Bibliography

[1]   M. Abramowitz and I. A. Stegun. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. (Dover, New York), 1970.

[2]   R. K. Adair. The physics of baseball. Physics Today, 48(5):26–31, (1995).

[3]   R. K. Adair. The physics of baseball. (Perennial, New York), 2002.

[4]   G. B. Arfken and H. J. Weber. Mathematical methods for physicists. (Academic Press, New York), 6th edition, 2005.

[5]   T. Asai, K. Seo, O. Kobayashi, and R. Sakashita. Fundamental aerodynamics of the soccer ball. Sports Eng., 10:101–110, (2007).

[6]   N. W. Ashcroft and N. D. Mermin. Solid state physics. (Saunders College, New York), 1976.

[7]   E. B. Becker, G. F. Carey, and J. T. Oden. Finite elements: an introduction. (Prentice Hall, Englewood Cliffs, NJ), 1981.

[8]   C. A. Bennett. Principles of physical optics. (Wiley, New York), 2008.

[9]   S. J. Blundell and K. M. Blundell. Concepts in thermal physics. (Oxford University Press, New York), 2010.

[10] M. L. Boas. Mathematical methods in the physical sciences. (Wiley, New York), 3rd edition, 2006.

[11] B. H. Bransden and C. J. Joachain. Physics of atoms and molecules. (Prentice Hall, New York), 2002.

[12] K. Briggs. A precise calculation of the Feigenbaum constants. Math. Comp., 57:435–439, (1991).

[13] H. C. Bryant and N. Jarmie. The glory. Sci. Am., 231:60–71, July (1974).

[14] R. P. Butler, J. T. Wright, G. W. Marcy, D. A. Fischer, S. S. Vogt, C. G. Tinney, H. R. A. Jones, B. D. Carter, J. A. Johnson, C. McCarthy, and A. J. Penny. Catalog of nearby exoplanets. Astrophys. J., 646:505–522, (2006).

[15] A. Chenciner and R. Montgomery. A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. of Math., 152:881–901, (2000).

[16] G. M. Clemence. The relativity effect in planetary motions. Rev. Mod. Phys., 19:361–364, (1947).

[17] C. J. Cohen and E. C. Hubbard. Libration of the close approaches of Pluto to Neptune. Astrono. J., 70:10–13, (1965).

[18] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier series. Math. Comp., 19:297–301, (1965).

[19] S. N. Coppersmith. A simpler derivation of Feigenbaum's renormalization group equation for the period-doubling bifurcation sequence. Am. J. Phys., 67:52–54, (1999).

[20] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W function. Adv. Comp. Math., 5:329–359, (1996).

[21] J. Crank and E. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Adv. Comp. Math., 6:207–226, (1996).

[22] R. Cross. Physics of baseball and softball. (Springer, New York), 2011.

[23] C. R. Davis and H. M. Schey. Eigenvalues in quantum mechanics: a computer-generated film. Am. J. Phys., 40:1502–1508, (1972).

[24] P. DeVries and J. Hasbun. A first course in computational physics. (Jones & Bartlett, Sudbury, MA), 2010.

[25] E. Doolittle. The secular variations of the elements of the orbits of the four inner planets computed for the epoch 1850.0 G.M.T. Trans. Am. Phil. Soc., 22:37–189, (1912).

[26] P. Fallahi, A. C. Bleszynski, R. M. Westervelt, J. Huang, J. Walls, and E. J. Heller. Imaging a single-electron quantum dot. Nano Lett., 5:223–226, (2005).

[27] G. E. Fasshauer. Meshfree approximation methods with MATLAB. (World Scientific, Hackensack, NJ), 2007.

[28] J. Feigenbaum. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys., 19:25–52, (1978).

[29] R. Feynman. The Feynman Lectures on Physics, volume I. (Addison Wesley, New York), 1970. feynmanlectures.caltech.edu.

[30] Debra A. Fischer, R. Paul Butler, Geoffrey W. Marcy, Steven S. Vogt, and Gregory W. Henry. A Sub-Saturn mass planet orbiting HD 3651. Astrophys. J., 590:1081–1087, (2003).

[31] G. R. Fowles and G. L. Cassiday. Analytical mechanics. (Thomson Brooks/Cole, Belmont, CA), 7th edition, 2004.

[32] C. Frohlich. Aerodynamic drag crisis and its possible effect on the flight of baseballs. Am. J. Phys., 52:325–334, (1984).

[33] T. Gay. The physics of football. (HarperCollins, New York), 2005.

[34] N. Giordano and H. Nakanishi. Computational physics. (Benjamin Cummings, New York), 2nd edition, 2005.

[35] J. Gleick. Chaos: making a new science. (Penguin, New York), 1988.

[36] J. E. Goff and M. J. Carré. Trajectory analysis of a soccer ball. Am. J. Phys., 77:1020–1027, (2009).

[37] A. Goldberg, H. M. Schey, and J. L. Schwartz. Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena. Am. J. Phys., 35:177–186, (1967).

[38] J. Golde, J. Shertzer, and P. Oxley. Finite element solution of Laplaces equation for ion-atom chambers. Am. J. Phys., 77:81–86, (2009).

[39] H. Goldstein. Prehistory of the Runge-Lenz vector. Am. J. Phys., 43:737–738, (1975).

[40] H. Goldstein, C. Poole, and J. Safko. Classical mechanics. (Addison Wesley, New York), 2002.

[41] H. Gould and J. Tobochnik. Statistical and thermal physics with computer applications. (Princeton University Press, Princeton, NJ), 2010.

[42] H. Gould, J. Tobochnik, and W. Christian. An introduction to computer simulation methods: Applications to physical systems. (Addison-Wesley, New York), 3rd edition, 2007.

[43] D. J. Griffiths. Introduction to electrodynamics. (Prentice Hall, Upper Saddle River, NJ), 1999.

[44] D. J. Griffiths. Introduction to quantum mechanics. (Prentice Hall, Upper Saddle River, NJ), 2005.

[45] P. Harrison. Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures. (Wiley, New York), 3rd edition, 2010.

[46] B. Hayes. Why W? Am. Scientist, 93:104–108, (2005).

[47] W. H. Heintz. Determination of the Runge-Lenz vector. Am. J. Phys., 42:1078–1082, (1974).

[48] P. Hellings. Astrophysics with a PC. (Willmann-Bell Inc., Richmond, VA), 1994. An introduction to computational astrophysics.

[49] D. Hestenes. New foundations for classical mechanics. (Kluwer Pub., New York), 1999. Ch. 8, Celestial mechanics.

[50] J. D. Jackson. Classical electrodynamics. (Wiley, New York), 1975.

[51] C. J. Joachain. Quantum collision theory. (North-Holland, Amsterdam), 1983.

[52] E. J. Kansa. Multiquadrics – a scattered data approximation scheme with applications to computational fluid dynamics II: Solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comp. Math. Appl., 19:147–161, (1990).

[53] R. Landau, M. Páez, and C. Bordeianu. Computational physics: Problem solving with computers. (Wiley, New York), 2nd edition, 2007.

[54] H. P. Langtangen. A primer on scientific programming with Python. (Springer, New York), 3rd edition, 2012.

[55] E. Larsson and B. Fornberg. A numerical study of some radial basis function based solution methods for elliptic PDEs. Comp. Math. Appl., 46:891–902, (2003).

[56] S. M. Lea. Mathematics for physicists. (Thomson Brooks/Cole, Belmont, CA), 2004.

[57] R. L. Liboff and J. Greenberg. The hexagon quantum billiard. J. Stat. Phys., 105:389–402, (2001).

[58] J. J. Lissauer. Chaotic motion in the Solar System. Rev. Mod. Phys., 71(3):835–845, (1999).

[59] E. N. Lorenz. Deterministic nonperiodic flow. J. Atmo. Sci., 20:130–141, (1963).

[60] G. D. Mahan. Quantum mechanics in a nutshell. (Princeton University Press, Princeton, NJ), 2009.

[61] B. Marmaras and J. Wang. Simulation and visualization of few-body systems and the differential precession of Mercury. Computing in Sci. & Eng., 16:42–50, (2014).

[62] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. J. Chem. Phys., 21:1087–1092, (1953).

[63] S. Mikkola and S. Aarseth. A time-transformed leapfrog scheme. Integration of few-body systems with large mass ratios. Celes. Mech. Dyn. Astrono., 84:343–354, (2002).

[64] M. H. Mittleman. Introduction to the theory of laser-atom interactions. (Plenum, New York), 1993.

[65] A. Morbidelli. Modern integrations of solar system dynamics. Annu. Rev. Earth Planet. Sci., 30:89–112, (2002).

[66] NASA exoplanet archive. http://exoplanetarchive.ipac.caltech.edu/.

[67] A. M. Nathan. The effect of spin on the flight of a baseball. Am. J. Phys., 76:119–124, (2008).

[68] M. Newman. Computational physics. (CreateSpace Independent Publishing), 2012.

[69] H. M. Nussenzveig. The theory of the rainbow. Sci. Am., 236:116–127, (1977).

[70] T. Pang. An introduction to computational physics. (Cambridge Univ. Press, Cambridge), 2nd edition, 2006.

[71] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical recipes: the art of scientific computing. (Cambridge Univ. Press, Cambridge), 1992.

[72] M. P. Price and W. F. Rush. Nonrelativistic contribution to Mercurys perihelion precession. Am. J. Phys., 47:531–534, (1979).

[73] E. Rabe. Determination and survey of periodic Trojan orbits in the restricted problem of three bodies. Astrono. J., 66:500–513, (1961).

[74] I. I. Rabi. Space quantization in a gyrating magnetic field. Phys. Rev., 51:652–654, (1961).

[75] J. N. Reddy. An introduction to the finite element method. (McGraw-Hill, New York), 1993.

[76] F. Reif. Fundamentals of statistical and thermal physics. (Waveland Press, Long Grove, IL), 2009.

[77] S. M. Reimann and M. Manninen. Electronic structure of quantum dots. Rev. Mod. Phys., 74:1283–1342, (2002).

[78] M. J. Romanelli. Runge-kutta methods for the solution of ordinary differential equations. In A. Ralston and H. S. Wiff, editors, Mathematical methods for digital computers, pages 110–120. (Wiley, New York), 1960.

[79] A. E. Roy. Orbital motion. (IOP Publishing, Bristol), 2005.

[80] J. J. Sakurai and J. Napolitano. Modern quantum mechanics. (Addison Wesley, New York), 2011.

[81] G. S. Sawicki, M. Hubbarda, and W. J. Stronge. How to hit home runs: Optimum baseball bat swing parameters for maximum range trajectories. Am. J. Phys., 71:1152–1162, (2003).

[82] D. V. Schroeder. An introduction to thermal physics. (Addison Wesley, New York), 1999.

[83] R. Seydel. Determinant factors of the table tennis game: measurement and simulation of ball-flying curves. Int. J. Tab. Tenn. Sci., 1:1–7, (1992).

[84] C. Simó. New families of solutions in N-body problems. Proceedings of the ECM 2000, Barcelona (July 10–14), (2000).

[85] M. G. Stewart. Precession of the perihelion of Mercury's orbit. Am. J. Phys., 73:730–734, (2005).

[86] S. H. Strogatz. Nonlinear dynamics and chaos. (Westview Press, Cambridge, MA), 1994.

[87] D. F. Styer. Quantum revivals versus classical periodicity in the infinite square well. Am. J. Phys., 69:56–62, (2001).

[88] G. J. Sussman and J. Wisdom. Numerical evidence that the motion of Pluto is chaotic. Science, 241:433–437, (1988).

[89] J. Thijssen. Computational physics. (Cambridge University Press, Cambridge), 2nd edition, 2007.

[90] S. R. Valluri, D. J. Jeffrey, and R. M. Corless. Some applications of the Lambert W function to physics. Can. J. Phys., 78(9):823–831, (2000).

[91] M. C. Vargas, D. A. Huerta, and V. Sosa. Chaos control: The problem of a bouncing ball revisited. Am. J. Phys., 77:857–861, (2009).

[92] L. Verlet. Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159:98–103, (1967).

[93] J. Wang, J Burgdörfer, and A Bárány. Ionization spectrum for ion-atom collisions with short-ranged potentials in one and three dimensions. Phys. Rev. A, 43:4036–4039, (1991).

[94] R. Warburton and J. Wang. Analysis of asymptotic projectile motion with air resistance using the Lambert W function. Am. J. Phys., 72:1404–1407, (2004).

[95] P. R. Weissman and G. W. Wetherill. Periodic Trojan-type orbits in the Earth-Sun system. Astrono. J, 79:404–412, (1974).

[96] H. Wendland. Scattered data approximation. (Cambridge University Press, Cambridge), 2005.

[97] J. Wesson. The science of soccer. (IOP Publishing, Bristol), 2002.

[98] F. Yamamoto, Y. Tsuji, and G. Chen. Basic theory and experiment for the simulation of ball trajectory. Int. J. Tab. Tenn. Sci., 3:1–15, (1996).

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset