurth R, Picht T, Pietilä T, Suess O, Kern C, Meisel J, Brock M. Clinical evaluation of a new intracranial pressure monitoring device. Acta Neurochirurgica. 2003;145:185–193.

[186] Yablon J, Lantner H, Mccormack T, Nair S, Barker E, Black P. Clinical experience with a fiberoptic intracranial pressure monitor. Journal of Clinical Monitoring and Computing. 1993;9:171–175.

[187] Sejersted O.M, Hargens A.R, Kardel K.R, Blom P, Jensen O, Hermansen L. Intramuscular fluid pressure during isometric contraction of human skeletal muscle. Journal of Applied Physiology. 1984;56:287–295.

[188] Körner L, Parker P, Almström C, Andersson G.B.J, Herberts P, Kadefors R, Palmerud G, Zetterberg C. Relation of intramuscular pressure to the force output and myoelectric signal of skeletal muscle. Journal of Orthopaedic Research. 1984;2:289–296. .

[189] Sjogaard G, Jensen B.R, Hargens A.R, Sogaard K. Intramuscular pressure and EMG relate during static contractions but dissociate with movement and fatigue. Journal of Applied Physiology (1985). 2004;96:1522–1529 discussion.

[190] Vedsted P, Blangsted A.K, Sogaard K, Orizio C, Sjogaard G. Muscle tissue oxygenation, pressure, electrical, and mechanical responses during dynamic and static voluntary contractions. European Journal of Applied Physiology. 2006;96:165–177.

[191] Crenshaw A.G, Styf J.R, Hargens A.R. Intramuscular pressures during exercise: an evaluation of a fiber optic transducer-tipped catheter system. European Journal of Applied Physiology. 1992;65:178–182.

[192] Crenshaw A.G, Styf J.R, Mubarak S.J, Hargens A.R. A new transducer-tipped fiber optic catheter for measuring intramuscular pressures. Journal of Orthopaedic Research. 1990;8:464–468.

[193] Nakhostine M, Styf J.R, Van Leuven S, Hargens A.R, Gershuni D.H. Intramuscular pressure varies with depth: the tibialis anterior muscle studied in 12 volunteers. Acta Orthopaedica. 1993;64:377–381.

[194] Peters P, Baker S.R, Leopold P.W, Taub N.A, Burnand K.G. Compartment syndrome following prolonged pelvic surgery. The British Journal of Surgery. 1994;81:1128–1131.

[195] Kaufman K.R, Sutherland D.H. Dynamic intramuscular pressure measurement during gait. Operative Techniques in Sports Medicine. 1995;3:250–255.

[196] Kaufman K.R, Waveringm T, Morrow D, Davis J, Lieber R.L. Performance characteristics of a pressure microsensor. Journal of Biomechanics. 2003;36:283–287.

[197] Murphy K.A, Gunther M.F, Vengsarkar A.M, Claus R.O. Quadrature phase-shifted, extrinsic Fabry-Pérot optical fiber sensors. Optics Letters. 1991;16:273–275.

[198] Willy C, Gerngross H, Sterk J. Measurement of intracompartmental pressure with use of a new electronic transducer-tipped catheter system. Journal of Bone and Joint Surgery – American Volume. 1999;81:158–168.

[199] Yang C, Zhao C, Wold L, Kaufman K.R. Biocompatibility of a physiological pressure sensor. Biosensors and Bioelectronics. 2003;19:51–58.

[200] Chen S, Pislaru C, Kinnick R.R, Morrow D.A, Kaufman K.R, Greenleaf J.F. Evaluating the dynamic performance of a fibre optic pressure microsensor. Physiological Measurement. 2005;26:N13–N19.

[201] Davis J, Kaufman K.R, Lieber R.L. Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle. Journal of Biomechanics. 2003;36:505–512.

[202] Winters T.M, Sepulveda G.S, Cottler P.S, Kaufman K.R, Lieber R.L, Ward S.R. Correlation between isometric force and intramuscular pressure in rabbit tibialis anterior muscle with an intact anterior compartment. Muscle and Nerve. 2009;40:79–85.

[203] Nilsson A, Zhang Q, Styf J. The amplitude of pulse-synchronous oscillations varies with the level of intramuscular pressure in simulated compartment syndrome. Journal of Experimental Orthopaedics. 2015;2:3.

[204] An K.N. In vivo force and strain of tendon, ligament, and capsule. In: Guilak F, Butler D.L, Goldstein S.A, Mooney D.J, eds. Functional tissue engineering. NY (USA): Springer; 2003.

[205] Levick J.R. Joint pressure-volume studies: their importance, design and interpretation. The Journal of Rheumatology. 1983;10:353–357.

[206] Pedowitz R.A, Gershuni D.H, Crenshaw A.G, Petras S.L, Danzig L.A, Hargens A.R. Intraarticular pressure during continuous passive motion of the human knee. Journal of Orthopaedic Research. 1989;7:530–537. .

[207] Inokuchi W, Olsen B.S, Søjbjerg J.O, Sneppen O. The relation between the position of the glenohumeral joint and the intraarticular pressure: an experimental study. Journal of Shoulder Elbow Surgery. 1997;6:144–149.

[208] Iba K, Wada T, Aoki M, Oda T, Ozasa Y, Yamashita T. The relationship between the pressure adjacent to the ulnar nerve and the disease causing cubital tunnel syndrome. Journal of Shoulder Elbow Surgery. 2008;17:585–588.

[209] Iba K, Wada T, Aoki M, Tsuji H, Oda T, Yamashita T. Intraoperative measurement of pressure adjacent to the ulnar nerve in patients with cubital tunnel syndrome. The Journal of Hand Surgery. 2006;31:553–558.

[210] Dennison C.R, Wild P.M, Byrnes P.W.G, Saari A, Itshayek E, Wilson D.C, Zhu Q.A, Dvorak M.F.S, Cripton P.A, Wilson D.R. Ex vivo measurement of lumbar intervertebral disc pressure using fibre-Bragg gratings. Journal of Biomechanics. 2008;41:221–225.

[211] Hsieh A.H, Ryan D.A, Chen Z, Liu Y, Nesson S.C, Yu M. Intradiscal pressures in rat tail discs measured using a miniaturized fiber-optic sensor. Journal of Biomechanics. 2006;39:S28–S2490.

[212] Nesson S, Yu M, Hsieh A.H. A miniature fiber optic pressure sensor for intradiscal pressure measurements of rodents. In: Vijay K.V, ed. Proceedings of SPIE 6528. vol. 65280P. San Diego (CA, USA): SPIE; March 21, 2007 65280P.

[213] Hwang D, Gabai A, Yu M, Yew A, Hsieh A. Role of load history in intervertebral disc mechanics and intradiscal pressure generation. Biomechanics and Modeling in Mechanobiology. 2011;11:95–106.

[214] Huang W.-C, Chiu N.-F, Chiang C.-C, Tsai P.-K, Wang J.-L. Miniature Fresnel-based fiber optic pressure sensors for human disc pressure measurement. In: Gannot I, ed. Optical fibers and sensors for medical diagnostics and treatment applications IX. January 24, 2009 San Jose (CA). 71730J-71730J-8.

[215] Roriz P, Ferreira J.M.C, Potes J.C, Oliveira M.T, Frazão O, Santos J.L, Simões J.A. In vivo measurement of the pressure signal in the intervertebral disc of an anesthetized sheep. Journal of Biomedical Optics. 2014;19:037006.

[216] Hebelka H, Gaulitz A, Nilsson A, Holm S, Hansson T. The transfer of disc pressure to adjacent discs in discography: a specificity problem? Spine. 2010;35:E1025–E1029.

[217] Höejer S, Krantz M, Ekstroem L, Kaigle A, Holm S. A microstructure-based fiber optic pressure sensor for measurements in lumbar intervertebral discs. In: Baldini F, Croitoru N.I, Frenz M, Lundstroem I, Miyagi M, Pratesi R, Wolfbeis O.S, eds. Proceedings of SPIE 3570. vol. 115. September 8, 1999:115–122 Stockholm (Sweden).

[218] Guehring T, Unglaub F, Lorenz H, Omlor G, Wilke H.-J, Kroeber M. Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model. European Spine Journal. 2006;15:597–604.

[219] Ferrara L, Triano J.J, Sohn M.-J, Song E, Lee D.D. A biomechanical assessment of disc pressures in the lumbosacral spine in response to external unloading forces. The Spine Journal. 2005;5:548–553.

[220] Ekström L, Holm S, Holm A.K, Hansson T. In vivo porcine intradiscal pressure as a function of external loading. Journal of Spinal Disorders and Techniques. 2004;17:312–316.

[221] Hök B, Tenerz L, Berg S, Blückert A. Pressure microsensor system using a closed-loop configuration. Sensors and Actuators A-Physical. 1994;41:78–81.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset