References

[1] Bicelli LP, et al. A review of nanostructural aspects of metal electrodeposition. Int. J. Electrochem. Sci. 2008;3(4):356408.

[2] Mukhopadhyay A, Basu B. Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review. Int. Mater. Rev. 2007;52:257288.

[3] Gurrappa I, Binder L. Electrodeposition of nanostructured coatings and their characterization—a review. Sci. Technol. Adv. Mater. 2008;9(4):043001.

[4] Cao G, Wang Y. Nanostructures and Nanomaterials: Synthesis, Properties, and Applications. second ed. Singapore: World Scientific Publishing Co. Pte. Ltd; 2011: 596.

[5] Briggle J, Nolidin PD, Golden TD. Multilayer film fabrication using flow injection coupled with electrochemical deposition. Electroanalysis. 2010;22(19):21572161.

[6] Jang B, et al. Fabrication of Segmented Au/Co/Au nanowires: insights in the quality of Co/Au junctions. ACS Appl. Mater. Interfaces. 2014;6(16):1458314589.

[7] Chen H, et al. Electrochemical construction of porous gold nanostructures on DVD substrate and its application as nonenzymatic hydrogen peroxide sensor. Sci. China-Chem. 2015;58(10):p15851592.

[8] Uzunoglu A, Scherbarth AD, Stanciu LA. Bimetallic PdCu/SPCE non-enzymatic hydrogen peroxide sensors. Sens. Actuat B-Chem. 2015;220:968976.

[9] Alanyalioglu M, Bayrakceken F, Demir U. Preparation of PbS thin films: a new electrochemical route for underpotential deposition. Electrochim. Acta. 2009;54(26):65546559.

[10] Rozlin NMN, Alfantazi AM. Nanocrystalline cobalt–iron alloy: synthesis and characterization. Mater. Sci. Eng. A-Struct. Mater. 2012;550:388394.

[11] Trivinho-Strixino F, et al. Active waveguide effects from porous anodic alumina: an optical sensor proposition. Appl. Phys. Lett. 2010;97(1).

[12] Santos JS, Trivinho-Strixino F, Pereira EC. The influence of experimental conditions on microstructure and morphology of Nb-doped ZrO2 films prepared by spark anodization. Corros. Sci. 2013;73:99105.

[13] Guerreiro HA, et al. Grazing angle photoluminescence of porous alumina as an analytical transducer for gaseous ethanol detection. J. Nanosci. Nanotechnol. 2014;14(9):66536657.

[14] Zhao JL, et al. Crystal phase transition and properties of titanium oxide nanotube arrays prepared by anodization. J. Alloy. Compd. 2007;434:792795.

[15] Freitas RG, Antunes EP, Pereira EC. CO and methanol electrooxidation on Pt/Ir/Pt multilayers electrodes. Electrochim. Acta. 2009;54(7):19992003.

[16] Nagao R, et al. Oscillatory electro-oxidation of methanol on nanoarchitectured Ptpc/Rh/Pt metallic multilayer. ACS Catal. 2015;5(2):10451052.

[17] Gratzel M. Photoelectrochemical cells. Nature. 2001;414(6861):338344.

[18] Mor GK, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells. 2006;90(14):20112075.

[19] Emeline A, et al. Spectroscopic and photoluminescence studies of a wide band gap insulating material: powdered and colloidal ZrO2 sols. Langmuir. 1998;14(18):50115022.

[20] Xiao F, et al. Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochim. Acta. 2008;53(28):81038117.

[21] Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008;47:29302946.

[22] Mor GK, et al. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements. Thin Solid Films. 2006;496(1):4248.

[23] Gooding JJ, Lai LMH, Goon IY, Nanostructured electrodes with unique properties for biological and other applications. Alkire RC, Kolb DM, et al. eds. Chemically Modified Electrodes, vol. 11. Weinheim: Wiley-VCH; 2009:156.

[24] Mantzila AG, Prodromidis MI. Development and study of anodic Ti/TiO2 electrodes and their potential use as impedimetric immunosensors. Electrochim. Acta. 2006;51(17):35373542.

[25] Popov KI, Djokic SS, Grgur BN. Fundamentals Aspects of Electrometallurgy. New York: Kluwer Academic Publishers; 2002.

[26] Trivinho-Strixino F, Santos JS, Sikora MS, Síntese Eletroquímica de Materiais Nanoestruturados [electrochemical synthesis of nanostructured materials]. Da Róz AL, Leite FL, et al. eds. Nanoestruturas: Princípios e Aplicações, vol. 1. Rio de Janeiro: Elsevier; 2015:63110: Chapter 3.

[27] Young L. Anodic Oxide Films. 1. New York: Academic Press; 1961: p. 377.

[28] Bockris JO, Reddy AKN. Modern Electrochemistry. New York: Plenum Press; 1973: pp. 1231–1251.

[29] Kolb DM. An atomistic view of electrochemistry. Surf. Sci. 2002;500(1–3):722740.

[30] Santos VP, Tremiliosi G. The correlation between the atomic surface structure and the reversible adsorption-desorption of hydrogen on single crystal Pt(111), Pt(100) e Pt(110). Quim. Nova. 2001;24:856863.

[31] Lebouin C, et al. Electrochemically elaborated palladium nanofilms on Pt(111): characterization and hydrogen insertion study. J. Electroanal. Chem. 2009;626(1–2):5965.

[32] Markovic NM, Gasteiger HA, Ross PN. Copper electrodeposition on Pt(111) in the presence of chloride and (bi)sulfate—rotanting-ring Pt(111) disk electrode studies. Langmuir. 1995;11(10):40984108.

[33] Flis-Kabulska I. Electrodeposition of cobalt on gold during voltammetric cycling. J. Appl/ Electrochem. 2006;36:131137.

[34] Mendoza-Huizar LH, Robles J, Palomar-Pardavé M. Nucleation and growth of cobalt onto different substrates Part I. Underpotential deposition onto a gold electrode. J. Electroanal. Chem. 2002;521:95106.

[35] Vilchenski MC, et al. Electrodeposition of Co and Co-Fe Films on platinum and on copper substrates. Portugaliae Electrochim. Acta. 2003;21:3347.

[36] Losiewicz B, et al. The structure, morphology and electrochemical impedance study of the hydrogen evolution reaction on the modified nickel electrodes. Int. J. Hydrogen Energ. 2004;29(2):145157.

[37] Bonou L, Eyraud M, Crousier J. Nucleation an growth of copper on glassy-carbon and steel. J. Appl. Electrochem. 1994;24(9):906910.

[38] Fan CL, Piron DL, Paradis P. Hydrogen evolution on electrodeposited nickel cobalt molybdenum in alkaline water electrolysis. Electrochim. Acta. 1994;39(18):27152722.

[39] Stoychev D, et al. Electrodeposition of platinum on metallic and nonmetallic substrates—selection of experimental conditions. Mater. Chem. Phys. 2001;72(3):360365.

[40] Marsh JH, Orchard SW. Voltammetric studies of glassy-carbon electrodes activated in air and steam. Carbon. 1992;30(6):895901.

[41] Ranganathan S, Kuo TC, Mccreery RL. Facile preparation of active glassy carbon electrodes with activated carbon and organic solvents. Anal. Chem. 1999;71(16):35743580.

[42] Song Y-J, Kim J-Y, Park K-W. Synthesis of Pd dendritic nanowires by electrochemical deposition. Crys. Growth Des. 2009;9(1):505507.

[43] Su X, Qiang C. Influence of pH and bath composition on properties of Ni–Fe alloy films synthesized by electrodeposition. Bull. of Mater. Sci. 2012;35(2):183189.

[44] Lucas FWS, Lima ARF, Mascaro LH. Glycerol as additive in copper indium gallium diselenide electrodeposition: morphological, structural and electronic effects. RSC Adv. 2015;5(24):1829518300.

[45] Bard AJ, Faulkner LR. Electrochemical Methods—Fundamentals and Applications. New York: John Wiley & Sons; 1980: p. 51.

[46] Matsushima JT, Trivinho-Strixino F, Pereira EC. Investigation of cobalt deposition using the electrochemical quartz crystal microbalance. Electrochim. Acta. 2006;51:19601966.

[47] Rakityanskaya IL, Shein AB. Anodic behavior of iron, cobalt, and nickel silicides in alkaline electrolytes. Russ. J. Electrochem. 2006;42:12081212.

[48] Qiao GY, et al. High-speed jet electrodeposition and microstructure of nanocrystalline Ni–Co alloys. Electrochim. Acta. 2005;51(1):8592.

[49] Santos JS, et al. Effect of temperature in cobalt electrodeposition in the presence of boric acid. Electrochim. Acta. 2007;53:644649.

[50] Song KD, et al. A study on effect of hydrogen reduction reaction on the initial stage of Ni electrodeposition using EQCM. Electrochem. Commun. 2003;5:460466.

[51] Despic AR, Deposition and dissolution of metals and alloys. Part. B: mechanisms, kinetics, texture and morphology. Conway BE, Bockris JOM, et al. eds. Comprehensive Treatise of Electrochemistry, vol. 7. New York: Plenum Press; 1973:483.

[52] Elliott JM, et al. Nanostructured platinum (H-I-ePt) films: effects of electrodeposition conditions on film properties. Chem. Mater. 1999;11(12):36023609.

[53] Yang WQ, et al. Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells. Electrochim. Acta. 2006;52(1):914.

[54] Brett CMA, Brett AMO. Electrochemistry: Principles, Methods and Applications. New York: Oxford University Press; 1993.

[55] Park DY, et al. Nanostructured magnetic CoNiP electrodeposits: structure-property relationships. Electrochim. Acta. 2002;47(18):28932900.

[56] Ross CA. Electrodeposited multilayer thin films. Annu. Rev. Mater. Sci. 1994;24:159188.

[57] Freitas RG, Pereira EC. Giant multilayer electrocatalytic effect investigation on Pt/Bi/Pt nanostructured electrodes towards CO and methanol electrooxidation. Electrochim. Acta. 2010;55(26):76227627.

[58] Lashmore DS, Thomson R. Cracks and dislocations in face-centered cubic metallic multilayers. J. Mater. Res. 1992;7(9):23792386.

[59] Bartlett PN, et al. Non-aqueous electrodeposition of p-block metals and metalloids from halometallate salts. RSC Adv. 2013;3(36):1564515654.

[60] Liu R, et al. Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold. Chem. Mater. 2001;13(2):508512.

[61] Chappell MJ, Leach JSL. Passivity and breakdown of passivity of valve metals. In: Frankenthal RP, e Kruger J, eds. The Electrochemical Society. New Jersey: Princeton; 1978.

[62] Ikonopisov S. Theory of electrical breakdown during formation of barrier anodic films. Electrochim. Acta. 1977;22(10):10771082.

[63] Parkhutik VP, Albella JM, Martinez-Duart JM, Electric breakdown in anodic oxide films. Conway BE, Bockris JOM, et al. eds. Moderns Aspects of Electrochemistry, vol. 23. New York: Plenum Press; 1992:315391: Chapter 5.

[64] Yerokhin AL, et al. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999;122(2–3):7393.

[65] Lee W, et al. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 2006;5(9):741747.

[66] Santos JS, et al. Characterization of electrical discharges during spark anodization of zirconium in different electrolytes. Electrochim. Acta. 2014;130:477487.

[67] Sikora MS, et al. Influence of the morphology and microstructure on the photocatalytic properties of titanium oxide films obtained by sparking anodization in H3PO4. Electrochim. Acta. 2011;56(9):31223127.

[68] Long BH, et al. Characteristics of electric parameters in aluminium alloy MAO coating process. J. Phys. D-Appl. Phys. 2005;38(18):34913496.

[69] Sundararajan G, Rama Krishna L. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surf. Coat. Technol. 2003;167(2–3):269277.

[70] Yerokhin AL, et al. Discharge characterization in plasma electrolytic oxidation of aluminium. J. Phys. D: Appl. Phys. 2003;36(17):2110.

[71] Moon S, Jeong Y. Generation mechanism of microdischarges during plasma electrolytic oxidation of Al in aqueous solutions. Corros. Sci. 2009;51(7):15061512.

[72] Maximov AI, Khlustova AV. Optical emission from plasma discharge in electrochemical systems applied for modification of material surfaces. Surf. Coat. Technol. 2007;201(21):87828788.

[73] Hussein RO, et al. Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. J.Phys. D: Appl. Phys. 2010;43:105203.

[74] Monfort F, et al. Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte. Corros. Sci. 2007;49(2):672693.

[75] Habazaki H, et al. Spark anodizing of [beta]-Ti alloy for wear-resistant coating. Surf. Coat. Technol. 2007;201(21):87308737.

[76] Yerokhin A, et al. Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy. Surf. Coat. Technol. 2004;177:779783.

[77] Gupta P, et al. Electrolytic plasma technology: science and engineering—an overview. Surf. Coat. Technol. 2007;201(21):87468760.

[78] Ma W, et al. Preparation and in vitro biocompatibility of hybrid oxide layer on titanium surface. Surf. Coat. Technol. 2010;205(6):17361742.

[79] Shi X, Xu L, Wang Q. Porous TiO2 film prepared by micro-arc oxidation and its electrochemical behaviors in Hank’s solution. Surf. Coat. Technol. 2010;205(6):17301735.

[80] Yan Y, et al. Microstructure and bioactivity of Ca, P and Sr doped TiO2 coating formed on porous titanium by micro-arc oxidation. Surf. Coat. Technol. 2010;205(6):17021713.

[81] Trivinho-Strixino F, et al. Tetragonal to monoclinic phase transition observed during Zr anodisation. J. Solid State Electrochem. 2012;1–9.

[82] Leach JSL, Pearson BR. The Effect of foreign ions upon the electrical characteristics of anodic ZrO2 films. Electrochim. Acta. 1984;29(9):12711282.

[83] Leach JSL, Pearson BR. Crystallization in anodic oxide-films. Corros. Sci. 1988;28:43.

[84] Diamanti MV, Pedeferri MP. Effect of anodic oxidation parameters on the titanium oxides formation. Corros. Sci. 2007;49(2):939948.

[85] Hussein RO, et al. Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. J. Phys. D-Appl. Phys. 2010;43(10).

[86] Stojadinović S, et al. Spectroscopic and real-time imaging investigation of tantalum plasma electrolytic oxidation (PEO). Surf. Coat. Technol. 2011;205(23–24):54065413.

[87] Dunleavy CS, et al. Characterisation of discharge events during plasma electrolytic oxidation. Surf. Coat. Technol. 2009;203(22):34103419.

[88] Sikora MS, et al. Theoretical calculation of the local heating effect on the crystallization of TiO2 prepared by sparking anodization. Curr. Nanosci. 2015;11(3):263270.

[89] Albella JM, Montero I, Martinez-Duart JM. Electron injection and avalanche during the anodic oxidation of tantalum. J. Electrochem. Soc.: Solid-State Sci. Technol. 1984;131(5):11011104.

[90] Matykina E, et al. Investigation of the growth processes of coatings formed by AC plasma electrolytic oxidation of aluminium. Electrochim. Acta. 2009;54(27):67676778.

[91] Yerokhin A, Pilkington A, Matthews A. Pulse current plasma assisted electrolytic cleaning of AISI 4340 steel. J. Mater. Process. Technol. 2010;210(1):5463.

[92] Chanmanee W, et al. Titania nanotubes from pulse anodization of titanium foils. Electrochem. Commun. 2007;9(8):21452149.

[93] Lee W, et al. Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat. Nanotechnol. 2008;3:234239.

[94] Sottovia L, et al. Thin films produced on 5052 aluminum alloy by plasma electrolytic oxidation with red mud-containing electrolytes. Mater. Res. 2014;17(6):14041409.

[95] Losic D, Santos A. Nanoporous Alumina Fabrication, Structure, Properties and Applications. New York: Springer; 2015: p. 362.

[96] Keller F, Hunter MS, Robinson DL. Structural features of oxide coatings on aluminum. J. Electrochem. Soc. 1953;100(9):411419.

[97] Despic A, Parkhutik VP, Electrochemistry of aluminum in aqueous solution and physics of its anodic oxide. Bockris JOM, White RE, et al. eds. Modern Aspects of Electrochemistry, vol. 20. New York and London: Plenum Press; 1989:518: Chapter 6.

[98] Diggle JW, Downie TC, Goulding CW. Anodic oxide films on aluminum. Chem. Rev. 1969;69(3):365382.

[99] Thompson GE, Wood GC. Treatise on Materials Science and Technology. New York: Academic Press; 1983.

[100] Takahashi H, Fujimoto K, Nagayama M. Effect of pH on the distribution of anions in anodic oxide-films formed on aluminum in phosphate solutions. J. Electrochem. Soc. 1988;135(6):13491353.

[101] Sulka GD. Highly ordered anodic porous alumina formation by self-organized anodizing. In: Eftekhari A, ed. Nanostructured Materials in Electrochemistry. first ed. Berlin: Wiley-VCH; 2008:1116.

[102] Patermarakis G, Masavetas K. Aluminium anodising in oxalate and sulphate solutions. Comparison of chronopotentiometric and overall kinetic response of growth mechanism of porous anodic films. J. Electroanal. Chem. 2006;588(2):179189.

[103] Patermarakis G, Chandrinos J, Masavetas K. Formulation of a holistic model for the kinetics of steady state growth of porous anodic alumina films. J Solid State Electrochem. 2007;11(9):11911204.

[104] Patermarakis G. The origin of nucleation and development of porous nanostructure of anodic alumina films. J. Electroanal. Chem. 2009;635(1):3950.

[105] Patermarakis G, Moussoutzanis K. Development and application of a holistic model for the steady state growth of porous anodic alumina films. Electrochim. Acta. 2009;54(9):24342443.

[106] Patermarakis G, Diakonikolaou J. Mechanism of aluminium and oxygen ions transport in the barrier layer of porous anodic alumina films. J. Solid State Electrochem. 2012;16(9):29212939.

[107] Pashchanka M, Schneider JJ. Uniform contraction of high-aspect-ratio nanochannels in hexagonally patterned anodic alumina films by pulsed voltage oxidation. Electrochem. Commun. 2013;34:263265.

[108] Chen Y, et al. On the generation of interferometric colors in high purity and technical grade aluminum: an alternative green process for metal finishing industry. Electrochim. Acta. 2015;174:672681.

[109] Li S-Y, et al. Fabrication of one-dimensional alumina photonic crystals by anodization using a modified pulse-voltage method. Mater. Res. Bull. 2015;68:4248.

[110] Moreno JMM, et al. Constrained order in nanoporous alumina with high aspect ratio: smart combination of interference lithography and hard anodization. Adv. Funct. Mater. 2014;24(13):18571863.

[111] T. Kumeria, A. Santos, Nanoporous alumina membranes for chromatography and molecular transporting, In: A. Santos, D. Losic, (Eds.), Nanoporous Alumina: Fabrication, Structure, Properties and Applications, vol. 219, Springer, 2015, p. 362 (Chapter 10), Switzerland.

[112] Brudzisz A, Brzozka A, Sulka GD. Effect of processing parameters on pore opening and mechanism of voltage pulse detachment of nanoporous anodic alumina. Electrochim. Acta. 2015;178:374384.

[113] Lee W. The anodization of aluminum for nanotechnology applications. Jom. 2010;62(6):5763.

[114] Garcia UM, et al. Comparison and construction of “mild” and “hard” anodisation reactors for the synthesis of porous alumina. Quím. Nova. 2015;38(8):11121116.

[115] Li Y, et al. Photoluminescence and optical absorption caused by the F+ centres in anodic alumina membranes. J. Phys. Condens. Matter. 2001;13(11):26912699.

[116] Li GH, et al. Wavelength dependent photoluminescence of anodic alumina membranes. J. Phys. Condens. Matter. 2003;15(49):86638671.

[117] Huang GS, et al. Strong blue emission from anodic alumina membranes with ordered nanopore array. J. Appl. Phys. 2003;93(1):582585.

[118] Huang GS, et al. Dependence of blue-emitting property on nanopore geometrical structure in Al-based porous anodic alumina membranes. Appl. Phys. A: Mater. Sci. Process. 2005;81:1345.

[119] Chen JH, et al. The investigation of photoluminescence centers in porous alumina membranes. Appl. Phys. A-Mater. Sci. Process. 2006;84(3):297300.

[120] Li Z, Huang K. Optical properties of alumina membranes prepared by anodic oxidation process. J. Lumin. 2007;127(2):435440.

[121] Gao T, Meng GM, Zhang LD. Blue luminescence in porous anodic alumina films: the role of the oxalic impurities. J. Phys. Conden. Matter. 2003;15(12):20712079.

[122] Wang S, et al. The effect of nanometer size of porous anodic aluminum oxide on adsorption and fluorescence of tetrahydroxyflavanol. Spectrochim. Acta A-Mol. Biomol. Spectrosc. 2003;59:1139.

[123] Huang GS, et al. On the origin of light emission from porous anodic alumina formed in sulfuric acid. Solid State Commun. 2006;137:621.

[124] Liu X, et al. Photoluminescence of poly(thiophene) nanowires confined in porous anodic alumina membrane. Polymer. 2008;49(9):21972201.

[125] Hsiao C-S, et al. Synthesis and luminescent properties of strong blue light-emitting Al2O3/ZnO nanocables. J. Electrochem. Soc. 2008;155(5):K96K99.

[126] Cheng YQ, et al. Photoluminescence characteristics of several fluorescent molecules on nanometer porous alumina film. Acta Chim. Sinica. 2004;62(2):183187.

[127] Qi DF, et al. Optical emission of conjugated polymers adsorbed to nanoporous alumina. Nano Lett. 2003;3(9):12651268.

[128] Wu X-J, et al. Electrochemical synthesis and applications of oriented and hierarchically quasi-1D semiconducting nanostructures. Coord. Chem. Rev. 2010;254(9–10):11351150.

[129] Park YM, et al. Artificial petal surface based on hierarchical micro- and nanostructures. Thin Solid Films. 2011;520(1):362367.

[130] Sabzi RE, Kant K, Losic D. Electrochemical synthesis of nickel hexacyanoferrate nanoarrays with dots, rods and nanotubes morphology using a porous alumina template. Electrochim. Acta. 2010;55(5):18291835.

[131] Hoess A, et al. Self-supporting nanoporous alumina membranes as substrates for hepatic cell cultures. J. Biomed. Mater. Res. A. 2012;100(9):22302238.

[132] Thakur S, et al. Depth matters: cells grown on nano-porous anodic alumina respond to pore depth. Nanotechnology. 2012;23(25).

[133] Sopyan I, Fadli A, Mel M. Porous alumina-hydroxyapatite composites through protein foaming-consolidation method. J. Mech. Behav. Biomed. Mater. 2012;8:8698.

[134] Bernardo E, et al. Porous wollastonite hydroxyapatite bioceramics from a preceramic polymer and micro- or nano-sized fillers. J. Eur. Ceram. Soc. 2012;32(2):399408.

[135] Yuan B, et al. Fabrication of porous alumina green bodies from suspension emulsions by gel casting. Mater. Lett. 2012;81:151154.

[136] Sopyan I, Fadli A. Floating porous alumina from protein foaming-consolidation technique for cell culture application. Ceram. Int. 2012;38(6):52875291.

[137] Martin J, et al. Tailored polymer-based nanorods and nanotubes by “template synthesis”: from preparation to applications. Polymer. 2012;53(6):11491166.

[138] Gong D, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001;16(12):33313334.

[139] Podporska-Carroll J, et al. Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes. Appl. Catal. B: Environ. 2015;176-177:7075.

[140] Shahzad N, et al. Silver-copper nanoalloys-an efficient sensitizer for metal-cluster-sensitized solar cells delivering stable current and high open circuit voltage. J. Power Sources. 2015;294:609619.

[141] Yang ZP, et al. A high-performance nonenzymatic piezoelectric sensor based on molecularly imprinted transparent TiO2 film for detection of urea. Biosens. Bioelectron. 2015;74:8590.

[142] Hahn R, Macak JM, Schmuki P. Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes. Electrochem. Commun. 2007;9(5):947952.

[143] Stengl V, et al. Preparation, characterization and photocatalytic activity of optically transparent titanium dioxide particles. Mater. Chem. Phys. 2007;105(1):3846.

[144] Kar A, Raja KS, Misra M. Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf. Coat. Technol. 2006;201(6):37233731.

[145] Kulkarni M, et al. Titanium nanostructures for biomedical applications. Nanotechnology. 2015;26(6):062002.

[146] Syrek K, et al. Effect of electrolyte agitation on anodic titanium dioxide (Ato) growth and its photoelectrochemical properties. Electrochim. Acta. 2015;180:801810.

[147] Song H-J, et al. The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics. Surf. Coat. Technol. 2007;201(21):87388745.

[148] Poznyak SK, Talapin DV, Kulak AI. Electrochemical oxidation of titanium by pulsed discharge in electrolyte. J. Electroanal. Chem. 2005;579(2):299310.

[149] Daothong S, et al. Size-controlled growth of TiO2 nanowires by oxidation of titanium substrates in the presence of ethanol vapor. Scr. Mater. 2007;57(7):567570.

[150] Regonini D, et al. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R-Rep. 2013;74(12):377406.

[151] Prida VM, et al. Temperature influence on the anodic growth of self-aligned Titanium dioxide nanotube arrays. J. Magn. Magn. Mater. 2007;316(2):110113.

[152] Cai Q, Yang L, Yu Y. Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization. Thin Solid Films. 2006;515(4):18021806.

[153] Crawford GA, Chawla N. Porous hierarchical TiO2 nanostructures: processing and microstructure relationships. Acta Mater. 2009;57(3):854867.

[154] Berger S, et al. The origin for tubular growth of TiO2 nanotubes: a fluoride rich layer between tube-walls. Surf. Sci. 2011;605(19–20):L57L60.

[155] Taveira LV, et al. Voltage oscillations and morphology during the galvanostatic formation of self-organized TiO2 nanotubes. J. Electrochem. Soc. 2006;153(4):B137B143.

[156] Taveira LV, et al. Initiation and growth of self-organized TiO[sub 2] nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes. J. Electrochem. Soc. 2005;152(10):B405B410.

[157] Thebault F, et al. Modeling of growth and dissolution of nanotubular Titania in fluoride-containing electrolytes. Electrochem. Solid State Lett. 2009;12(3):C5C9.

[158] Yasuda K, et al. Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals. J. Electrochem. Soc. 2007;154(9):C472C478.

[159] Thompson GE, et al. Nucleation and growth of porous anodic films on aluminum. Nature. 1978;272(5652):433435.

[160] Matykina E, et al. Morphologies of nanostructured TiO2 doped with F on Ti-6Al-4V alloy. Electrochim. Acta. 2011;56(5):22212229.

[161] Yahia SAA, et al. Effect of anodizing potential on the formation and EIS characteristics of TiO2 nanotube arrays. J. Electrochem. Soc. 2012;159(4):K83K92.

[162] Alivov Y, Fan ZY, Johnstone D. Titanium nanotubes grown by titanium anodization. J. Appl. Phys. 2009;106(3).

[163] Ruff T, Hahn R, Schmuki P. From anodic TiO2 nanotubes to hexagonally ordered TiO2 nanocolumns. Appl. Surf. Sci. 2011;257(19):81778181.

[164] Mor GK, et al. Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 2003;18(11):25882593.

[165] Macák JM, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 2005;44(14):21002102.

[166] Kaneco S, et al. Fabrication of uniform size titanium oxide nanotubes: impact of current density and solution conditions. Scr. Mater. 2007;56(5):373376.

[167] Macak JM, Schmuki P. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim. Acta. 2006;52(3):12581264.

[168] Roguska A, et al. Synthesis and characterization of ZnO and Ag nanoparticle-loaded TiO2 nanotube composite layers intended for antibacterial coatings. Thin Solid Films. 2014;553:173178.

[169] Yuan B, et al. Nitrogen doped TiO2 nanotube arrays with high photoelectrochemical activity for photocatalytic applications. Appl. Surf. Sci. 2013;280:523529.

[170] Das C, et al. Photoelectrochemical and photocatalytic activity of tungsten doped TiO2 nanotube layers in the near visible region. Electrochim. Acta. 2011;56(28):1055710561.

[171] Gracien EB, et al. Photocatalytic activity of manganese, chromium and cobalt-doped anatase titanium dioxide nanoporous electrodes produced by re-anodization method. Thin Solid Films. 2007;515(13):52875297.

[172] Kubacka A, Colón G, Fernández-García M. Cationic (V, Mo, Nb, W) doping of TiO2-anatase: a real alternative for visible light-driven photocatalysts. Catal. Today. 2009;143(3–4):286292.

[173] Leach JSL, Pearson BR. The conditions for incorporation of electrolyte ions into anodic oxides. Electrochim. Acta. 1984;29(9):12631270.

[174] Trivinho-Strixino F, Guimaraes FEG, Pereira EC. Luminescence in anodic ZrO2 doped with Eu(III)ions. Mol. Cryst. Liq. Cryst. 2008;485:766775.

[175] Bensadon EO, et al. Cubic stabilized zirconium oxide anodic films prepared at room temperature. Chem. Mater. 1999;11:277280.

[176] Smits K, et al. Luminescence of Eu ion in alumina prepared by plasma electrolytic oxidation. Appl. Surf. Sci. 2015;337:166171.

[177] Shen D, et al. Effect of cerium and lanthanum additives on plasma electrolytic oxidation of AZ31 magnesium alloy. J, Rare Earth. 2013;31(12):12081213.

[178] De La Rosa-Cruz E, et al. Luminescence and visible upconversion in nanocrystalline ZrO2:Er3+. Appl. Phys. Lett. 2003;83(24):49034905.

[179] Naccache R, et al. Visible upconversion emission of Pr3+ doped gadolinium gallium garnet nanocrystals. J.Nanosci. Nanotechnol. 2004;4(8):10251031.

[180] Eilers H. Synthesis and characterization of nanophase yttria co-doped with erbium and ytterbium. Mater. Lett. 2006;60(2):214217.

[181] Boukhachem A, et al. Structural, optical, vibrational and photoluminescence studies of Sn-doped MoO3 sprayed thin films. Mater. Res. Bull. 2015;72:252263.

[182] Chandran D, et al. Structural, optical, photocatalytic, and antimicrobial activities of cobalt-doped tin oxide nanoparticles. J. Sol–Gel Sci. Technol. 2015;76(3):582591.

[183] Nam G, Kim B, Leem J-Y. Facile synthesis and an effective doping method for ZnO:In3+ nanorods with improved optical properties. J. Alloy. Compd. 2015;651:17.

[184] Pisarski WA, et al. Enhancement and quenching photoluminescence effects for rare earth—doped lead bismuth gallate glasses. J. Alloy. Compd. 2015;651:565570.

[185] Shakir S, et al. Development of copper doped titania based photoanode and its performance for dye sensitized solar cell applications. J. Alloy. Compd. 2015;652:331340.

[186] Tilley RJD. Defects in Solids. Hoboken, New Jersey: John Wiley & Sons Ltda; 2008.

[187] Emeline AV, et al. Photostimulated generation of defects and surface reactions on a series of wide band gap metal-oxide solids. J. Phys. Chem. B. 1999;103(43):91909199.

[188] De La Rosa E, et al. Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor. Opt. Mater. 2005;27(7):13201325.

[189] Arsenev PA, et al. X-ray and thermostimulated luminescence of 0.9ZrO2-0.1Y2O3 single-crystals. Phys. Status Solidi A-Appl. Res. 1980;62(2):395398.

[190] Wachsman ED, et al. Spectroscopic investigation of oxygen vacancies in solid oxide electrolytes. Appl. Phys. A-Mater. Sci. Process. 1990;50(6):545549.

[191] Reisfeld R, Zelner M, Patra A. Fluorescence study of zirconia films doped by Eu3+, Tb3+ and Sm3+ and their comparison with silica films. J. Alloy. Compd. 2000;300:147151.

[192] Yueh HK, Cox B. Luminescence properties of zirconium oxide films. J. Nucl. Mater. 2003;323(1):5767.

[193] Reisfeld R, et al. Rare earth ions, their spectroscopy of cryptates and related complexes in sol-gel glasses. Opt. Mater. 2003;24(1–2):113.

[194] Depero LE, et al. Correlation between crystallite sizes and microstrains in TiO2 nanopowders. J. Cryst. Growth. 1999;198–199(Part I):516520.

[195] Guidi V, et al. Effect of dopants on grain coalescence and oxygen mobility in nanostructured titania anatase and rutile. J. Phys. Chem. B. 2003;107:120124.

[196] Mattsson A, et al. Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin Films. J. Phys. Chem. B. 2006;110(3):12101220.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset