Luminance Information

The monochrome luminance (Y) signal is derived from gamma-corrected red, green, and blue (R′G′B′) signals:

Technology Trade-offs

Due to the sound subcarrier at 4.5 MHz, a requirement was made that the color signal fit within the same bandwidth as the monochrome video signal (0–4.2 MHz). For economic reasons, another requirement was made that monochrome receivers must be able to display the black and white portion of a color broadcast and that color receivers must be able to display a monochrome broadcast.

Color Information

Insider Info

The eye is most sensitive to spatial and temporal variations in luminance; therefore, luminance information was still allowed the entire bandwidth available (0–4.2 MHz). Color information, which the eye is less sensitive and which therefore requires less bandwidth, is represented as hue and saturation information.

The hue and saturation information is transmitted using a 3.58-MHz subcarrier, encoded so that the receiver can separate the hue, saturation, and luminance information and convert them back to RGB signals for display. Although this allows the transmission of color signals within the same bandwidth as monochrome signals, the problem still remains as to how to separate the color and luminance information cost-effectively, since they occupy the same portion of the frequency spectrum.

To transmit color information, U and V or I and Q “color difference” signals are used:

The scaling factors to generate U and V from (B′−Y) and (R′−Y) were derived due to overmodulation considerations during transmission. If the full range of (B′−Y) and (R′−Y) were used, the modulated chrominance levels would exceed what the monochrome transmitters were capable of supporting. Experimentation determined that modulated subcarrier amplitudes of 20% of the Y signal amplitude could be permitted above white and below black. The scaling factors were then selected so that the maximum level of 75% color would be at the white level.

I and Q were initially selected since they more closely related to the variation of color acuity than U and V. The color response of the eye decreases as the size of viewed objects decreases. Small objects, occupying frequencies of 1.3–2.0 MHz, provide little color sensation. Medium objects, occupying the 0.6–1.3 MHz frequency range, are acceptable if reproduced along the orange-cyan axis. Larger objects, occupying the 0–0.6 MHz frequency range, require full three-color reproduction.

The I and Q bandwidths were chosen accordingly, and the preferred color reproduction axis was obtained by rotating the U and V axes by 33°. The Q component, representing the green-purple color axis, was band-limited to about 0.6 MHz. The I component, representing the orange-cyan color axis, was band-limited to about 1.3 MHz.

Another advantage of limiting the I and Q bandwidths to 1.3 MHz and 0.6 MHz, respectively, is to minimize crosstalk due to asymmetrical sidebands as a result of lowpass filtering the composite video signal to about 4.2 MHz. Q is a double sideband signal; however, I is asymmetrical, bringing up the possibility of crosstalk between I and Q. The symmetry of Q avoids crosstalk into I; since Q is bandwidth limited to 0.6 MHz, I crosstalk falls outside the Q bandwidth.

U and V, both bandwidth-limited to 1.3 MHz, are now commonly used instead of I and Q. When broadcast, UV crosstalk occurs above 0.6 MHz; however, this is not usually visible due to the limited UV bandwidths used by NTSC decoders for consumer equipment.

The UV and IQ vector diagram is shown in Figure 6.1.

FIGURE 6.1. UV and IQ Vector Diagram for 75% Color Bars.

Color Modulation

I and Q (or U and V) are used to modulate a 3.58 MHz color subcarrier using two balanced modulators operating in phase quadrature: one modulator is driven by the subcarrier at sine phase; the other modulator is driven by the subcarrier at cosine phase.

Hue information is conveyed by the chrominance phase relative to the subcarrier. Saturation information is conveyed by chrominance amplitude. In addition, if an object has no color (such as a white, gray, or black object), the subcarrier is suppressed.

Composite Video Generation

The modulated chrominance is added to the luminance information along with appropriate horizontal and vertical sync signals, blanking information, and color burst information, to generate the composite color video waveform shown in Figure 6.2.

FIGURE 6.2. (M) NTSC Composite Video Signal for 75% Color Bars.

The I and Q (or U and V) information can be transmitted without loss of identity as long as the proper color subcarrier phase relationship is maintained at the encoding and decoding process. A color burst signal, consisting of nine cycles of the subcarrier frequency at a specific phase, follows most horizontal sync pulses, and provides the decoder a reference signal so as to be able to recover the I and Q (or U and V) signals properly.

NTSC Standards

Figure 6.3 shows the common designations for NTSC systems. The letter M refers to the monochrome standard for line and field rates (525/59.94), a video bandwidth of 4.2 MHz, an audio carrier frequency 4.5 MHz above the video carrier frequency, and an RF channel bandwidth of 6 MHz. NTSC refers to the technique to add color information to the monochrome signal.

FIGURE 6.3. Common NTSC Systems.

NTSC 4.43 is commonly used for multi-standard analog VCRs. The horizontal and vertical timing is the same as (M) NTSC; color encoding uses the PAL modulation format and a 4.43361875-MHz color subcarrier frequency.

Noninterlaced NTSC is a 262-line, 60 frames-per-second version of NTSC. This format is identical to standard (M) NTSC, except that there are 262 lines per frame.

Insider Info

NTSC–J, used in Japan, is the same as (M) NTSC, except there is no blanking pedestal during active video. Thus, active video has a nominal amplitude of 714 mV.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset